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ABSTRACT 

Biclustering method is one of the most important methods of the data mining techniques. 

Biclustering can be used to discover similar patterns in datasets especially gene expression 

datasets or any datasets that can be presented as a matrix. Starting with Block clustering 

algorithm in 1972 until now a good number of the biclustering algorithms have been 

introduced. Each one of these algorithms was proposed to discover specific things in the 

data. In addition, each one of the introduced algorithms has some features differ from other 

algorithms. So far, we can say that there is no clear user manual to help on choosing the best 

algorithms. Another problem is to choose the parameters for each algorithm. Many works 

have been done aiming to compare the biclustering algorithms according to some evaluating 

measures and no appropriate effort has been made to determine how to choose the best 

parameters under certain conditions. In this work, a two-stage comparison study is 

introduced. In the first stage, data envelopment analysis (DEA) is used to choose the best 

parameters for each algorithm according to some measures. In the second stage, using the 

results of the first stage some of the introduced algorithms were compared according to the 

size and some different variance measures.   
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ÖZET 

İkili kümeleme yöntemi, veri madenciliğinde en önemli yöntemlerden biridir. İkili 

kümeleme, veri kümelerinde, özellikle gen ifade veri kümelerinde veya matrisler olarak 

sunulabilecek herhangi bir veri kümesinde benzer kalıpları keşfetmek için kullanılabilir. 

1972'de Blok Kümeleme Algoritması ile başlayarak bugüne kadar çok sayıda algoritma 

tanıtılmıştır. Bu algoritmaların her biri verideki belli yapıları keşfetmek üzere önerilmiştir. 

Buna ilaveten, tanıtılan algoritmaların özellikleri birbirlerinden farklıdır. Şimdiye kadar, en 

iyi algoritmayı seçmek için yardımcı olacak bir kılavuzun olmadığı söylenebilir. Diğer bir 

problem, her algoritma için en uygun parametrelerin seçilmesidir. Bazı değerlendirme 

ölçütlerine göre çok aşamalı algoritmaların karşılaştırılmasını amaçlayan birçok çalışma 

yapılmıştır. Ancak, belirli koşullar altında, algoritmaların en iyi parametrelerinin nasıl 

seçileceğini belirlemek için çalışma yapılmamıştır. Bu çalışmada, ikili kümeleme 

algoritmalarının karşılaştırılması için iki aşamalı bir yaklaşım önerilmiştir. Birinci aşama, 

her bir algoritma için en iyi parametreleri seçmek amacıyla Veri Zarflama Analizinin (DEA) 

kullanılmasıdır. İkinci aşama, ilk aşamadan elde edilen en iyi parametrelere sahip 

algoritmaların boyut ve homojenlik ölçümlerine göre karşılaştırılmasıdır. 
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 INTRODUCTION 

 

Every moment the amount of data in databases is exploding. Data collecting process is 

everywhere like point-of-sale transactions, communications companies, social media and 

search engines etc….  To make these huge and wide spread data sets meaningful, some 

techniques can be used according to what we need to answer; discovering or predicting for 

example.  

Some methods can be used to analyze such datasets. The most important methods to analyze 

big datasets are the data mining techniques and statistical methods. Data mining techniques 

may be preferable to be used with big datasets instead of statistics in most of the cases, 

because the fact of data mining techniques uses statistics, artificial intelligence and machine 

learning techniques to obtain the information from the datasets. In addition, data mining 

methods do not require most of the assumptions, which are very important to have the ability 

of using the statistical methods. Formally, data mining or knowledge discovery techniques 

are used to discover patterns in large datasets, which includes some methods like 

Classification, Clustering, and some other methods [1]. 

 

There are various types of datasets according to the study or work filed. Some well-known 

examples of studies fields where there are big datasets are Market Basket Analysis, 

Education, Customer Segmentation and Future Healthcare etc... [2-4]. One of the most used 

and known datasets are the Gene Expression Datasets. These datasets are presented as a 

matrix where each element in this matrix is representing an expression value for one gene 

under a specific experimental condition. In these datasets, the researchers are interested in 

discovering patterns for different genes under the experimental conditions, which can be 

used to study diseases especially cancers, tumors and genetic diseases [5-7].   

 

Clustering method is known as one of the most important methods in the data mining 

techniques, and can be used with the gene expression data to discover patterns. However, 

clustering can be applied to one dimension of a data matrix, which gives us global results. 

Local results mean that some of the genes in the data may have a specific pattern under some 

experimental conditions. Clustering methods will include all of the conditions in the detected 

gene clusters [8]. 
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To overcome this problem and some other problems, which may happen if the clustering 

method is being used, in 1974, a generalized clustering method was introduced to be used 

instead of clustering method and opened the door for introducing many other algorithms.  

 

This method is known as Biclustering or Block Clustering, which applies the clustering 

method on the two dimensions, simultaneously [2]. 

 

A good number of the biclustering algorithms have been introduced until now. However, 

until now the biggest problems for using these algorithms are: (a) Which one of these 

algorithms is better to be used; and (b) which parameters are the best to use for different 

datasets types. Many works have been introduced in the literature to compare these 

algorithms [3, 6, 9-22].  

 

 In this thesis, a two-stage comparison study is introduced to compare some of the well-

known biclustering algorithms. In the first stage of the comparison study, Data Envelopment 

Analysis (DEA) [23, 24] will be used to make an order (rank) for the performances of each 

algorithm with different parameters according to some conditions. In the second stage, the 

ensemble method [3] will be used to compare the performance of some of the best 

performances algorithms, which were ranked by the DEA method according to some criteria. 

The chosen variable in the DEA stage and the chosen criteria in the second stage where 

chosen just to present an example of this two-stage comparison method.  

 

This thesis consists of three main chapters: In the first chapter, the biclustering method 

concept is reviewed in details and how its algorithms can be classified. In addition, the first 

chapter includes some of the most important previous works in the biclustering field. In the 

second chapter, a big number of the biclustering algorithms were discussed in a detailed 

theoretical manner.  Finally, the third chapter, which consists of two sections contains a 

detailed view of the two-stage comparison method using one of the most widely used 

databases with the biclustering algorithms in a big number in the previous studies. 
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 BICLUSTERING 

 

The widespread availability of information technology has made it possible to inflate the 

volume of information proactively that history has not seen before, making the issue of large 

data controversial, in terms of the usefulness of its existence in this random way.  This has 

led to an increasing need for the development of powerful tools for data analysis and 

extraction of information and knowledge. Traditional and statistical methods cannot deal 

with this huge quantity, so advanced methods are used to process this data. Data mining 

techniques have emerged as a technique to extract knowledge from vast amounts of data, 

based on mathematical algorithms that are the basis of data mining and are derived from 

many disciplines such as statistics, mathematics, logic, learning science, artificial 

intelligence, expert systems, machine science and other sciences, which are considered as 

intelligent and non-traditional sciences.  

 

One of the most important databases are the gene expression data. These data is being 

generated by measuring the expression level of a large number of genes under different 

experimental samples or environmental conditions. Gene expression data as presented in 

Table 2.1 can be ordered in a data matrix. In the following table every row presents one gene 

and every column is presenting a specific condition[25]. 

 

Table 2.1. Source [25]: Gene expression data matrix 

 Condition1 ….. Conditionj ….. Conditionm 

Gene1 11a
 

….. 1 ja
 

….. 1ma
 

….. ….. ….. ….. ….. ….. 

Genei 1ia
 

….. ija
 

….. ima
 

….. ….. ….. ….. ….. ….. 

Genen 1na
 

….. nja
 

….. nma
 

 

Clustering methods have been used to deal with gene expression data. The use of clustering 

methods may give good results with uncomplicated structural data.  Even with gene 

expression data, good results can be obtained. Clustering algorithms aim to partition objects 

into clusters to maximize within-cluster similarity, based on a similarity measure. Sometimes 

in gene expression data, we may be interested in grouping genes under specific conditions 

instead of grouping them according to overall conditions. However, clustering cannot do this 



4 

 

mission because of the idea that clustering methods cannot do clustering on the rows and 

columns at the same time[26].  

 

To overcome this problem, new algorithms were developed and are being known as 

biclustering algorithms. Biclustering, block clustering, co-clustering, or two-mode clustering 

is a data mining technique, which allows simultaneous clustering of the rows and columns 

of a matrix. The term was first introduced by Boris Mirkin[27] to name a technique 

introduced many years earlier, in 1972, by J. A. Hartigan[2]. Cheng and Church [28] were 

the first to apply biclustering to gene expression datasets. Although biclustering methods 

have been developed for gene expression data, these algorithms can be applied to all other 

fields of science whose data can be ordered in a data matrix.  

 

The main differences between the clustering and the biclustering methods as presented in 

Figure 2.1, can be summarized as follows[8]: 

 

 While clustering can be applied to either the rows or the columns of the data matrix 

separately, biclustering performs clustering to the two dimensions simultaneously. 

 Clustering produces clusters of rows or clusters of columns. However, biclustering seeks 

blocks of rows and columns that are interrelated. 

 The clusters, which are obtained using clustering methods, are exhaustive, but in the case 

of biclustering methods, it is not necessary to be exclusive and/or exhaustive. 

 

Figure 2.1. Source [9]: The main differences between using clustering (left) and biclustering 

(right) methods. 

2.1. Definition: Let A   be a data matrix with n   rows and m   columns as being defined by 

its sets of rows,  1, , nX x x  and its sets of columns,  1, , mY y y . The data matrix A  

is denoted as  ( , )X Y .  ( , )IJA I J   is defined as submatrix that contains only the objects 
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ija  corresponding to the rows I and columns J , such that i I  and j J , where I X  

and J Y . A bicluster is a submatrix ( , )IJA I J  , where  1, , kI i i X  ,  and 

 1, , sJ j j Y  [29]. 

 

From the previous definition, the following can be obtained[29]:  

 

 The mean of the thi  row in the bicluster ( , )I J  is given b 

 
1

| |
iJ ij

j J

a a
J 

                            (2.1) 

 The mean of the 
thj  column in the bicluster ( , )I J  is given by: 

1

| |
Ij ij

i I

a a
I 

                            (2.2) 

 The mean of all elements in the bicluster ( , )I J  is given by:

,

1 1 1

| || | | | | |
IJ ij iJ Ij

i I j J i I j J

a a a a
I J I J   

                (2.3) 

 

2.1. Previous Works 

 

One of the earliest approaches for biclustering data is the Block Clustering algorithm, which 

was introduced by J. A. Hartigan [2] in 1972. Block Clustering or Direct Clustering 

algorithm is the first known try for the biclustering algorithms to overcome the limitations 

of the traditional clustering methods. Block algorithm was not applied to a gene expression 

dataset. It was applied to the UN vote results to find some patterns in the data. However, 

when we come to talk about biclustering, the gene expression datasets also comes. Most of 

the biclustering algorithms were introduced to analyze the gene expression datasets. CC 

algorithm, which was introduced by Cheng and Church [28], is a greedy iterative algorithm 

and is the first known biclustering algorithm, which dealt with the Gene Expression data and 

opened the door for introducing many other biclustering algorithms. 

 

A large number of the biclustering algorithms where introduced to analyze the gene 

expression datasets or any dataset can be presented as a matrix. However, algorithms have 

different ways of work and different results types and structures and some other things.  
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 Many works were introduced to compare the biclustering algorithms. However, in some of 

the studies, the comparison was done using simulated datasets and comparing the results 

according to some measures like size or variance. In addition, until now the step of choosing 

the best biclustering algorithm to use according to the data type is not an easy job. 

 

One of the most important works is the one, which was introduced by Madeira and  Oliveira 

[9]. In their work, they analyzed a large number of the existed algorithms. In addition, they 

classified these algorithms according to the type of biclusters, which can be detected, and 

the number and the structure of the biclusters in the datasets. Finally, they also made another 

classification for the methods, which are used to perform the search process to detect the 

biclusters. 

 

Another important work was introduced by Prelic et al. [10]. In this work, they introduced a 

good known biclustering algorithm, which is known as Bimax algorithm. In addition, they 

evaluate the performance of some well-known biclustering algorithms with the Bimax 

algorithm and a hierarchical clustering method using simulated datasets. In this work, they 

showed some of the advantages of using the biclustering methods instead of clustering 

method. In addition, they showed that there are noticeable differences between the compared 

algorithms and how much the reference algorithm (Bimax) is able to deliver relevant patterns 

within all considered settings. 

 

Vicente R. S. [6] focused in their work on compiling the biclustering algorithms and the 

studying the methods of bicluster visualization. The importance of studying visualization 

methods comes from being an easy way to interpret the results. In this work, they proposed 

a metric applicable to the computation of the best parameter setting for a biclustering 

algorithm the first step towards biclustering benchmarking. In addition, they introduced a 

new visualization method. With this technique, the biclustering results are being represented 

making emphasis in conveying the special properties of biclusters.   

 

 Tchagang et al. [11] reviewed in their work some of the most-known biclustering 

algorithms. In addition, they made a review of some of the important biological evaluation 

methods and some other methods. 
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 Chia and  Karuturi [30], introduced a differential co-expression framework and a differential 

co-expression scoring function. These frameworks and functions can be used to quantify the 

quality or the goodness of detected biclusters. That will be done based on the observation 

that genes in a bicluster are co-expressed in the conditions belonged to the bicluster and not 

co-expressed in the other conditions. In addition, they introduced a scoring function, which 

can be used to classify the detected biclusters into three types: T-type co-expression (strong 

gene only effects), B-type co-expression (strong condition only effects) and μ-type co-

expression (strong gene as well as strong condition effects).  

 

Another one of the best works the work done by Kaiser S. [3]. In his work, he made a review 

contains some of the well-known biclustering algorithms. In addition, he introduced an 

ensemble method in the biclustering technique by using different parameters for the same 

biclustering algorithm and combine the results so the output will be overlapped biclusters. 

Then, he made a review of some data types. Finally, they discussed the software, which can 

be used for biclustering methods like R and other programs. 

 

 Pontes et al. [13] analyzed a big number of the most used quality measures for biclusters. 

In addition, they did a comparative study of the quality measures. The comparison was based 

on the capability to recognize different expression patterns in biclusters. Pontes et al. [31] 

presented a survey of biclustering method also in another paper. In addition, they made a 

classification for the biclustering algorithms into two group according to whether or not to 

use evaluation metrics within the search method.  

 

Padilha and Campello [14], made a big comparative study between 17 algorithms using 3  

synthetic datasets with five different scenarios and 2 real data sets. The results of this study 

like most of the presented works said, “Each algorithm achieved satisfactory results in part 

of the biclustering tasks in which they were investigated. The choice of the best algorithm 

for some application thus depends on the task at hand and the types of patterns that one wants 

to detect”. 

 

There are 2 other important works for our study (which give us the idea of using DEA 

techniques), the two works were done by Lu C. C. [32, 33]. In these works, DEA was used 

to evaluate outputs according to their inputs. However, in these works, he works to evaluate 

some algorithms with different parameters, which is not an easy job in most of the cases.  
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One of the most popular and used dataset in the biclustering studies is the Yeast 

Saccharomyces Cerevisiae cell cycle expression dataset [34]. Many different results 

obtained using this dataset with different algorithms, some of these results and some of the 

results of using some simulated data are presented as follows (the results will be summarized 

for just some algorithms, which will be used in this study. These algorithms are CC, FLOC, 

Plaid model, xMotif, Bimax and Qubic algorithms [10, 15, 28, 35-37]): 

 

 The first study that can be mentioned, the work of Cheng and Church [28]. In this work, 

they introduced the first known biclustering algorithm, which was tested with a gene 

expression dataset. This dataset was the Yeast Saccharomyces Cerevisiae Cell Cycle 

expression dataset. The threshold value was set to 300 in that work. In addition, the value is 

used with this dataset in most of the comparison works. With this threshold value, the 

detected biclusters were able to cover about 91.12% of rows and 100% of the columns in the 

dataset, which can be considered as a good value if we are looking to cover the data. 

 

Another study that used the yeast dataset set is the one, which was done by Yang et al. [15], 

who introduced an improved algorithm for the CC algorithm, which known as FLOC 

algorithm. In that work, as it was mentioned before the yeast dataset was used to compare 

the performance of CC and FLOC algorithms. The same threshold value was used for both 

algorithms. The comparison was based on the sizes of the detected biclusters, the run-time, 

and the residue values. In this comparison study, FLOC algorithm showed better 

performance in all of the previously mentioned measures. 

 

Another study was done by Ayadi et al. [16] using the yeast dataset in order to compare some 

biclustering algorithm. Two of these algorithms were the CC and Bimax algorithms, which 

we are more interested in their results in our study. The comparison was based on the 

biological relevance of the detected biclusters. In this study, Bimax algorithm was better 

than CC algorithm in having more biological significant results. 

 

In addition, another work that used yeast dataset is the one which compared some of the 

introduced biclustering algorithms including CC, Bimax and xMotif algorithms [10, 28, 36], 

which was done by Nepomuceno et al. [17]. Algorithms had been evaluated based on 

biologically with the percentage of biclusters enriched by any Gene Ontology Consortium 

[38] category at different levels of significance. By using GO, a group of genes that belong 
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to the detected biclusters will be instigated to see if it has any significant enrichment with 

respect to a specific GO term. These types of evolution method will be the better way most 

of the times to detect the benefits of using biclustering algorithms in this research filed. 

xmotif algorithm was able to detect the bigger number of biclusters compared with the CC 

and Bimax algorithms. However, the numbers of rows that founded in the detected biclusters 

by CC were bigger than both xMotif and Bimax algorithms, respectively. The same thing 

was for the numbers of conditions (columns). However, the overall sizes of the founded 

biclusters were bigger with the CC algorithm then Bimax algorithm, and in the end the 

xMotif algorithm. For the biological evaluation, the order of the performance was the best 

with the CC algorithm then Bimax, and the last with nearly no statistically significant results 

with the xMotif algorithm.      

 

Other datasets were used also to compare the performance of the biclustering algorithms like 

the work of Oghabian et al. [18], which used data from the GeneSapiens database [39]. In 

this study, 13 biclustering algorithms and 2 clustering algorithms were compared. CC, 

FLOC, Qubic and Bimax algorithms were included in this study. The evaluation was based 

on the sample-based and gene-based. Sample-based evolution depending on assessing the 

set of samples included in generated biclusters for each algorithm. In other words, it shows 

how is the bicluster method is good to distinguish between different types of samples using 

some measures. In addition, the gene-based benchmarks estimate the quality of the biclusters 

by assessing the genes included in them using some measures. The results showed that for 

the biclustering algorithms that we are interested in the Plaid Model algorithm had the best 

performance. FLOC was able to give some good results also. Bimax almost did not have any 

good results. FLOC and Bimax algorithms required long run-time to obtain the results while 

the Qubic algorithm was so fast compared with the other algorithms. 

 

Pontes et al. [19] also compared 5 biclustering algorithms including CC, Bimax and xMotif 

algorithms using yeast dataset and 3 other datasets. The comparison was based on the 

number of the detected biclusters, numbers of rows and columns in the detected biclusters 

and the mean row variance. In the yeast data, CC and Bimax have been used. CC algorithm 

was able to detect more biclusters than the Bimax algorithm. The numbers of rows and 

columns in the detected biclusters using Bimax algorithm were bigger. The mean average 

variance was bigger with the CC algorithm. In the second dataset, both of CC and xMotif 

algorithm were used. xMotif algorithm was able to detect more biclusters than the CC 
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algorithm with bigger number of rows and less numbers of columns within the detected 

biclusters. The mean row variance was bigger with the xMotif algorithm.    

 

Yin and Liu [20] also made a comparison study between some of the well-known 

biclustering algorithms including CC, FLOC, and Bimax using yeast dataset and 2 other 

datasets. The comparison was based on numbers of rows and columns in the detected 

biclusters, the mean square residue (MSR), virtual error (VE), the average correlation value 

(ACV), average Spearman's Rho (ASR) and the time. FLOC algorithm was able to detect 

biclusters with bigger numbers of rows while Bimax detected smaller numbers of rows.  For 

the numbers of the columns, CC showed the best performance while Bimax were able to 

detect biclusters with a smaller numbers of columns. The biclusters that detected by FLOC 

algorithm have the biggest MSR and VE values while Bimax was the best with smaller 

values. For ACV and ASR, CC algorithm had the best performance in this study while the 

FLOC algorithm was the worst. (The above-presented results was summarized and had been 

cut off because we are interested in some algorithms not all in our study).      

  

  Previous studies have not limited the process of comparing algorithms with just real data. 

In many of them, the comparison was applied using simulated datasets. Gu and Liu [21] 

compared some of the biclustering algorithms, which includes CC and Plaid Model 

algorithm. The evaluation was made based on the sensitivity, specificity, overlapping rate 

and the number of the detected biclusters. Sensitivity has values range between 0 and 1. 

When sensitivity value goes higher, that indicates that more true members of the biclusters 

have been identified by the used algorithm. Specificity also has the same range of values, 

and when it goes higher that indicates more background data points are excluded from the 

biclusters. Overlapping rate with 0 value means that there is no overlap between the detected 

biclusters. In addition, the maximum value is 1. The simulated data was generated using the 

plaid model. In the results, CC and Plaid Model algorithms have the same value of sensitivity 

equal to one. The plaid model had 1 as a value for the specificity while CC had a value equal 

to 0. The overlapping rate in CC algorithm was 0.02 and for the Plaid Model algorithm, it 

was equal to 0. CC algorithm was able to detect 10 biclusters while Plaid Model algorithm 

was able to detect just 1 bicluster.  

 

Another study was introduced by Eren et al. [22]. In this study, they used 20 generated 

datasets. The datasets were generated with the following model: constant, constant-
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upregulated, shift, scale, shift-scale and plaid models. Different models because each 

algorithm has its own way to detect different types of biclusters. 12 algorithms were used in 

this study including Bimax, CC, Plaid Model, Qubic and xMotif algorithms. For the constant 

biclusters, xMotif was the best at detecting them, and then the CC algorithm comes in the 

second place. The plaid Model algorithm was the best in case of constant upregulated. xMotif 

also had a good performance with this type. The plaid biclusters were detected in a good 

way comparing with the other algorithms by the Plaid model algorithm. CC algorithm was 

the best for the scale type. For the shift type, the Plaid model algorithm was the best. Finally, 

for the shift-scale type CC and Plaid Model deal the best comparing with the performance 

of the other algorithms.    

 

2.2. Types of Biclusters 

 

Biclustering algorithms can be classified according to the type of the biclusters, which can 

be detected by each algorithm. According to Madeira and Oliveira [9], as presented in Figure 

2.2, there are four different categories of biclusters: 

1. Biclusters with constant values. 

2. Biclusters with constant values on rows or columns. 

3. Biclusters with coherent values. 

4. Biclusters with coherent evolutions. 

 

Figure 2.2. Source [9]: Examples of different types of biclusters: (a) constant bicluster, (b) 

constant rows, (c) constant columns, (d) coherent values (additive model), (e) 

coherent values (multiplicative model), (f) overall coherent evolution, (g) 

coherent evolution on the rows, (h) and (i) coherent evolution on the columns, 

and (j) coherent sign changes on rows and columns. 
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A constant bicluster is a submatrix ( , )I J , where all the values in this submatrix have the 

same value. Figure 2.2(a) is an example of this type, where each value ija   for all i I  and 

all j J can be obtained by: 

 

ija                                                                                                                (2.4) 

 

where   is a constant. This type is usually uncommon in real data because of the noise[9]. 

Figure 2.2(b) and Figure 2.2(c) are giving examples of biclusters with constant values on 

rows or columns, respectively. The first type is identifying a subset of genes (rows) with 

similar expression values under a subset of conditions (columns). In other words, the 

expression levels differ from each other by some adjustment value, 
i , associated with each 

row i I , so every value ija in this type can be obtained using one of the followings 

equations: 

 

ij ia                    (2.5) 

ij ia                    (2.6) 

 

where   is the common value in the bicluster. This adjustment can be either an additive 

(equation 2.5) or multiplicative (equation 2.6) model.  In the same way, a bicluster with 

constant columns, which is presented in Figure 2.2(c), is a subset of conditions (columns) 

with similar expression values under a subset of genes (rows) have similar expression values, 

and every value ija can be obtained by using one of the following equations: 

 

ij ja                    (2.7) 

ij ja                    (2.8) 

 

where   is the typical value within the bicluster and j  is the adjustment value for column

j J . 

 

Another approach proposing that interest may be focused on finding biclusters with coherent 

values on both rows and columns. The researcher may be interested in identifying biclusters 
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where a subset of genes and a subset of conditions have coherent values on both rows and 

columns in case of gene expression data. This type is illustrated in Figure 2.2(d) and        

Figure 2.2(e). In this type, each value ija  in the bicluster can be obtained using either an 

additive model (equation 2.9) or a multiplicative model (equation 2.10): 

 

ij i ja                                          (2.9) 

ij i ja                    (2.10) 

 

where   is the typical value within the bicluster; i  and i  are the adjustment values for 

a row i I  in the additive model and the multiplicative model, respectively; while j  and 

j   are the adjustment values for the column j J in the additive model and the 

multiplicative model, respectively.   

 

While some of the biclustering algorithms aim to discover biclusters with coherent values in 

the other hand, some of them address the problem of finding biclusters with coherent 

evolutions values across the rows and/or columns of the data matrix regardless of their exact 

value. Examples of this type are in Figure 2.2(f) to Figure 2.2(j). These coherent evolutions 

are described by a subset of rows and/or columns where the values within it change in the 

same direction. In the case of gene expression data, we may be want to find evidence that a 

subset of genes is up-regulated or down-regulated across a subset of conditions without 

focusing on their actual expression values in the data matrix. Figure 2.2(f) is giving an 

example of bicluster with coherent evolutions property on the both of rows and columns. 

While Figure 2.2(g) is presenting an example of bicluster with coherent evolutions on the 

rows, and Figure 2.2(h) and Figure 2.2(i) are examples of biclusters with coherent evolutions 

on the columns.  

 

2.3. Bicluster Structure 

 

Madeira and Oliveira [9], also made another classification to help in choosing the best 

biclustering algorithm according to the data structure. This classification assumed one of the 

following situations: either there is only one bicluster in the data matrix as presented in 
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Figure 2.3(a) or there are K  biclusters in the data matrix. According to these approaches, 

the following structures can be obtained (Figure 2.3): 

 

1. Exclusive row and column biclusters. 

2. Non-Overlapping biclusters with a checkerboard structure. 

3. Exclusive-rows biclusters. 

4. Exclusive-columns biclusters. 

5. Non-Overlapping biclusters with tree structure. 

6. Non-Overlapping non-exclusive biclusters. 

7. Overlapping biclusters with hierarchical structure. 

8. Arbitrarily positioned overlapping biclusters. 

 

Figure 2.3. Source [9]: Bicluster structure: (a) Single bicluster, (b) Exclusive row and 

column biclusters, (c) Checkerboard structure, (d)  Exclusive rows biclusters, 

(e) Exclusive columns biclusters, (f) Non-overlapping biclusters with tree 

structure, (g) Non-overlapping nonexclusive biclusters (h) Overlapping 

biclusters with a hierarchical structure, and (i) Arbitrarily positioned 

overlapping biclusters. 

Madeira and Oliveira[9], as they had mentioned: to achieve the goal of identifying several 

biclusters in a data matrix A the natural starting point to create a color image for the data 

according to their values ija . After making the color image, the data reordered in special 
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ways according to the similarity between rows and the columns then there are one of the 

following structures: 

 

 Figure 2.3(b) is an example of exclusive row and column biclusters. In this structure, every 

row and every column in the data matrix must belong just to one of the K  biclusters, which 

exist in the data matrix. On the other hand, some biclustering algorithms assumes that every 

row and column belong to the K  biclusters in a data matrix as illustrated in Figure 2.3(c). 

This structure is known as non-overlapping biclusters with a checkerboard structure. 

 

Other biclustering algorithms assume that row can belong to one bicluster, while columns 

can belong to more than one bicluster as presented in Figure 2.3(d), which known as 

exclusive-rows biclusters. In addition, other biclustering algorithms are working on the 

opposite approaches, which allow to the rows to be in more than one bicluster while columns 

belong just to one bicluster. This structure is known as exclusive-columns biclusters, which 

is presented in Figure 2.3(e). 

 

The previous structures assume that every row and every column in the data matrix belongs 

at least to one bicluster. Figure 2.3(f) is presenting non-overlapping biclusters with tree 

structure and Figure 2.3(g) is presenting non-overlapping non-exclusive biclusters also every 

row and every column belongs at least to one bicluster. 

 

The previous structures assume non-overlapping between biclusters. However, in real data, 

some rows and columns do not belong to any bicluster and some biclusters overlap in some 

places. Figure 2.3(h) is giving an example of overlapping biclusters with a hierarchical 

structure. In this case, either the biclusters are disjoint or one includes the other. The last 

structure showed in Figure 2.3(i) allows the existence of overlapping, non-exclusive and 

nonexhaustive biclusters positioned arbitrarily. 

 

2.4. Search Approaches 

 

Like traditional clustering, most of the biclustering algorithms are also heuristic in nature. 

After defining what biclustering type we search for, we have to define how we do it. There 

are many ways of how biclustering algorithms work.  Following the classification of Madeira 
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and Oliveira [9], the biclustering  algorithms may fall into one or more of the following 

categories: 

 

1. Iterative Row and Column Clustering Combination: Biclustering algorithms apply 

clustering methods to rows and columns, separately, to get clusters. To build biclusters 

from the result of clustering algorithms some sort of iterative procedure are used. 

2. Divide and Conquer: According to this approach, instead of working directly, several 

biclustering algorithms break the problem into several subproblems. The difference 

between the original problem and the subproblems is just the size. The result of the 

original problem is obtained by solving the subproblems and combining their results.   

3. Greedy Iterative Search: The biclustering algorithms, which work according to this 

category, choose a locally optimal solution and hope that this choice will lead to a globally 

good solution. 

4. Exhaustive Bicluster Enumeration: According to this method, the best biclusters are only 

possible if an exhaustive search of all the possible biclusters of the data matrix can be 

made. Working in this way will take a long time for having the results. 

5. Distribution Parameter Identification: This method assumes that the data structure follows 

a statistical model. They try to fit its parameters to the data by minimizing a certain 

criterion through an iterative approach. 

 

In this chapter, three different classifications were discussed, which help in choosing which 

biclustering algorithm is the best to be used according to the type of the biclusters that can 

be found in the data matrix, the number and the position of the biclusters in the data matrix, 

and the ways of how biclustering methods work. The following table showing some of the 

used biclustering methods according to the previous classifications, which will be discussed 

in details in the next chapter [6, 9, 22, 31, 40-42]: 
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Table 2.2. Classifications for some of the biclustering Algorithms according to the type, 

structure and search approach 

Biclustering 

Algorithm 
Type Structure Approach 

Block 

Clustering[2] 
Constant 

Non-overlapping biclusters with a 

tree structure 
Divide and Conquer: 

δ-biclusters[28] 
Coherent 

Values 

Arbitrarily positioned overlapping 

biclusters 
Greedy Iterative Search 

FLOC[15] 
Coherent 

Values 

Arbitrarily positioned overlapping 

biclusters 
Greedy Iterative Search 

Plaid 

Models[35] 

Coherent 

Values 

Arbitrarily positioned overlapping 

biclusters 

Distribution Parameter 

Identification 

CTWC[43] 
Constant 

Columns 

Arbitrarily positioned overlapping 

biclusters 

Iterative Row and Column 

Clustering Combination 

ITWC[44] 
Coherent 

Values 

Exclusive rows biclusters, or 

Exclusive columns biclusters 

Iterative Row and Column 

Clustering Combination 

pClusters[45] 
Coherent 

Values 

Non-overlapping nonexclusive 

biclusters 

Exhaustive Bicluster 

Enumeration 

SAMBA[46] 
Coherent 

Evolution 

Arbitrarily positioned overlapping 

biclusters 

Exhaustive Bicluster 

Enumeration 

xMOTIFs[36] 
Coherent 

Evolution 

Single bicluster, or Arbitrarily 

positioned overlapping biclusters 
Greedy Iterative Search 

ROBA[47] 
Coherent 

Evolution 

Arbitrarily positioned overlapping 

biclusters 
Matrix algebra 

Bimax[10] 
Coherent 

Evolution 
Checkerboard structure Divide and Conquer 

RMSBE[48] 
Coherent 

values 

Arbitrarily positioned overlapping 

biclusters 
Greedy Iterative Search 

QUBIC[37] 
Coherent 

Values 
Non exhaustive, or Non exclusive 

Distribution Parameter 

Identification 

CPB[49] 
Shift and Scale 

Patterns 

Arbitrarily positioned overlapping 

biclusters 
Greedy Iterative Search 
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 BICLUSTERING ALGORITHMS 

 

3.1. Block Clustering 

 

Direct Clustering (DC), which is known also as Block Clustering, was introduced by 

Hartigan [2] in 1972. DC algorithm is the first known biclustering algorithms. According to 

Hartigan[2], using clustering methods involves the following problems: 

 

 Expensive computations: In general, clustering methods depending on finding a distance 

matrix. This process is required in some clustering algorithms a lot of computation 

especially in case of having a huge number of objects. For example, if we have a number 

of objects 1000,( ( 1) / 2) 499500n n n    distance must be calculated to obtain the 

distance matrix. 

  Weighting decisions: Decisions must be made about the relative weight to be given to 

each variable, which led to the problem in choosing the best distance function according 

to the type of the data. 

  Remoteness from data: the results of the clustering methods will be interpreted according 

to the closeness in the distance. Sometimes may give us good results. However, in real 

data will give us meaningless information in general. 

 

Hartigan [2] also defined three families of clusters that can be obtained from the data in his 

work: (a) the cluster of response values, (b) the marginal cluster of cases, and (c) the marginal 

cluster of variables. In the case of a cluster of response values, all responses within the cluster 

are equal. If responses are not comparable across variables, the model specifies that each 

variable in the marginal cluster is constant over the cases in the marginal case cluster. The 

last structure will be appropriate for different forms of data like ANOVA model. The 

previous structures are illustrated in Figure 3.1, respective. 
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Figure 3.1. Source [2]: Direct clustering models 

Hartigan [2] gave the three-tree structures name for the previous structures. According to the 

three tree structures, the clusters in the data are either non-overlap, or they are disjoint or one 

includes the other. 

 

The complete algorithm 

 

The direct clustering algorithm is a partition-based algorithm that allows the division of the 

data in submatrices (biclusters). Hartigan [2] introduced his algorithm in the following way: 

Let A  be a data matrix. In this matrix, rows are referring to the cases and columns to the 

variables. Hartigan [2] used the variance to evaluate the quality of the biclusters. However, 

using the variance will lead to useless result because the fact of every single-row, single-

column matrix is an ideal bicluster since variance will be equal to zero. Thus, he proposed 

that every data matrix would include a user-defended K  number of biclusters.  

 

The data matrix A  will be divided into sub-matrixes of responses 1 2, , , kB B B   measured 

by the sum of the square: 

 

* 2

,
( )ij iji j

SSQ A A                                 (3.1) 

where 
*

ijA  is the best data matrix closest to ijA . In addition, 
*

ijA  will be constant within each 

cluster of the partition, and it is defined by: 
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*

,
( ) 0,

p
ij iji j B

A A


                1,2,...,p k               (3.2) 

 

Equivalently, 

 

2

,
( )

p
ij pp i j B

SSQ A b


                 (3.3) 

 

where pb  is the average value of ijA in the cluster pB . By computing SSQ  for every partition 

1 2, , pB B B , every partition can be evaluated. However, previous presses will not be easy in 

the case of big datasets.     

 

The split algorithm for this method is presented in Figure 3.2. According to Hartigan [2], 

there will be a partition into k  blocks at the thk  step of the algorithm. ( , )p pR C  will refer to 

the number of the rows and the columns in the cluster pB , respectively. The number of rows 

in pR is pr , and the number of columns in pC  is pc .  

 

 

Figure 3.2. Source [2]: Scheme of splitting algorithm 

The split of pB  either by rows or by columns will give two submatrices ( , )p p pB R C   and

( , )p p pB R C   where pR  and pR  is a partition of pR . Thus, with algorithm, starting with the 
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partition of a single set, at the thk  step, the partition changes from 
1 2, , , kB B B  to 

1 2 1, , , , , ,p p p kB B B B B B
  . Due to the splitting process, SSQ  will be: 

 

2 2( ( ) ( )) ( ( ) ( ))p p p p p p p pSSQR c r A B A B c r A B A B                   (3.4) 

 

where ( )A B  denotes the average of A  over the block B . The splitting process will be 

according to the rows or columns mean, which mean each one of the pR  is less than the row 

means in pR . Choosing the best split row requires testing ( 1)pr   divisions with the ordered 

data matrix by means to find the best split row pB .     

 

To solve the problem of splitting matrix in this method Hartigan [2] proposed of using one 

of the following methods: (a) free split, which will maximize the SSQ  reduction overall 

divisions into two disjoint sets of rows, or (b) fixed split, which divides the rows into two 

predetermined disjoint sets in the following way: 

 

Let ijA  be the values in the cluster where 1,2, ,i m , and 1,2, ,j n . In the data matrix

ij ijA    , where ij ~ (0,1)N and independents. If the actual value of SSQ  reduction is not 

high compared to the expected reduction under the null model, then the splitting will not be 

executed. 

 

1X  will be the mean of all observations ijA  where i k , and 2X  is the mean of all 

observations ijA  where i k , in case that fixed split that has been applied to the thk   row. 

That will give: 

 

2

1 2( ) ( ) /reductionSSQ X X nk m k m     ~ 2

1             (3.5) 

 

In case of the free split, let (1) (2) ( ), , , mX X X be the ordered row means, then: 

 

2

(1) ( ) ( 1) ( )... ...
max

k k m

reduction
k

X X X X
SSQ

k m k

    
  

 
                                     (3.6) 
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where (1) (2) ( ), , , mX X X are order statistics from  normal distribution  2, /N n  . 

According to L. J. Savage [2], for m  large the SSQ  reductions for all k  within 0( )m  of 

1

2
m  differ by 0(1) . Thus, he proposed the best splitting would be near of the median. Using 

k  as splitting point where ( ) ( 1)k kX X   , SSQ  will be obtained using the following 

equation: 

 

 
2

1 2 ( ) / 0(1)reductionSSQ X X nk m k m                   (3.7) 

 

Then he approved that: 

 

2 2

/2 0(1)reduct rion mSSQ                  (3.8) 

 

Using this distribution MSQ  can be used in every stage of the algorithm by using the 

smallest value of MSQ . For free splits of more than two rows, MSQ  can be obtained by: 

 

( ) / 2reductionMSQ SSQ m               (3.9) 

 

where m  is the number of rows. For other splits, MSQ  is obtained by: 

 

reductionMSQ SSQ              (3.10) 

 

DC algorithm will work in each iteration to find the best split point with the smallest MSQ

. Algorithm will stop and the result will be obtained after considering all free splits of more 

than two rows or columns, with total sum of squares reductions 1SS ~
1/

2 2

N 
   (

1N is the total 

number of rows or columns freely split). In addition, all other splits, with total sum of squares 

reduction 2SS ~
2

2 2

N   (
2N is the number of other splits), and considering the sum of 

squares within blocks, 3SS ~
3

2 2

N   ( 3N is the total number of data points, less the number of 

blocks). That means algorithm stops when       3 1 23 / 0.5 1 2 / /SS N SS SS N N   , 

which means there is no other split can reduce the error. 
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Finally, DC algorithm practically works in the following way[9]: 

 

Input: Data matrix, k  number of the biclusters and a threshold value. 

Output: k  biclusters. 

Steps: 

1. Start with the entire data matrix. 

2. Reorder the data matrix by row or column according to their means. 

3. Find the best split row or column in the data matrix, which reduces within block-

variance. 

4. Repeat the step 3 alternately on the rows dimension and columns dimension. 

5. Stop when we have k  biclusters and no more splitting can be done to reduce the 

within block-variance. 

Figure 3.3. Direct Clustering Algorithm 

3.2. δ-Biclusters (CC) Algorithm 

 

Cheng and Church [28] introduced the δ-Biclusters, which also commonly referred to by 

Cheng and Church (CC) algorithm. CC algorithm is one of the most popular biclustering 

algorithms, which is considered as the first biclustering algorithm that deals with gene 

expression data. 

 

Cheng and Church [28] defined the bicluster as a subset of genes (rows) and a subset of 

conditions (columns) with a high similarity score. CC algorithm seeks to find submatrices 

in data that have low mean squared residue scores. CC algorithm allows biclusters to overlap 

so more biologically patterns could be discovered in the data. 

 

3.1. Definition: Let X  be a set of rows and Y  a set of columns. The value ija  of the data 

matrix A  is the value corresponding to the thi row (gene) and 
thj  column (condition). In 

addition, ija is taken the logarithm of the original values so multiplicative changes are 

represented as an additive increment. Let I X and J Y  be a subset of rows and columns. 

The pair ( , )I J  specifies a submatrix 
IJA  with the following mean squared residue score: 
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 
2

,

1
( , ) ij iJ Ij IJ

i I j J

H I J a a a a
I J  

               (3.11) 

 

where: 

 

1
iJ ij

j J

a a
J 

                (3.12) 

1
Ij ij

i I

a a
I 

                 (3.13) 

,

1 1 1
IJ ij iJ Ij

i I j J i I j J

a a a a
I J I J   

                (3.14) 

 

Here ,iJ Ija a  and 
IJa  are the row mean, column mean and the total mean in the submatrix

( , )I J , respectively. According to Cheng and Church [28], the submatrix 
IJA  is a δ-bicluster 

if ( , )H I J   for some 0  . In addition, they mentioned that if ( , ) 0H I J  , the bicluster 

that has been found is a constant bicluster, which indicates that the gene expression levels 

fluctuate in unison. The row variance may also be used to prevent obtaining trivial biclusters 

and reject them using the following equation:  

 

 
21

( , )
| |

ij Ij

j J

V I J a a
J 

               (3.15) 

 

The CC algorithm can be considered as a three steps procedure, including single node 

deletion algorithm, multiple node deletion algorithm, and node addition algorithm. They also 

proved that the problem of finding the largest square δ-bicluster (| | | |)I J  is NP-hard. 

 

Node deletion algorithm 

 

Every data matrix contains submatrices with score ( , ) 0H I J  , because every single value 

can be considered as a submatrix in the data matrix. However, according to Cheng and 

Church [28], the biclusters that should have a specific size according to the number of rows 

I  and the columns J  in the bicluster.  
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Node deletion algorithm starts with the whole matrix as a bicluster, then try to find a 

submatrix with a low H  score. CC algorithm is a greedy method that aims to decrease the 

H  score by removing rows and columns, which requires the computation of the scores of 

all the submatrices that may be the consequences of any row, or column removal, before 

each choice of removal can be made. The process that presented in Algorithm 0 (Brute-Force 

Deletion and Addition) will find one bicluster in (( ) )O n m nm where n   and m   the row 

and columns sizes in the data matrix. 

 

Input: A , a matrix of real numbers, and 0  , the maximum acceptable mean squared 

residue score. 

Output: 
IJA , a δ-bicluster that is a submatrix of A  with row set I  and column set J , 

with a score no larger than  . 

Initialization: I  and J  are initialized to the row and column sets in the data and 
IJA A  

Iteration: 

Compute the score H  for each possible row/column addition/deletion and choose the 

action that decreases H  the most. If no action will decrease H , or if H  , return 
IJA  

Figure 3.4. Algorithm 0 (Brute-Force Deletion and Addition) 

Because of a long time for having one bicluster using the previous algorithm, Cheng and 

Church [28] proposed Algorithm 1 which known as Single Node Deletion with time 

complexity in ( )O nm  , as follows: 
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Input: A , a matrix of real numbers, and 0  , the maximum acceptable mean squared 

residue score. 

Output: 
IJA , a δ-bicluster that is a submatrix of A  with row set I  and column set J , 

with a score no larger than  . 

Initialization: I  and J  are initialized to the row and column sets in the data and 
IJA A  

Iteration: 

1. Compute 
iJa  for all , Iji I a  for all , IJj J a , and ( , )H I J . If ( , )H I J  , return 

IJA . 

2. Find the row i I  with the largest  

            21
( ) ( )ij iJ Ij IJ

j J

d i a a a a
J 

     

and the column j J  with the largest 

           21
( ) ( )ij iJ Ij IJ

i I

d j a a a a
I 

     

remove the row or column whichever with the larger d  value by updating either I or J  

Figure 3.5. Algorithm 1 (Single Node Deletion) 

The data matrix has a finite number of rows and columns to remove, so the maximum 

number of iteration will be no more than n m  where n  is the number of rows and m  is the 

number of columns. During the process of the algorithm may be all of ( )d i  and ( )d j  are 

equal to ( , )H I J  for i I  and j J . In this case, removing one of them may decrease the 

score unless it is equal to zero.  

 

Multiple node deletion 

 

In Single Node Deletion algorithm, every time a row or column is being deleted all of the 

biclustering parameters have to be recomputed. This will cause large running time for big or 

high-dimensional data. Cheng and Church [28] proposed a Multiple Node Deletion with time 

complexity in ( log )O m n . Algorithm 2 (Multiple Node Deletion) will delete multiple rows 

or columns before recomputing the parameters.  
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Input: A , a matrix of real numbers, 0  , the maximum acceptable mean squared 

residue score, and 1  , a threshold for multiple node deletion. 

Output: 
IJA , a δ-bicluster that is submatrix of A  with row set I  and column set J , with 

a score no larger than  . 

Initialization: I  and J  are initialized to the row and columns sets in the data and 
IJA A  

Iteration: 

1. Compute 
iJa  for all i I , Ija  for all , IJj J a , and ( , )H I J . If ( , )H I J  , 

return 
IJA . 

2. Remove the rows i I  with 

            
21

( , )ij iJ Ij IJ

j J

a a a a H I J
J




                                               

3. Recompute Ija , 
IJa , and ( , )H I J . 

4. Remove the columns j J  with 

            
21

( , )ij iJ Ij IJ

i I

a a a a H I J
I




                                                                

5. If nothing has been removed in the iterate, switch to Algorithm 1 (Single Node 

Deletion). 

Figure 3.6. Algorithm 2 (Multiple Node Deletion) 

Node addition algorithm 

 

After applying algorithm 1 or algorithm 2 by deleting rows and columns, some of the deleted 

nods may gain some importance for the bicluster. Because of that, Cheng and Church [28] 

proposed the Node Addition Algorithm, which will work on adding rows and columns to the 

bicluster that obtained from the previous process without increasing the mean squared 

residue score H  and sometimes adding some rows or columns may decrease the score too. 

This algorithm with time complexity in ( )O nm . 
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Input: A , a matrix of real numbers, I  and J  signifying a δ-bicluster. 

Output: I   and I   such that I I  and J J   with the property that ( , ) ( , )H I J H I J    

Iteration: 

1. Compute 
iJa  for all I , Ija for all j , 

IJa , and ( , )H I J . 

2. Add the columns j J with 

            
21

( , )ij iJ Ij IJ

i I

a a a a H I J
I 

     

3. Recompute 
iJa , 

IJa , and ( , )H I J . 

4. Add the rows i I  with 

            
21

( , )ij iJ Ij IJ

j J

a a a a H I J
J 

     

5. For each row i  still not in I , add its inverse if 

            
21

( , )ij iJ Ij IJ

j J

a a a a H I J
J 

      

6. If nothing is added in the iterate, return the final I  and J  as I   and J  . 

Figure 3.7. Algorithm 3 (Node Addition)  

The complete algorithm 

 

By using algorithm 1 or algorithm 2 with algorithm 3, one bicluster can be detected every 

time, Cheng and Church [28] proposed algorithm 4, which combine the previous algorithm 

so we can have n   biclusters.  In every iteration random numbers, using the same way that 

used to generate the missed values in the data matrix will be replaced using this algorithm 

the submatrix that represents the bicluster that founded in the data matrix. Algorithm 4 

(Finding a Given Number of Biclusters) is summarized below: 
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Input: A , a matrix of real numbers with possible missing elements, 1  , a parameter for multiple node 

deletion, 0  , the maximum acceptable mean squared residue score, and n , the number of δ-biclusters 

to be found. 

Output: n  δ-bicluster in A . 

Initialization: Missing elements in A  are replaced with random numbers from a range   covering the range 

of non-null values. A  is a copy of A . 

Iteration for n times: 

1. Apply Algorithm 2 on A ,  , and  . If the row (column) size is small, do not perform multi 

node deletion on rows (columns). The matrix after multiple not deletion is B . 

2. (Step 5 of Algorithm 2) Apply Algorithm 1 on B  and   and the matrix after single node deletion 

is C . 

3. Apply Algorithm 3 on A  and C  and the result is the bicluster D . 

4. Report D , and replace the elements in A  that are also in D  with random numbers. 

Figure 3.8. Algorithm 4 (Finding a Given Number of Biclusters) 

3.3. FLOC Algorithm 

 

Yang et al. [15] introduced the FLOC (Flexible Overlapping biClustering) as an alternative 

to the Cheng and Church algorithm [28] to find δ-biclusters. FLOC algorithm has the same 

CC algorithm’s goal. The goal is to find biclusters with low mean squared residue MSR . 

Yang et al. [15] showed that the use of random interference that used in CC algorithm would 

affect the biclustering result. They defined a δ-bicluster as a subset of rows and a subset of 

columns exhibiting coherent values on the specified (non-missing) value of the rows and 

columns considered. Thus, they proposed a generalized model for that is used in CC 

algorithm and proposed FLOC algorithm that can find a set of possibly overlapping 

biclusters simultaneously. 

 

Yang et al. [15] proposed their algorithm in 2 phases. Before moving to the algorithm phases, 

they redefined some terms that proposed by Cheng and Church [28] as follows: 

 

They renamed the biclusters, which will be obtained using the FLOC algorithm as 

generalized biclusters. Let 1 2{ , , , }NA A A  be a set of columns (Conditions) and 

1 2{ , , , }MO O O  be a set of rows (genes). The data matrix D  is M N   matrix of real 



31 

numbers. Every value ijd  corresponds to the row 
iO  and column 

iA . A bicluster essentially 

corresponds to a submatrix that exhibits some coherent tendency. In other words, each 

bicluster in the data matrix can be uniquely identified by the set of relevant rows and 

columns. In addition, Yang et al. [15] mentioned in their work the number of missing entries 

in a bicluster should be limited to some extent to avoid trivial cases. To overcome the 

previous problem they proposed the using of a value α that belong to [0,1]  to control the 

amount of missing values for each row and each column in a bicluster. For example in the 

following Figure let 0.65   , so the bicluster in the left is not a valid bicluster because it 

has less than   amount of missing values while the one on the left is considered as a valid 

bicluster. 

 

 

Figure 3.9. Source[15]: Two Examples of Missing values in biclusters 

3.2. Definition: For a given matrix   and occupancy threshold  , a bicluster (of   

occupancy) can be represented by a pair ( , )I J   where {1, , }I M   is a subset of rows 

and {1, , }J N   is a subset of columns. For each row , | | / | |ii I J J    where 
iJ   and 

J  are the number of specified columns for a row I  in the bicluster and the number of 

columns in the bicluster, respectively. In the same way, for each column , | | / | |jj J I I    

where jI   and I  are the number of specified rows under the column j  in the bicluster and 

the number of rows in the bicluster, respectively. 

 

3.3. Definition: The volume of a bicluster ( , )
IJvI J  is defined as the number of specified 

entries ijd  such that i I  and j J . 
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3.4. Definition: For a given bicluster ( , )I J , the base of the row 
iO  is defined as the average 

value of 
iO  for all specified columns in J :  

 

i
ijj J

iJ

i

d
d

J







             (3.16) 

 

 where 
iJ J  is the set of specified columns in J  for row 

iO . Similarly, the base of a 

column jA  is the average specified value of jA  taken by all rows in I : 

 

i
iji I

Ij

j

d
d

I







                (3.17) 

 

where  
JI I  , is the set of rows whose value is specified in the column jA . The base of the 

bicluster is the average value of all specified entries of the submatrix defined by ( , )I J : 

 

, iji I j J

IJ

IJ

d
d

v

 



             (3.18) 

 

where 
IJv  is the volume of the bicluster.  

 

Using the previous definitions Yang et al. [15] introduced the residue of an entry ijd  

(equation 3.19), the residue of a bicluster ( , )I J  (equation 3.20), and the row variance 

(equation 3.21), as followings: 

 

,

0 ,

ij iJ Ij IJ ij

ij

d d d d d is specied
r

otherwise

   
  
 

            (3.19) 

2

, iji I j J

IJ

IJ

r
r

v

 



              (3.20) 

where ijr  is the residue of the entry ijd  and IJv  is the volume of the bicluster. 
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 
2

,

,var
ij iJi I j J

I J

IJ

d d

v

 



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            (3.21) 

 

According to Yang et al.[15] by extending the model that is used in the FLOC algorithm the 

user can have some extra features as followings: 

 

1. Some researchers may require some degree of overlap while some may not require. FLOC 

algorithm gives us the power to control the amount of overlap between biclusters. 

2. By using the FLOC algorithm, the appearance of some rows in the biclusters can be 

controlled. 

3. Algorithm helps in obtaining balanced biclusters by controlling the ratio of the rows and 

columns. 

4. The user can control the volume of the final biclusters. 

 

The complete algorithm 

 

 The FLOC algorithm works in two phases as presented in Figure 3.4 described as follows: 

 

 

Figure 3.10. Source [15]: FLOC algorithm 

The FLOC algorithm is a probabilistic move-based algorithm that can find k  biclusters with 

low mean squared residues. The data is represented in a matrix form. The FLOC algorithm 

will start with a set of initial biclusters and work to improve the quality of these biclusters. 

In each iteration, each row and columns will be moved from bicluster to another bicluster 

according to their mean squared residues to improve the quality of the biclusters. FLOC 
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algorithm will stop when there is no rows or columns movement can be done to improve the 

quality of the biclusters. 

 

As presented in Figure 3.4 algorithm has two phases. In the first phase, the initial biclusters 

are constructed. Every bicluster contains a set of rows and a set of columns. Let   be a 

controlling parameter that used to control the size of bicluster.  Each row and column is 

included in the bicluster with probability  . The initial biclusters will contain M   rows 

and N   columns. If some biclusters have less than  a threshold percentage of specified 

values, then we must generate new initial biclusters until the condition is satisfied.   value 

can be chosen as | | /D N M  where | |D is the volume of the original data matrix D  that has 

N  rows and M  columns.  

 

After the process of choosing the initial biclusters according to   threshold value, the FLOC 

algorithm will start its second stage: This phase will apply an iterative process to improve 

the quality of the biclusters. The goal of this phase is to reduce the overall mean squared 

residue by examination every row and column to choose the best actions and apply them. 

Because the goal is to detect k  bicluster using this algorithm, so for every row or column 

there is k  action can be applied.  

 

Let x  be referring to one of the rows (or columns) and let c  refers to a bicluster. The action 

( , )x c  is defined as the change of membership of x  with respect to c . Thus, the action ( , )x c  

can be either moving x  from bicluster c  ( x is in the c  bicluster) or add x  to the c  bicluster 

( x is not in the c  bicluster). Because the fact that there are k  actions can be made, Yang et 

al. [15] proposed the using of the following new concept. 

 

 3.5. Definition: Given a residue threshold r , the gain of an ( , )Action x c  is defined as: 

 

2
( , ) c c c c

c

c

r r v v
Gain x c

r v

r

  
              (3.22) 
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where 
cr , 

cr   are the residues of bicluster c  and the bicluster c , obtained by performing 

( , )Action x c  on  c , respectively. Similarly cv  and cv   are the volumes of c  and c , 

respectively. 

 

The goal is to find biclusters with low residue ( r ). The Gain measurement works to 

increase the volume of the biclusters even if they have smaller residue than the threshold r . 

Another advantage of using the Gain measurement is to control the residue of the c  bicluster 

when it has residue larger than r . Applying the action ( , )Action x c  with positive Gain value 

will improve the quality of the bicluster c , and vice versa. Therefore, to obtain k  biclusters 

using the FLOC algorithm the action with the highest gain must be applied for each row (or 

column). Sometimes the best action may be with negative Gain value, and applying it may 

improve the biclusters in later iterations. 

 

In every iteration, the best action for each row and column is identified and performed. The 

best actions with higher gain scores are performed earlier until we obtain the best k  biclusters 

from the data. Some actions may be blocked temporarily if applying it may cause violates 

constraints that defined by the user or may lead to obtaining trivial bicluster. The actions 

will be performed a random weighted order. That means the actions with higher positive 

gain values will be with high probability values to be executed earlier. A random weighted 

order will be generated for the action list using a swap process according to their probability 

values. The overall time complexity to obtain the final biclusters is   2
O N M k p    

where N  is the number of rows and M  is the number of the columns in the data matrix, k 

is the number of the biclusters, and p  the number of the iterations to termination. Finally, 

FLOC algorithm steps are summarized by Chan W. [50] as follows: 
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Input:  : biclusters size controlling parameter, r : user-defined MSR  threshold, D : data 

matrix, K : number of the biclusters, and any user-defined constraints. 

Output: K  biclusters. 

1. Initialize: 

a. K  biclusters from the data matrix D  that met r  value, volume, and the 

other conditions. 

b.  best_bicluster_volume = 0. 

c. best_biclustering = initialized biclusters of step (1a) 

d. curr_best_biclustering_MSR = +∞ 

e. Set curr_best_biclustering to empty biclusters 

2. While (improved != true) 

a. Compute action for each element e , 1 e M N   . 

b. Put actions on the action list. 

c. Perform weighted Random Re-arrangement on the action list. 

d. For each action f , from beginning to end of action list, 

i. Block f  if resulting bicluster violates constraints. 

ii. Otherwise, if the average volume of biclustering f  is greater than 

best_biclustering_volume: 

1. curr_best_biclustering = biclustering f , if average MSR  

of biclustering f exceeds curr_best_biclustering_MSR. 

2. ensure improved is true. 

e. if (improved = true)  best_biclustering = curr_best_biclustering. 

3. return best_biclustering. 

Figure 3.11. FLOC Algorithm 

3.4. The Plaid Model Algorithm 

 

The plaid model algorithm is an additive biclustering method, which was proposed by 

Lazzeroni and Owen [35], and was improved by Turner et al. [51]. The plaid model 

algorithm allows a gene (row) to be in more than one bicluster or in none at all. Let Y  be a 

data matrix with n  rows and p  columns. The value ijY  means the value in row i  and column 

j  where the number of values in the data matrix is equal to np .  
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The plaid model algorithm starts with creating a color image for the data according to their 

values as presented in Figure 3.5, where the red color is referring to high response and the 

blue color for a low response obtained from yeast gene expression data for example.  

 

 

Figure 3.12. Source [35]: A fitted model for yeast data 

The colored image will be ordered according to the color to make blocks with nearly the 

same color as Figure 3.5, which has been ordered using hierarchical clustering on the rows. 

If the reordering is ideal, it will produce an image with K  rectangle block on the diagonal 

and every block would be nearly uniformly colored. In this case, the obtained blocks will be 

K  mutually expulsive and exhaustive bicluster. Every value in the data matrix according to 

Lazzeroni and Owen [35] can be expressed as a linear model of the form: 

 

0

1

K

ij k ik jk

k

Y k  


                (3.23) 

 

where 
0  is a background color (the color that is given to the values, which not belong to 

any one of the K , blocks), k  describes the color in the block k . In addition, ik  is 1 if row 

i  is in the thk  row-block and 0 if not, and jkk  is 1 if column j  is in the thk column-block and 

0 if not. In addition, the conditions that make every row and every column be just in one 

bicluster are 1ikk
   for all i , and 1jkk

k   for all j , respectively. However, non-

overlap biclusters are rare in real data; they modified the previous conditions so overlap can 
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occur in some places. The modified conditions are  2ikk
   for some i , and 2jkk

k   

for some j . In addition, some rows or columns do not fit well into any bicluster, so for them, 

the conditions will be 0ikk
   for some i , and 0jkk

k   for some j , respectively. 

Lazzeroni and Owen [35] modified the model (3.23) to generalized model, which give us to 

power to obtain biclusters with the identical response for set or rows (genes) under a set of 

columns (conditions), or a set of columns with common expression patterns for a set of rows 

as follows: 

 

 0

1

K

ij k ik jk ik jk

k

Y k    


               (3.24) 

 

where each  0,1ik  , and  0,1jkk  . The last model will give the users more flexibility 

with the properties of the biclusters that they are looking for. The model (3.23) a layer 

describes a response 
k  that is shared by all rows in it for all columns in it. In model (3.24) 

when jk  is not used that will give us biclusters with a set of rows that had an identical 

response to set of columns. At the same time, if jk  just used in the model that means we 

are interested in finding biclusters that had a set of columns with common values levels for 

a set of rows.  

 

The last model can be written using ijk  ( ijk describe the background layer) to represent 

either 
k , or 

k ik  , or k jk  , or k ik jk     as needed as follows: 

 

0

K

ij ijk ik jk

k

Y k 


               (3.25) 

 

This model gives one of the following situations: 

 

1. If 1ik   for all i , but jkk  is not 1 for all j , then layer describes a cluster of columns. 

2. If 1jkk   for all j , but ik  is not 1 for all i , then layer describes a cluster of rows. 
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3. If the layer for a bicluster of rows contains a term jk , then the bicluster of rows is a set 

of p-vectors centered near the vector  1 , ,k k k pk      

4. If that layer also contains a term 
ik  then the rows bicluster along a line segment through 

this center. 

 

Parameters estimation and updating  

 

Working with this algorithm requires a long time to have the results that because for each 

layer k , there are   2 1 2 1n p   ways to select the participating rows and columns. To 

simplify the work, Lazzeroni and Owen [35] supposed that we have 1K   layers, and 

algorithm will look for the thK  layer to minimize the sum of squared errors. Let: 

 

2

1 1

1
( )

2

pn

ij ijK iK jK

i j

Q Z k 
 

             (3.26) 

 

Where 

 

1

0

1

K

ij ij ij ijk ij jk

k

Z Y k  




               (3.27) 

 

is the residue from the first 1K   layers. In every iteration  ,   and k  values are being 

updated where ( )s , ( )s  and ( )sk  will refer to the values of 
iK , 

iK and jKk  at iterative s .  

 

To update the values of ij  with given 
i  and jk  the following must be minimized: 

 

2

1 1

1
( ( ) )

2

pn

i j i j

i j

Q Z k   
 

               (3.28) 

 

with respect to the following conditions: 

 

2 2

1 1

0
pn

i i j j

i j

k  
 

                (3.29) 
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In addition, straightforward Lagrange multiplier arguments show that: 

 

  2 2

i j iji j

i ji j

k Z

k






 

 
            (3.30) 

 
2

ij i j jj

i

i jj

Z k k

k











                (3.31) 

 
2

ij i j ii

j

j ii

Z k

k

 









                     (3.32) 

 

Given values for ij  and jk , to update the values for 
i  that minimize Q  are: 

 

2 2

ij j ijj

i

ij jj

k Z

k









              (3.33) 

 

In addition, for jk  with given ij  and 
i  are: 

 

2 2

ij i iji
j

ij ii

Z
k

 

 




              (3.34) 

 

Lazzeroni and Owen also make control of the values of 
i  and jk  so they do not move 

quickly towards  0 or 1. Thus, at iteration s , the two values are replaced by 0.5 / (2 )s S  if 

they are larger than 0.5 and by 0.5 / (2 )s S  otherwise. According to Lazzeroni and Owen’s 

work, the starting point with a value near 0.5 for all of the parameters.  

 

The importance of a layer k  is measured by: 

 

2 2

1 1

pn

k ik jk ijk

i j

K  
 

              (3.35) 
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The distribution of 2

k  is unknown and the layer will be accepted if 2

k  is significantly larger 

than what would be found in the noise. Let ijZ  be the residue matrix for layer k . Let 
r

ijZ  be 

a residual matrix that obtained by randomly permuting every row and every column of the 

result for 1,r R . There are ( )n p R  independently and uniformly distributed 

permutations. Let 2,r

k  be the importance or the size of the founded layer during the process 

of the algorithm in the randomized data r

ijZ . The stopping condition is: 2 2,

1
max r

k k
r R

 
 

  and 

maxk K  add the new layer k  to the model, otherwise stop where 
maxK  defines the number 

of layers in the model. 

 

The complete algorithm 

 

 In the following, the pseudo code for the plaid model, which was presented by Turner et al. 

[51]: 
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1. Compute Ẑ , the matrix of residuals from the model so far 

2. Compute starting values 
(0)ˆ
i   and (0)ˆ

jk  

3. For 1:s S  do 

a. Compute ( )ˆ s , ( )ˆ s

i  and ( )ˆ s

j  using OLS  estimates with ( 1)ˆ s

i
  and ( 1)s

jk   

b. Compute ( )ˆ s

i  using OLS  estimate with ( )ˆ s , ( )ˆ s

i , ( )ˆ s

j   and ( 1)s

jk   

c. Compute ( )s

jk  using OLS  estimate with ( )ˆ s , ( )ˆ s

i , ( )ˆ s

j  and ( 1)ˆ s

i
  

d. Shift any ( )ˆ s

i  and ( )s

jk  to 0.5 / (2 ( )s S T    if greater than 0.5 

e. Shift any ( )ˆ s

i  and ( )s

jk  to 0.5 (2( )s S T   if less than 0.5 

4. End for 

5. Compute ( 1)ˆ s  , ( 1)ˆ S

i
  and ( 1)ˆ S

j
  

6. Calculate candidate layer sum of squares  ,

ˆˆˆ ˆˆ
c i j i ji j

LLS k       

7. For 1:m M  do 

a. Permute Ẑ  

b. Repeat search for bicluster 

c. Calculate layer sum of squares 
mLSS  

8. End for 

9. If 
1max( , , )c MLSS LSS LSS Then    

a. Accept bicluster and search for next layer 

10. Else    

a.    Stop 

Figure 3.13. Plaid Model Algorithm 

3.5. Coupled Two-Way Clustering Algorithm (CTWC) 

 

Getz et al. [43, 52] introduced the Couplet Two-way Clustering algorithm, which is known 

as CTWC algorithm. CTWC algorithm is based on iterative clustering, which performs a 

search for stable and significant partitions emerge subsets of rows and subset of columns. 

Like most of the biclustering algorithm is originally was developed to deal with data 

expression data where the rows represent genes under deferent conditions that are 

represented by the columns.  
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CTWC algorithm uses clustering algorithms to find biclusters. In addition, any clustering 

method can be used. Getz et al. [52] by using CTWC algorithm, they were able to identify 

correlated biologically partitions in an unsupervised way and to find new partitions may 

contain important information. 

 

Let 𝒜 be the data matrix where every row of this matrix corresponds to a single gene and 

each column represents a particular sample. The main goal is to find a pairs of subsets (𝒪j,ℱi) 

where ℱi could be a subset of features of rows or columns and 𝒪j a subset of objects that can 

be rows or columns. Algorithm will start using a clustering algorithm to identify all stable 

clusters of rows or columns. Testing all submatrices will be impossible in large data, so 

CTWC will work in iterative process by using the previous founded clusters candidates that 

founded in the previous iteration.   

 

Let ℱ be the feature set, which is obtained from the values levels of the rows in each cluster. 

ℱ representing object set. In addition, let 𝒪 be object sets, which contain either all the 

columns or any column cluster. ℱ may can identified using columns clusters. gv  and sv  

refer to all of the stable clusters of both rows and columns, respectively. The rows clusters 

are accumulated in a list gV  and the column clusters in sV .  

 

The complete algorithm 

 

In every iteration in the CTWC algorithm a subset of objects (either rows or columns), using 

a subset of features (rows or columns) will be clustered, and if a new cluster is found they 

will be used in the following iteration. Algorithm will stop when there is no new information 

is being generated. Finally, algorithm will give us the final sets of gV , sV  and the pointers 

that identify the way of how all stable clusters of row and columns were generated, as shown 

below: 
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Input: Full data matrix. 

Output: A set g
V  of stable row clusters and a set sV  of stable column clusters. 

Algorithm: 

Step 1. Initialization 

       1a. Let 
0

g
v  be the cluster of all rows, and 

0
s

v  be the cluster of all columns. 

       1b. Initialize sets of rows clusters, gV , and column clusters, sV , such that 0{ }g sV v    

and 0{ }s sV v . 

       1c. Add each known class of rows as a member of gV , and each known class of  

columns as a member of sV . 

       1d. Define a new set W  . This set is needed to keep track of clustering analyses 

that have already been performed. 

Step 2. For each pair ( , ) ( ) \g s g sv v V V W   : 

        2a. Apply the clustering algorithm on the genes of gv  using the columns of sv  as its 

features and vice versa. 

2b. Add all the robust row clusters generated by Step 2a to gV , and all the robust 

column clusters to sV . 

        2c. Add ( , )g sv v   to W . 

Step 3.                                                                                                                         

        For each new robust cluster u in either gV  or sV  define and store a pair of labels 

0( , )u fP u u . Of these, 
0u  is the cluster of objects which were clustered to find u , 

and fu  is the cluster of features used in that clustering. 

Step 4.  

        Repeat Step 2 until no new clusters are added to either gV  or sV . 

Figure 3.14. CTWC Algorithm 

According to Getz et al. [52], the output from the CTWC algorithm will provide a wide list 

of rows and columns clusters, and for each cluster, which subset was clustered to find it is 

also known. In addition, for every cluster C , which other clusters can be found C  as the 

feature set.  
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The columns in the data matrix will be classified using C  into two classes 
1c  and 

2c . C  is a 

known classification of samples. CTWC give a unique method to test the list of the candidate 

rows clusters that will be used to make the partition of the columns. This method has two 

steps. In the first step, for each cluster of columns sv  in sV  must be evaluated according to 

purity and efficiency. This evaluation will reflect the extent to which assignment of the 

columns to sv  correspond to the classification C . For example, the purity and efficiency for 

1c   are computed by: 

 

  1

1|

s

s

s

v c
purity v c

v


                  (3.36) 

  1

1

1

|

s

s
v c

efficiency v c
c


              (3.37) 

 

When a high purity cluster S  is founded, the saved pointers is saved to read off clusters of 

rows that used as features set to obtain S . Algorithm will merge the small stable clusters or 

divide the big ones into smaller according to the user-specified parameters.    

 

3.6. Interrelated Two Way Clustering (ITWC) Algorithm 

 

Tang et al. [44] developed the unsupervised method Interrelated Two-Way Clustering 

(ITWC) method following a similar strategy to CTWC algorithm [52]. The goal of this 

algorithm is to identify important gene patterns and perform cluster discovery on samples.  

 

Data will be arranged in a data matrix where in case of the gene expression data each row 

refers to one gene and columns represent samples. Let 
1{ , , , , }i nL g g g  be the set of all 

genes (rows), 1{ , , , , }j mS s s s  be the set of all samples (columns), and ijw  be the 

intensity value associated with each gene ig  and sample js  in the data matrix. Thus, the 

data matrix is { |1 ,1 }ijW w i n j m      where n m . 

 

According to Tang et al. [44] to obtain meaning classes from columns, the vector space must 

be reduced into smaller one using clustering methods. That means it is better to reduce the 
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number of rows on the data matrix to the number of the columns then performing the 

clustering.  

 

To solve this problem they proposed the ITWC algorithm, which can find a subset of genes, 

which are highly related to the experiment conditions, and to cluster the columns into 

different groups. 

 

In gene expression data, different genes have different ranges of intensity values, which may 

not have an important meaning alone. Working with algorithm requires the normalization of 

the values in the data matrix according to the following formula, which was mentioned in 

Tang et al. [44] work: 

 

ij i

ij

i

w
w






                  (3.38) 
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              (3.39) 

 

This step helps to reduce the amount of noise in the data. Each row vector after normalization 

is denoted by 
1 2{ , , , }i l l lmg w w w    where 1, ,i n . To test whether a row intensity value 

varies much among columns vector-cosine between each row vector and a pre-defined stable 

pattern 
1 2{ , , , }mE e e e  is used, as follows: 
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,
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ij jji

m m
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ij jj j
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 
           (3.40) 

 

where   is the angle between two vectors ig   and E  in m-dimensional space. When the 

vector-cosine is close to one that means the two vector patterns are similar. After the process 

of computing the vector-cosine values, the user chooses a threshold that used to remove rows 

matching pattern E . According to Tang et al. [44] in every step twenty to thirty percent of 

rows can be removed with the condition of the genes vector-cosine values with E  are higher 
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than the threshold. Thus, if the genes vector-cosine values are higher than the threshold that 

means these rows changes little during the experiment. 

 

The distance measure, which will be used during the use of ITWC algorithm, must be 

carefully chosen. Any distance measure can be used like the Euclidean distance. However, 

if we are dealing with data like gene expression, Tang et al. [44] have recommended using 

a correlation coefficient, which measures the strength of the linear relationship between two 

vectors. The formula for the correlation coefficient between two vectors 
1 2{ , , , }kX x x x  

and 
1 2{ , , , }kY y y y is: 

 

1 1 1
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2 2
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   
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     
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   

         (3.41) 

 

By using the previous formula, the relationship between row clustering and column 

clustering will be used to reduce the vector of columns to a reasonable level and perform 

class discovery. 

 

The complete algorithm 

 

Tang et al. [44] proposed the ITWC as shown in the following figure: 

 

 

Figure 3.15. Source [44]: The structure of  ITWC algorithm  
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The iterative procedure based on G  with 
1n  rows (genes) after the pre-processing. ITWC 

algorithm will start with clustering the row dimension, which will cluster 
1n  into k  groups 

1 2, , , kG G G . These groups are an exclusive subset of G . It is obvious, which can give us 

the control to choose how many clusters we want. 

 

In the second step, the process of clustering will be applied to the column (samples) 

dimension based on the results from the first step into 2 clusters ,i aS  and ,i bS . After that in 

the third step, the clustering results from the step 1 and step 2 will be combined, and the 

following four groups will be obtained by dividing the columns where 2k   for example: 

 

 
1C : all columns clustered into 

1.aS  based on 
1G  and clustered into 2,aS  based on 

2G . 

 
2C : all columns clustered into 1,aS  based on 

1G  and clustered into 2,bS  based on 
2G . 

 
3C : all columns clustered into 1,bS  based on 

1G  and clustered into 2,aS  based on 
2G . 

 
4C : all columns clustered into 1,bS  based on 

1G  and clustered into 2,bS  based on 
2G . 

 

The previous step is presented in the following figure: 

 

 

Figure 3.16. Source [44]: Clustering results combination when k=2. s1, s2, …, sm represent 

samples and the second and third lines are the cluster results on samples based 

on gene groups G1 and G2 independently.  

In the Figure 3.7, there are 4 situations, and in general, there is 2k  number of possible sample 

groups according to the value of 2k . The 4th  step will try to found heterogeneous groups. 

To do that two groups will be chosen from 
1 2 3 4, , ,C C C C  in case of 2k  , and let them be 

sC  and 
tC  where (1 , 2ks t  in general). These two groups should satisfy the following 
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condition: For ,s tu C v C    , where u  and v  are column if 
1 2, ,,i r i ru S v S  , then 

1 2 1 2( , { , })r r r r a b   for all (1 )i i k  . When the previous condition is true ( , )s tC C  called 

heterogeneous group.  

 

The last step is sorting and reducing. For each heterogeneous group, two patterns are 

introduced. Vector-cosine (equation 3.40) will be used to compute each pattern with each 

row vector. To the computations for example from the Figure 3.7, 
1 4( , )C C  patterns are 

(0,0, ,0,1,1, ,1)  and (1,1, ,1,0,0, ,0) . Where for example (1,1, ,1,0,0, ,0)  is a 

number of columns in C1 ones followed by a number of columns in 
4C  zeros. After the 

computations are done all rows will be sorted according to the similarity values in 

descending order, keep the first one-third of the sorted row sequence by cutting off the other 

two-thirds of the row sequence. That will give us reduced row sequence G  from the 

remaining sorted row sequences from two patterns. 

 

By doing the same process with 
2 3( , )C C , reduced row sequence G  will be obtained. Then 

to choose which one of the G  and G  will be used in the next iteration. The cross-validation 

method is used to evaluate each group. In each heterogeneous group for each column in the 

group, the remaining columns of the group are used to select important rows, and predict the 

class of the withheld columns. The cumulative error rate is calculated and the heterogeneous 

group with a lower error rate is selected. Let Ĝ  with 
2n  rows be the selected heterogeneous 

group.  

 

The previous five steps will be repeated by clustering 
2n  rows, and so on until the 

termination conditions, which will be described in the following, are satisfied. 

 

3.6. Definition: Let   be all heterogeneous groups. The occupancy ratio between columns 

in heterogeneous groups and all columns is giving by: 

 

max
i jC C

Occratio
m

   
   
    

           ( 3.42) 

 



50 

 

where ( , ) (1 , 2 )k

i jC C i j   , m  is the total number of columns, | |iC  is the number of 

columns in 
iC . If 2k   then the occratio  value will be between 0.5 and 1, and the sum of 

the number of columns in all heterogeneous groups is equal to m . In addition, if the row 

clustering based on 
1G  and 

2G  are the same, then either 
1 4C C S  or 

2 3C C S  , which 

give us evidence that Ĝ  is good to be used for column clustering.  The iterations can be 

stopped when occratio reached a user defended value. Another way to terminate the process 

is used when the threshold cannot be reached. The alternative termination condition is used 

when the remaining genes number 
2n  is very small. 

 

3.7. 𝛅-pCluster Algorithm 

 

Wang et al. [45] introduced 𝛅-pCluster algorithm, which is related to mean squared resides 

to find biclusters in the gene expression data. They aimed in their work to identify subspace 

clusters in high-dimensional data sets, and to find a new similarity model that can capture 

the pattern similarity among the objects.  

 

The pCluster model can capture not only the nearness of objects but also the similarity of 

the patterns exhibited by the objects. δ-pCluster algorithm can detect multiple overlapping 

clusters and can deals in a good way with the outliers in the data. To discuss the δ-pCluster 

algorithm first the following terms will be given [45]: 

 

The data matrix has a set of objects 𝒟 (genes), where everyone is defined by a set of attributes 

𝒜 (conditions). Algorithm will try to find objects that exhibit a coherent pattern on a subset 

of attributes of 𝒜. They defined the pScore of 2×2 matrix as the following: 

 

   xa xb

xa xb ya yb

ya yb

d d
pScore d d d d

d d

  
      

  
          (3.43) 

 

where ,x y  𝒪 ⊂𝒟 and ,a b 𝒯⊂ 𝒜 (𝒯 is a subset of attributes) and 
uvd  is the expression 

value. The pair (𝒪, 𝒯) is a 𝛅-pCluster if any 2×2 submatrix X  in (𝒪, 𝒯) we have 

( )pScore X    for some value for 0  . 
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Every submatrix in a bicluster that is obtained by using this algorithm is also a bicluster. 

This property is not founded in many biclustering algorithms, which makes δ-pCluster 

algorithm a powerful method to be used.  

 

Wang et al. [45] redefined the mean squared residue for 2 2  matrix where { , }I x y  and 

{ , }J a b  as follows: 
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            (3.44) 

 

Wang et al. [45] defined δ-bicluster as  
2

/ 2 pCluster   for 2-objects/2-attribute matrix. 

However, the biclusters that obtained by using δ-pCluster is more homogeneous because the 

obtained biclusters require every 2 objects and every 2 attributes conform to the inequality. 

The volume of pCluster is the size of 𝒪 and the size of 𝒯, which can be controlled by the 

user using a threshold value. 

 

To find all pairs (𝒪, 𝒯) where (𝒪, 𝒯) is pCluster, the user must provide a cluster threshold 

, a minimal number of columns 
cn , and 

rn  a minimal number of rows with |𝒪| ≥ rn ,             

|𝒯| ≥ cn  conditions. 

 

With the previous parameters, Algorithm will work to detect multiple clusters.  Wang et al. 

[45] presented Pairwise Clustering, which will be used in the δ-pCluster’s steps. The 

pairwise clustering algorithm will work to find two-object pClusters as following: 
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Input: ,x y : two objects, 𝒯: set of columns, cn ,  . 

Output: All δ-pClusters with more than nc. 

1. x ys d d   ;    (i.e., i xi yis d d   for each i  in 𝒯) 

2. sort array s ; 

3. start ←0; end ←1; 

4. new ← TRUE; (a Boolean variable, if TRUE, indicates an untested column in [start,end] 

5. repeat                                                                                                                 

end startv S S  ; 

If | |v   then   (expands δ-pCluster to include one more columns) 

end← end+1; 

new ← TRUE; 

else 

Return δ-pCluster if end-start ≥ cn  and new = TRUE; 

Start ← start + 1; 

New ← FALSE; 

6. Until end ≥ |𝒯|; 

7. Return δ-pCluster if end – start ≥ cn  and new = TRUE; 

Figure 3.17. Pairwise Clustering Algorithm  

The complete algorithm 

 

The main δ-pCluster has 3 main steps. In the first step, the data will be scanned to find 

column-pair MDSs  for every column-pair, and object-pair MDSs for every object-pair 

where MDS  concept defined as following: 

 

 3.8. Definition: Let c   (𝒪, 𝒯) be a δ-pCluster. Column set 𝒯 is a Maximum Dimension Set 

( MDS ) of c  if there does not exist 𝒯́ ⊃ 𝒯 such that (𝒪, 𝒯́) is also a δ-pCluster. 

 

The MDSs  will be combined later to create pCluster consists of more than two genes and 

more than two conditions. An Example of generating gene-pair MDS  in Figure 3.8: 

 

 



53 

 

Figure 3.18. Source [53]: An example of generating gene-pair MDSs: (a) the differences 

between gene 1 and 2;  (b) the sorted differences. 

For each group, the difference between the largest one and the smallest one must be less than 

or equal to the threshold  .  In Figure 3.8, for example,   was taken as 2, which means for 

gene 1 and 2 the corresponding MDS  is {{ , , , },{ , }}a c e b b d .  

 

In the next step, object-pair MDSs  and column-pair MDSs  are pruned. The process of 

pruning is done by counting the number 𝒪ab that contain { , }x y  for any dimension a in a 

MDS 𝒯xy for example. Then a will be removed from 𝒯𝑥𝑦 if the number of such 𝒪ab is less 

than 1cn  . In addition, if the removal of a makes |𝒯xy| < cn , 𝒯xy is removed also.  

 

The final stage is known as Tree Constructing and Traversing. To generate pClusters prefix 

tree will be build using gene-pair MDSs . Each edge in the prefix tree corresponds to one 

condition of a gene-pair MDS . At the left node along one path, it records the two genes of 

ne gene-pair MDS . An example of a prefix tree for two gene-pair MDSs  like 

({1,2},{ , , , })a b c d  and ({1,3},{ , })b e . 

 

 

Figure 3.19. Source [53]: An example of the prefix tree used in the pClusteringmethod:(a)the 

prefix tree; (b) duplicating the gene information. 
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Algorithm will apply a post-order traversal of the prefix tree. For each traversing node, 

pClusters contained within it will be detected first, and then the gene pairs at the current 

node will be duplicated to the nods that represent subsets with size ( 1)k  of the k  conditions 

of the current node.   

 

 According to Wang et al. [45] the in the following algorithm, which describes how                  

δ-pCluster algorithm the initial generation of MDSs  has time complexity  

 2 2log logO M N N N M M , and worst case for pruning is 2 2( )O kM N  where M  is the 

number of columns, and N  is the number of objects. 

 

Input: 𝓓: data set,  : pCluster threshold, 
cn : minimal number of columns, 

rn : minimal 

number of rows. 

Output: All pClusters with size r cn n  . 

1- For each ( ,a b𝒜, a b ) do  

            Find column-pair MDSs : pair Cluster( ,a b ,𝒟, dn )                                            

2- For each ( ,x y∈ 𝒟, ,x y ) do 

            Find object-pair MDSs : pairCluster( ,x y ,𝒜, cn ) 

3- Repeat 

 

For each (object-pair pCluster({ , }x y ,T )) do 

Use column-pair MDSs to prune columns in T  

Eliminate MDS  ({ , }x y ,T ) if | | cT n  

For each (column-pair pCluster ({ , },a b O )) do 

Use object-pair MDSs to prune objects in O 

Eliminate DS  ({ , },a b O ) if |O| rn  

4- Until  

        (no pruning takes place) 

5- Insert all object-pair MDSs  ({ , }x y ,T ) into the prefix tree: insertTree:( ,x y ,T ) 

6- Make a post-order traversal of the tree 

7- For each(node n encountered in the post-order traversal do 

8- O:=objects in node n                                                                                          

9- T:= columns represented by node n 

10- For each( ,a b ∈𝒯) do 

 Find column-pair MDSs : C   ( , ,pairCluster a b 𝒪 , )rn  

             Remove from 𝒪 those objects not contained in any MDS  c𝒞 

11- Output (𝒪,𝒯) 

12- Add objects in n to nodes which has no less column than n 

Figure 3.20. pClusters Algorithm 
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3.8. SAMBA Biclustering Algorithm 

 

Tanay et al. [46] introduced a Statistical-Algorithmic Method for Bicluster Analysis, which 

is known as the SAMBA algorithm. They defined the biclusters as objects, which have 

homogeneous rows and columns. In this algorithm, they combined graph-theoretic and 

statistical considerations to find biclusters in the dataset.  

 

Statistical data modeling 

 

SAMBA algorithm models the input data as bipartite graphs (for more details see [54]). This 

graph has two parts the first one corresponds to the columns and the second one to the rows. 

Tanay et al. [46] in their work presented two statistical models of the resulting graph. An 

example in Figure 3.10 shows how to build the bipartite ( , , )G U V E  for a given dataset. 

U  is the set of columns and V is a set of rows in the data matrix. In addition, the edge 

( , )u v E  indicates the response of gene v  in condition u  that means the value level of u  

has a significant change in v  condition. The next step is to develop the graph so it will include 

the direction of change. For example, in Figure 3.10 we can see that there is effect on the 

genes 7gal  in the 1tup  condition while there is no effect on ecm11. 

 

 

Figure 3.21. Source [46]: SAMBA model: Gene expression data is modeled using bipartite 

graph. An edge (u,v) indicates the response of gene v in condition u. Weights 

are assigned using a statistical model for the edges and non-edges of the graph. 

(A): part of the graph showing the condition tup1 deletion and its effect on the 

genes gal7 while there is no effect on emc11. (B) a heavy subgraph representing 

a significant bicluster. 

Thus, the bicluster is connected with the subgraph ( , , )H U V E    of G  as presented for 

example in Figure 3.10(b) where the shaded area presenting a bicluster. The bipartite 
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subgraph a subset of rows V  , which co-regulated under a subset of columns U  . In addition, 

the weight that used in the bicluster is the sum of the weights of row-column pairs in it for 

both of the edges and non-edges. 

 

Simple and refined models: 

 

Tanay et al. developed [46] a simple model and a refined model for the bipartite graph to 

reduce the biclusters-finding problem by finding heavy subgraphs in a bipartite graph, like 

the followings: 

 

The simple model assumes the occurrence of edges is independent with the same probability 

p  where | | / | || |p E U V  for a given bipartite graph G . Let ( , , )H U V E   be a subgraph 

of G . In addition, | | ,| |U m V n      and | |E k  . Thus, the probability of detecting k  or 

more time of success in n  trails has a binominal tail distribution ( , , )BT k n p . The goal of 

this model is to find a subgraph H  with the lowest ( ) ( , , , )p H BT k p n m   . 

 

The second model is developed to take into account the validity of the degrees in G . The 

model assumes that the occurrence of each edge ( , )u v  is an independent Bernoulli variable 

with ,u vp  as a parameter. Tanay et al. [46] assumed that the score of H  is simply its weight 

by finding the results of the following: 

 

( , ) ( , ), ,

1
log ( ) log log

1

c c

u v E u v Eu v u v

p p
L H

p p  


 


            (3.45) 

 

where ( ) \E U V E     and by setting the weight of each edge ( , )u v to ,log( / ) 0c u vp p   and 

the weight of each non-edge ( , )u v  to ,log((1 ) / (1 )) 0c u vp p   ,which take into account the 

direction of expression change for each edge. 

 

The complete algorithm 

 

SAMBA algorithm has 3 phases to find high-quality biclusters: In the first phase, a bipartite 

graph is formed, then using one of two models that described above we calculate vertex pair 
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weights. The row is considered up-regulated in a column if its standardized level with mean 

0 and variance 1 is above 1. In the same way, it will be down-regulated if the standardized 

level is below -1. In addition, depending on the data type, we could work with a signed graph 

that takes in account the direction of change for each edge or to use unsigned graph so the 

likelihood score will be computed in the same way for each one. 

 

In the second stage, the hashing technique will be applied to find the heaviest bicliques in 

the graph. The main idea in this phase that by finding the heaviest subgraphs in the bipartite 

graph will help to find the most significant biclusters in the data. To solve this problem they 

proposed the following algorithm, which can deals with this problem when the degree of 

every gene vertex is bounded, as follows: 

 

1- Initialize a hash table weight: 0bestweight   

2- For all v V do 

 For all ( )S N v do 

weight[ S ] ← weight[ S ]+ 

max{0, ( ,{ })}w S v  

If(weight[ S ] > bestweight ) 

bestU S  

bestweight ← weight[ S ] 

3- Compute ( )
bestbest u UV N u       Output ( , )best bestU V  

Figure 3.22. MaxBoundBiCligue(U,V,E,d) 

By using the previous algorithm, for every given column or row it will look to find the k  

best bicliques that intersecting them. 

 

In the last phase of the SAMBA algorithm, in each heap, a local improvement procedure will 

be applied on the founded biclusters. This procedure includes will add or delete a single 

vertex iteratively until no improvement could be applied so the bicluster is better. During the 

process of algorithm, some biclusters that differ from each other with a few numbers of 

vertex set. Therefore, a filtering process will be applied on such biclusters with a specific 

threshold value. Finally, the SAMBA as presented by Tanay et al. [46, 55] is as following: 
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Input: U : conditions, V : genes, E : graph edges, w : edge/non-edge weights, 1 2,N N : hashed set size 

limits, k : max biclusters per gene/condition. 

1- Initialize a hash table weight. 

2- For all v V with | ( ) |N v d  do 

For all ( )S N v with 1 2| |N S N   do     weight[ S ] ← weight[ S ] + w( ,{ }S v ) 

3- For each v V set [ ][1.. ]best v k  to the k  heaviest S  such that v S  

4- For each v V , {1.. }i k v  

[ ][ ]S best v i  

( )u SV N u
  

B S V    

Do { 

 argmax ( ( ))x V Ua w B x    

   arg maxx Bb w B x    arg maxx Bb w B x   

If    w B a w B b    then B B a   Else B B b   

} While improving                                                                                         

Store B  

5- Post process to filter overlapping bicluster 

Figure 3.23. SAMBA(U,V,E,w,d,N1,N2,k) 

3.9. xMotif Algorithm 

 

Murali and Kasif [36] introduced a nondeterministic greedy algorithm, which deals with a 

discretized dataset to find biclusters with conserved gene expression motifs that known as 

xMotifs. An xMotif (bicluster) is a subset of rows (genes) that is simultaneously conserved 

across a subset of columns (samples). Conserved means that the row’s levels in the same 

abundance across a subset of columns. Thus, xMotif algorithm’s goal is finding the largest 

conserved gene motifs that cover all the samples and classes in the data.   

 

According to Murali and Kasif [36], gene expression levels could be up-regulated or down-

regulated. In addition, xMotifs has the following properties: 

 

1. Each motif should be matched by a large fraction of the samples in that class. 

2. Each motif should contain as many conserved genes as possible. 

3. Motif should not have many genes in general because that may cause no sample may 

match the motif. 
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3.9. Definition: For a given set of rows with values levels that measured across a set of 

conditions, and with user-defined parameters 0 , 1   , xMotif is a ( , )pair C G , where C  

is a subset of columns and G  is a subset of rows and satisfies the following properties: 

 

 C  should contain a number of columns that at least  -fraction from all columns. 

 The values levels are in the same abounds across the columns in C . 

 For every row not in G , the row is conserved in at most a  -fraction of the columns in 

C . 

 

From the previous definition, any dataset may have more than one bicluster and xMotif 

algorithm will work to find the largest one. However, k  biclusters can be detected by 

repeating algorithm k  times after taking off the samples that are contained in the previously 

founded biclusters from previous repetitions. Using xMotif algorithm allows a row to be 

founded in more than one motif. In addition, after finding one bicluster by not deleting the 

matched columns will allow them to appear in other biclusters. Another good feature in this 

algorithm that it is not necessary to specify the number of the biclusters, so we can find all 

of the biclusters in the data. 

 

According to Murali and Kasif [36], a state is a range of expression values that are 

statistically significant. If there are  columns (samples), then there are 
2

n 
 
 

 possible states 

for each row (gene) that not all of them may be interesting according to the study filed. They 

assumed that the data has been generated by a uniform distribution and the state [ , ]a b  will 

be interesting if the expression values in it are unlikely to have been generated by a uniform 

distribution. To make a decision that a state is interesting or not will be by computing p-

value like the following: 

 

    1
n n ii

b a b a
ik i n

 
 
 


  

 
                                                                                                  (3.46) 

 

which will be used to test the null hypothesis, which says that the state is not interesting 

where k  is the number of values that lie in the interval [ , ]a b . 
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The complete algorithm 

 

Murali and Kasif [36] introduced the xMotif algorithm as follow: xMotif Algorithm takes a 

set of rows, a set of columns, and an expression value for each row-column pair, and for 

each row, a list of intervals representing the states in which the rows are expressed in the 

columns. The data is in a matrix form. To find an xMotif (bicluster), the set G  of the 

conserved row, the states that these rows are in, and the set C  of columns that match the 

motif must be computed. By having the set G , the states of the conserved rows, and one 

column c  that matches this motif, then the remaining columns in C  can be computed also 

by checking for each column c  whether the rows in G  are in the same state in c  and c . c  

is known as a seed that used to compute the entire motif. 

 

With a known column c , and with a given set D  of columns, which have the following 

properties: For every column c  in the set D  and for every row in the largest motif, there is 

exactly one state such that the row is in that state in columns c  and c . For every row g , 

which does not belong to the largest motif, there exists a column c  in D  such that row g  

is not in the same state in columns c  and c . D  is known as a Discriminating Set. Finding 

the larger xMotif in the data is as the following[36]:          
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Input: sn : number of the columns (samples) that will be selected at random, dn : the 

number of columns, which will be selected at random for every seed, ds : number of the 

element in the thd set,  : scaling factor. 

Output: One Bicluster for every repetition. 

Steps: 

1- For 1i   to sn do 

Choose a sample c  uniformly at random 

For 1j   to dn do 

Choose a subset D  of the samples of size ds  uniformly at random. 

For each gene g , if g  is in the state s  in c  and all samples in D , include the pair 

( , )g s in the set ijG  

ijC  = set of samples that agree with c in all the gene-states in ijG  

Discard ( , )ij ijC G if ijC  contains less than n  samples 

2- Return the motif 
* *( , )C G that maximizes | |,1 ,1ij s dG i n j n     

Figure 3.24. Find Motif 

Practically, xMotif algorithm is a probabilistic algorithm that assumes for each row, the 

intervals corresponding to that row’s states are disjoint. The process is done by selecting 
sn  

column (samples) uniformly at random from the set of all columns. The selected items are 

the seeds. Then, for each random seed, 
dn  sets of columns will be selected at random from 

all of the columns with 
ds  elements in each set. These sets act as candidates for the 

discriminating set. Now, seed-discriminating set pairs are obtained, and for each one, the 

corresponding xmotif will be computed as explained above. If the motif has less than an      

 -fraction of the columns match it will discard the motif. At the end of the whole process, 

we obtain the largest motif as a bicluster.  

 

3.10. ROBA Algorithm 

 

Tchagang and Tewfix [47] introduced Robust Biclustering Algorithm, which is known as 

ROBA algorithm, which uses basic linear algebra and arithmetic tools to detect the 
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biclusters. The goal of this algorithm is to find submatrices that contain a subset of rows 

(genes) and a subset of columns (conditions) with high correlation to each other. This method 

is easy to apply because it uses basic linear algebra and arithmetic tools as mentioned by 

Tchagang and Tewfix [47]. ROBA algorithm is able to find the following bicluster types: 

 

1. Biclusters with constant values. 

2. Biclusters with constant values on rows. 

3. Biclusters with constant values on columns. 

4. Biclusters with coherent values. 

 

The data will be arranged in a matrix where each row represents one gene and each column 

represents one condition, as follows: 

 

 

11 12 1 1

21 22 2 2

1 2

1 2

1 2

M

M

m M

n n nM n

N N NM N

a a a r

a a a r

A c c c c
a a a r

a a a r

   
   
   
   

     
   
   
   
      

          ( 3.47) 

 

Where ija  is the expression value in row i  and under the column j ,

   1 2 1 2,
T

n n n nm nM m m m nm Nmr a a a a c a a a a  . 

 

ROBA algorithm will work to find a bicluster with maximum size and it gives the user to 

identify all qualified biclusters in each type. The ROBA algorithm has three main parts: (1) 

manipulating the data to deal with noise and missing values, (2) decomposing the data matrix 

A  into its elementary matrices, and (3) extracting any type of biclusters defined by the user. 

 

Data conditioning 

 

Most of the data in real life contain some noise and amount of missing values. Before 

detecting biclusters ROBA algorithm conditioning data to find more high-quality biclusters. 

There are many methods to deal with missing values, but they proposed replacing the 
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missing values by zeros. On another hand, to deal with the noise they identified the number 

L  of distinct values la  that constitute the gene expression matrix A . Then they redefined 

la  as follow: 

 

1( ) / 2l l lb b                  (3.48) 

 

Where 0lb b le  , with 1l   to L , 0( ) /Le b b L  , 0 min([ ])nmb a and max([ ])L nmb a . 

Then the interval 0[ , ]Lb b  will be divided into L  equal intervals, as follow: 

 

0 0 1 1 1[ , ] [ , [ ... [ , [ ... [ , ]L l l L Lb b b b b b b b                  (3.49) 

 

Finally, a new data matrix will be obtained for the next phase. These steps are shown in the 

following algorithm: 

 

Input: A  data matrix with non-missing values replaced by zeros 

Output: A  matrix where the noise was dealt with. 

Steps: 

1- Compute: 0, , , , ,L l lL b b e b   

2- For 1l   to L  

For 1n   to N  

For 1m   to M  

If 1[ , [nm l la b b  

nm la a  

End 

End 

End 

End 

Figure 3.25. Algorithm 1 
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Gene expression matrix decomposition 

 

In this phase, the matrix will be decomposed into its elementary matrices using the following 

equation: 

 

1 1

1

L

l l L L

l

A A A A  


                 (3.50) 

 

Where 

 

1 2 1 2

T
l l l l l l l l

l n N m MA r r r r c c c c                (3.51) 

1 1

,
L L

l l

n l n m l m

l l

r r and c c 
 

                (3.52) 

 

From equation (3.50) lA  are binary matrices with N  row and M  column, l

nr  are binary 

l M  vectors, and l

mc  are binary N l  vectors. 

 

Biclusters identification 

 

As it was mentioned before, ROBA algorithm four type of biclusters as follows: 

 

Biclusters with constant values 

 

This type of biclusters have the same constant value in it, and let it be   that means: 

 

[ ] , 1,..., ; 1,...,ijB a i I j J               (3.53) 

 

That means the expression values in rows do not change across the columns (conditions). 

From equation (3.50) a submatrix with constant values can be obtained by analyzing each 

lA  separately. In addition, the matrix lA  is a binary matrix, and because of the fact, the 

number of rows in data is bigger from columns in gene expression data especially the number 

of the biclusters with constant values is defined as follow: 
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1

L

b l

l

N P


                 (3.54) 

 

where 
lP  is the number of distinct rows l

ir  of each 
lA  with a sum that is greater than 0. In 

addition, every distinct row of lA  constitutes the principal row element of the thi  bicluster 

l

iB  of the matrix lA  considered. Then, to check if any other row of lA  belongs to thi  bicluster 

or not the following equation is used: 

 

* , 1,...., , 1,...., , 1,...,l l l

i n i lr r r i p n N l L             (3.55) 

 

Finally, the following algorithm shows how practically biclusters with constant expression 

level l  can be detected: 

 

1- Compute: 1, ,l

l i nP r r  

2- For 1l   to L  

For 1i   to lP  
l

iB =[]; 

For 1n   to N  

If *l l l

i n ir r r  

[ ;[ ( ) ]]l l l

i i l iB B Genes n r  

End 

End 

End 

End; [[0 ]; ];l l

i iB Conditions B  

Figure 3.26. ROBA Algorithm: finding biclusters with constant values  

Biclusters with constant values on columns 

 

A submatrix ( , )B I J  is a bicluster with constant values on the column if its values ija  are 

either in form of additive model ij ja     or as a multiplicative model .ij ja    and the 

general form is: 
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1 2 jB   

   
 


 
    

              (3.56) 

 

Using equation (3.50) the number of biclusters with constant values on columns is 
b cN P  

where 
cP  is the number of distinct columns jc  of the whole lA  that his sum is greater than 

0. In addition, each distinct column jc  of the entire lA  constitutes the principal column 

element of the thi  bicluster jB . After that, to find the other columns of any lA  that belong to 

the thi  bicluster the following equation is used: 

 

* , 1,..., , 1,..., , 1,...,l

j m j cc c c J P m M l L               (3.57) 

 

Finally, ROBA algorithm that finds biclusters with constant values on columns is: 

 

1- Compute: , , l

c j mP c c  

2- For  1j   to cP  

[]jB  ; 

For 1l   to L  

For 1m   to M  

If * l

j m jc c c  

[ [ ( ); ]]j j l jB B Conditions m c  

End 

End 

End; [[0 ] ];jB Genes Bj  

End 

Figure 3.27. ROBA Algorithm: finding biclusters with constant values  on Columns 

Biclusters with constant values on rows 

 

A submatrix ( , )B I J  is a bicluster with constant values on rows if its values ija  are either in 

form of additive model ij ia     or as a multiplicative model .ij ia   and the general 

form is: 
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1

2

l

B







 
 
 
 
 
 

             (3.58) 

 

From equation (3.50) the number of biclusters with constant values on rows is 
b rN P   

where 
rP  representing the number of distinct rows of the entire 

lA  with ( ) 0isum r   Each 

distinct row 
ir  of the entire 

lA  constitutes the principal row element of the thi  bicluster 
iB . 

 

In the same way above, to detect other rows that belong to the thi  bicluster the following 

equation is used: 

 

* ; 1,..., , 1,..., , 1,...,l

i n i rr r r i P n N l L               (3.59) 

 

Thus, the final algorithm to find biclusters with constant values on rows is: 

 

1- Compute: , , l

r i nP r r  

2- For 1i   to 
rP  

[]iB  ; 

For 1l   to L  

For 1n   to N  

If * l

i n ir r r  

[ ;[ ( ) ]]i i l iB B Genes n r  

End 

End                                                         

End; [[0 ]; ];i iB Conditions B  

End 

Figure 3.28. ROBA Algorithm: finding biclusters with constant values  on Rows 
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Biclusters with coherent values 

 

A bicluster [ ]ijB a  with I  rows and J  columns is a bicluster with coherent values if its 

values have either an additive model ij i ja       or a multiplicative model 

ij i ja       form. In Tchagang and Tewfix’s work [47], they worked just with the additive 

model [ ] [ ] [ ] [ ]i j i jB            , which is the sum of three matrices. The first 

matrix is a matrix with constant values; the second is with constant values on rows, and the 

third on columns. Let the three matrices be 
1 2,B B , and 

3B , respectively. 

 

To find the biclusters, the data matrix A  will be written as a sum of three matrices: 
1Z  a 

matrix with constant values, 
2Z  a matrix with constant values on columns and the last one 

3 1 2( )Z A Z Z   . After this step, an algorithm that used to find biclusters with constant 

values on rows will be applied on 
3Z . After that, they will be added back to their 

corresponding matches into 
1Z  and 

2Z . Finally, obtain subgroups of the gene with coherent 

values.    

 

3.11. Bimax Algorithm 

 

Prelic et al. [10] introduced Bimax algorithm, which works with binary data type and follows 

the divide and conquers strategy to detect biclusters in the data. The main goal of this 

algorithm to make it as a reference algorithm when applying biclustering on data. Bimax 

algorithm is considered as a fast algorithm, which can find all optimal groupings. Algorithm 

uses a simple data model reflecting the fundamental idea of biclustering while allowing 

determining all optimal biclusters in a reasonable time.  

 

Algorithm deals with binary data, which can be obtained from the data matrix, by observing 

whether there is change or there is not under different conditions. Let 
n mE 

, be the data 

matrix with n  genes (rows) under m  microarray experiments (columns). Thus, each value 

ije  will have the value 1 if there is a change and 0 in the other state. A bicluster ( , )G C  with 

a subset of rows G  that has response across a subset of columns C . In the Bimax algorithm, 

a bicluster is a submatrix of E  for which all elements equal 1.  
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3.10. Definition: The pair {1,...., } {1,..., }( , ) 2 2n mG C    is called an inclusion-maximal bicluster 

if and only if: 

 

1) , : 1iji G j C e     

2) 
{1,..., } {1,..., }/ ( , ) 2 2n mG C     with: 

a. , : 1i ji G j C e  
        

b. ( , ) ( , )G G C C G C G C         

 

The Bimax algorithm will work to find biclusters that are inclusion-maximal. 

 

The complete algorithm 

 

The Bimax algorithm has running-time complexity equal to ( log )O nm  , where n  is the 

number of rows, m  the number of columns, and   is the number of all inclusion-maximal 

biclusters in E .  

 

Algorithm, as illustrated in Figure 3.11, will divide E  into 3 submatrices, one of them have 

only zeros that can be ignored later. Let the other two submatrices be U and V , and the 

Bimax algorithm will be applied many times to these submatrices until obtaining bicluster 

that has only ones.  

 

 

Figure 3.29. Source [10]: An example of Bimax algorithm 

Bimax algorithm made of some procedures as follows [41]: 
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1- Procedure Bimax( E ) 
Z   

     , 1, , , {1, , ,Z M conquer E n m Z   

Return M  
End Procedure 

2- Procedure   , , ,conquer E G C Z  

if , : 1i G j C eij     then 

return   ,G C  

end if 

    , , , , , , ,G G G C C divide E G C ZU V W U V    

,M MU V    

if GU   then 

  , , ,M conquer E G G C ZU U V U   

end if 

if G GV W     then 

( , ( , ), )M conquer E G C ZV V V  

else if GW   then 

 Z Z CV
    

  , , ,M conquer E G G C C ZV W V U V
    

end if 

return M MU V  

End procedure 

3- Procedure   , , ,divide E G C Z   

  , , ,G reduce E G C Z   

choose i G  with 0 | |e Cj C ij    

if such an i G  exists then 

 | 1C j j C eijU      

 

Else 

C CU   

end if 

\C C CV U  

, ,G G GU V W      

for each i G  do 

 *
| 1C j j C eij     

if 
*

C CU  then 

{ }G G iU U   

else if 
*

C CV  then 

{ }G G iV V   

else 

{ }G G iW W    

end if 

end for 

return ( , , , , )G G G C CU V W U V   

End Procedure 

 

4- Procedure   , , ,reduce E G C Z  

G    

For each i G  do 

 *
| 1C j j C eij     

if 
* *

C C C 


     then 

{ }G G i    

end if 

end for 

return G  

End Procedure   

Figure 3.30. Bimax Algorithm  

The input to the Bimax algorithm is a discretized gene expression data matrix. The data will 

be converted using a threshold to a binary data where each expression value will have a value 

equal to one if it is bigger than the threshold and zero otherwise. Then, using the previous 

procedures above will work to detect all of the possible biclusters that contain only ones. In 

every iteration, the rows and the columns in the data matrix will be rearranged to concentrate 

ones in the upper right of the matrix. Then, the matrix will be divided into submatrices. 

Finally, when a matrix that only has ones in it, this submatrix will be returned as showed in 

Figure 3.11[42]. 
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3.12. RMSBE Algorithm 

Wang and Liu [48] introduced Randomized MSB Extension algorithm, which is known as 

RMSBE algorithm. This algorithm is able to detect optimal square biclusters with the 

maximum similarity score. RMSBE algorithm is the first algorithm that admits a polynomial 

time algorithm for optimal solutions. Algorithm has the following features: Discretization 

procedure is not necessary, work well with overlap biclusters, and works well for additive 

biclusters. Algorithm uses a similarity score that has been defined in their work, which 

measures the similarity between two genes and another similarity score for a sub-matrix.  

 

The data will be in a matrix shape ( , )A I J with n  number of rows (genes) and m  number 

of columns. Every entry ija  in the data matrix represents the value level in the gene (row) i  

under the condition (column) j . The goal of this algorithm is to find submatrix (bicluster) 

that related to a reference gene. However, if the reference gene is not known, the references 

will be chosen from data by random.  

 

3.11. Definition (Similarity score between genes): To compute the difference between an 

element ija  and a reference gene *i I in the data matrix as follow: 

 

*| |ij ij i j
d a a                (3.60) 

 

If we are looking to find constant biclusters the average distance value of all elements in 

( , )A I J must first be computed as follow: 

 

,

| || |

ij

i I j J

avg

d

d
I J

 



              (3.61) 

 

Then if ij avgd d  that means the two elements ija  and *i j
a  are different from each other 

and the similarity ijs  is 0, where   is a user-defined threshold to control the amount of the 

similarity. Otherwise, the similarity score is: 
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1
ij

ij

avg

d
s

d



                   (3.62) 

 

where   is a bonus value for small ijd  that used to enlarge the similarity score for small ijd  

so we ignore ijd values that are greater than the threshold.  

 

3.12. Definition (Similarity score for a bicluster): Let ( , )S I J  be a data matrix with n  

number of rows and m  number of columns, and  ,S I J   be a bicluster. The similarity score 

for a row i  in the bicluster is: 

 

( , ) ij

j J

s i J s


              (3.63) 

 

In the same way, the similarity score for a column j  in the bicluster is: 

 

( , ) ij

i I

s I j s


               (3.64) 

 

In addition, the similarity score for  ,S I J   is: 

 

 ( , ) min min ( , ),min ( , )i I j Js I J s i J s I j  
               (3.65) 

 

In the constant bicluster state, if the similarity score for a row i I   in a bicluster  ,S I J   

is high, then the expression values of gene i  is similar to the reference row *i  under the 

column subset J  . If we are looking to detect constant biclusters, that means we are looking 

to find a submatrix with the highest similarity score. Formally maximum similarity bicluster 

is defined as follow: 

 

3.13. Definition:  For a given n m  similarity matrix ( , )S I J , MSB (maximum similarity 

bi-cluster) problem is to find a bicluster  ,S I J   with I I  and J J  such that ( , )s I J   

is maximized. 
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The complete algorithm 

 

The problem of finding MSB in n m  similarity matrix ( , )S I J  has a polynomial time, 

which is a greedy algorithm. Algorithm will start with the whole matrix as a bicluster. Then 

the rows or columns with the smallest similarity score will be deleted. The previous steps 

will be applied until we obtain one element in the current bicluster. The result of this process 

will be 1n m   bicluster where n  is the number of rows and m  is the number of the 

columns. Finally, the submatrix ( , )k kS I J   with the maximum similarity score ( , )k ks I J   will 

be chosen. The previous process practically is as follow, which has time in complexity equal 

to 2(( ) )O n m  

 

Input: n m similarity matrix ( , )S I J  

Output: A maximum similarity bicluster  ,A AS I J  

1. Set the first bicluster  1 1, ( , )S I J S I J  and compute the similarity score for all 

rows and columns of  1 1,S I J . 

2. For 1k   to 2n m   do 

a. Find row 
ki I  such that    , min ,

k
k k

i I
s i J s i J


   

b. Find column kj J such that    , min ,
k

k k
j J

s I j s I j


   

c. If    , ,k ks i J s I j   then set 
1 { }k kI I i

  and 
1k kJ J   Else set 

1k kI I   and 
1 { }k kJ J j

   

3. Let  , ,1 1k kS I J k n m 
    , be the bicluster such that 

   
1 1

, max ,k k k k
k n m

s I J s I J 
   

 . 

4. Output    , ,A A k kS I J S I J   

Figure 3.31. The MSB algorithm  

The output of this algorithm may not be ideal because it may contain some element with low 

similarity values. To solve this problem, Wang and Liu [48] also proposed of using a second 

similarity score to control the quality of the biclusters. This scale is the average similarity 

score, which is a follow for a given bicluster  ,S I J   is: 
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( , )
| || |

ij

i I j J

avg

s

s I J
I J

    
 


               

(3.66) 

The goal is to detect biclusters with average similarity score that is not less than a threshold 

 . To improve the previous algorithm according to the    threshold the third step in the 

algorithm will be modified as follow: 

 

 Let  , ,1 1k kS I J k n m 
    , be the bicluster such that: 

 

1 1& ( , )
( , ) max ( , )

avg k k

k k k k
k n m s I J

s I J s I J


 
    

             (3.67) 

 

The modified algorithm is called MSB   algorithm that works to detect approximately 

squared biclusters. In case that the data matrix has a number of rows very bigger from the 

number of columns the results biclusters that obtained by not take in computation some rows. 

This problem is solved by using the MSB   algorithm then the bicluster will be extended 

by adding rows with high similarity scores in the subset of columns to the bicluster.  

 

In an additive bicluster  ,A I J   from data matrix ( , )A I J , the expression values of the rows 

fluctuate in the same way as the reference row. In an error-free additive bicluster  ,A I J   

for reference row *i , we have i I    and j J   , *ij ii j
a a c   where 

ic  is a constant for 

row i . In addition, if reference column 
*j  is known a new matrix ( , )B I J  can be obtained 

by setting * * *( )ij ij ij i j
b a a a   , which is an error-free constant bicluster for error-free 

additive bicluster of the reference gene *i . 

 

Most of times, the reference column (condition) is unknown, so all of the columns will be 

tried as a reference. The complete algorithm for computing additive MSBE as presented by 

Wang and Liu [48] as follows: 
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Input: ( , )A I J data matrix with size n m . 

Output: A set of additive biclusters. 

1. For every column 
*j  in J  do 

a. Compute ( , )B I J  using * * *( )ij ij ij i j
b a a a    

b. For each row *i  in I  do 

i. Convert ( , )B I J  into ( , )S I J based on row *i  

ii. Use MSB   algorithm to compute the bicluster  ,A AS I J  

iii. Use the extension algorithm to get extended bicluster  ,E ES I J  

from  ,A AS I J   

iv. Output the bicluster  ,E EA I J    

Figure 3.32. Additive MSBE Algorithm 

According to Wang and Liu [48] when dealing with a big data set additive MSBE algorithm 

requires a long time equal to 
2( ( ) )O nm n m , so they developed a randomized algorithm, 

which known as RMSBE (Randomized MSBE) algorithm, which will speed up the process 

as follows: 

 

Instead of trying to use all of the rows as a reference, a part of the rows will be randomly 

selected as the reference rows. If there are a b c  bicluster from n m  bicluster, /n b  rows 

can be randomly selected. The expectation of the number of selected genes that are in the 

b c  bicluster is 1. To obtain good results while applying biclustering if more than one 

reference row is used in the bicluster and select the best result. In addition, if the column 

reference is not known, set of columns can be also selected. Using RMSBE algorithm will 

give faster and better results depending on the randomly selected row and column sets.  

 

3.13. QUBIC Algorithm 

Li et al. [37] introduced a  QUalitative BIClustering algorithm, which is known as Qubic 

algorithm, which is employing a combination of qualitative measures of gene expression 

data and a combinatorial optimization technique to detect all statistically significant 

biclusters including biclusters with the so-called ‘scaling patterns’. Algorithm has another 
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important feature that it can deal with very big data sets more efficiently from many 

biclustering algorithms. By using Qubic, all statistically significant biclusters can be 

detected, which could be overlapped. In addition, it can detect both positively and negatively 

correlated expression patterns.  

 

Data is arranged in a matrix where rows are presenting the genes and columns are the 

different conditions in gene expression datasets. According to Li et al. [37] two genes will 

be related under a set of conditions if they have identical integer numbers in a representing 

matrix along the two corresponding rows of the matrix. They gave the name feasible matrix 

to the submatrix if each pair of rows of the submatrix is (approximately) either the same or 

the opposite. Thus, they defined the biclustering problem is to detect all the optimal feasible 

submatrices in a given matrix according to some specified optimization criteria.  

 

The main idea in this algorithm is as follow: For a data matrix, a representing matrix is 

created where the expression value of a row under each column is represented as an integer 

value according to their levels and how it changes or not. Then, for the representing matrix, 

the weighted graph G  will be constructed. In this graph, the rows (genes) is presented as 

vertices, edges connecting every pair of rows. For each edge, a weight will be given to it, 

which is presenting the similarity level between the two corresponding rows. When a weight 

goes higher that means there is more similarity between the two rows. A good bicluster 

should contain a heavier subgraph of G . However, it is not necessary that every heavy 

subgraph belongs to the bicluster because it may not have similar expression patterns. 

Finding all heavy subgraphs requires lots of computation and long time, so Li et al. [37] 

proposed a solution, which says that instead of solving the problem of finding heavy 

subgraphs in a graph, the bicluster will be build based on the graph that representing the 

data. After that, algorithm work to find all of the feasible biclusters ( , )I J  in the data where 

 min | |,| |I J  is as large as possible, and I  is a subset of rows and J  a subset of columns. 

 

The complete algorithm 

 

The QUBIC algorithm has two main phases: the first one is to present the data using a 

qualitative matrix, and then detecting the biclusters in the data one by one. Every one of 

these biclusters will start with the heaviest unused edge as a seed to build an initial bicluster. 
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Finally, in iteratively process rows will be added to the biclusters without violating a pre-

specified consistency level, which we will be presented later. The qualitative matrix will 

contain signed integers and zeros based on: 

 

1. On the way of how the expression values change, which included whether the row’s value 

change or not, and in which direction. 

2.   The ranking of all the upregulating conditions for each gene based on the expression 

values of the gene under these conditions. 

 

A gene can be checked whether it unchanged under the condition j  as follow: For row i  in 

the data matrix, which has n  rows and m  columns, expression values will be ordered in 

increasing order as follow: 

 

,..., , ,..., , , ,..., , ,...,, ,1 , 1 , 1 , 1 , 1 , 2
v v v v v v v v vi s i c imi i s i c i c i m s i m s      

 where / 2c m  and 

1s m q   , where q  is a user-defined parameter. Thus, a row (gene) i  is considered as 

unchanged under column (condition) j , if and only if its expression value wij  belongs to 

the interval ( , )v d v dic i ic i  , where min{ , }
, 1

d v v v vi ic is ici m s
  

 
. 

 

To rank the conditions: The column (condition) is considered as a down-regulating for a row 

(gene) i  if its value is ic iv d  , and up-regulating condition in the other state. For the row 

i , we sort all the upregulating conditions in decreasing order of their corresponding 

expression values. This order will be used as the rank of each up-regulating column for row 

i . In the same way, the down-regulating conditions will be ranked. However, the sort will 

be based on the relevant gene-expression values into the increasing order, and the order will 

be used as the rank of each down-regulating condition for gene i . For each up-regulating 

column a ‘+’ will be assigned, and a ‘-‘ for every down-regulating columns. In the gene 

expression data, two genes are considered as oppositely regulated across a subset of 

conditions, if they have identical nonzero integers column-wise except with opposite signs. 
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Biclustering through finding a heavy subgraph 

 

As it was mentioned above, for each edge, a weight will be assigned. The weight is the 

number of columns under each of which the two rows have the same nonzero integer. The 

problem of biclustering is to detect a submatrix from the data matrix M  with I  a subset of 

rows and J  a subset of columns so that  min | |,| |I J  is maximal and the consistency level 

of ( , )I J is higher than a pre-specified value c , 0 1.0c  .  

 

Algorithm will start work with a set S  of seeds (edges). First, S  will be set to be the sorted 

list of edges in G  to choose whether the seed i je g g  is seed or not if and only if: 

 

1. One of the genes gi
 and g j  or both are not in any biclusters that have been founded 

before. 

2. gi
 and g j  are in different biclusters ( , )

1 1 1
B I J  and ( , )

2 2 2
B I J  with 1I  and 2I  do not have 

common elements and  1 2( ) max | |,| |w e I I . Where ( )w e  is the weight of the edge e . 

 

The QUBIC algorithm will build the initial bicluster ( , )I J  based on the chosen seed. After 

that, the bicluster will be expanded along both the vertical and horizontal directions with 

respect to the preset consistency level. The stop point is when the bicluster is no more can 

be expanded. The QUBIC algorithm in detail as follows [37]:   

 

In the first step, we stop if S  is empty. If it is not empty, we will check the first element in 

S  if it is a seed or not. That element will be removed from S  if it is not a seed and moves 

to the second element. If it is a seed, we will look to find all columns (conditions) under 

which the two rows (genes) of the seed have all identical nonzero integer values and set these 

columns of the two rows as the current bicluster ( , )B I J , then we start the second step. 

 

In the second step, the current bicluster B  will be expanded by adding new rows from the 

data matrix that does not belong to I  and these rows are most consistent with bicluster. By 

the applying the process of adding row we obtain a new bicluster  ,B I J    where I   is I  

after the process of adding a new row and J   is J  after deleting those columns where the 
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total consistency is lost. If    min | |,| | min | |,| |I J I J   , we set B  to B , then repeat this 

step. If    min | |,| | min | |,| |I J I J    and if the preset consistency level is 1.0, B  will be 

the output and the used seed will be removed from S  else will move to the third step. 

 

The third step work on adding many columns as possible to the bicluster B  with saving the 

consistency level below the user-defined value c as follows: For every column in the data 

matrix and is not in B , the ratio between the number of identical nonzero integers in the 

rows of I  and | |I  is computed and if is bigger or equal to c , we add that column. Let 

 ,B I J    be the new bicluster and T be the consensus sequence of B  consisting of the 

dominating elements of the columns of B , where the dominating element is the element 

with the highest frequency in the column; add as many rows as possible to B  such that each 

new row has at least | |I  c  identical nonzero integers to those of T . Then we start the fourth 

step. 

 

In this step, we continue expanding the bicluster by adding oppositely regulated rows: let T  

be the consensus sequence of bicluster B , we add as many rows as possible to the bicluster 

where each row has at least | |I  c  identical nonzero integers. However, they will be added 

with the opposite signs to those of T . Finally, we have B  bicluster as output and starting 

again from the first step.  

 

According to Li et al. [37], this algorithm has the following features: 

 

1. If a significant bicluster is being detected in the second step but not completed, it could 

be built later using other edges of the bicluster as seeds. 

2. Algorithm able to find both positively co-regulated rows and negatively co-regulated 

rows. 

3. The QUBIC algorithm can be work with user-provided seeds. 

4. The QUBIC algorithm does not, in general, suffer from the issue of being stuck in local 

optima since it uses multiple starting points (seeds) to find each bicluster. 

 

Algorithm requires the following parameter to start working to detect the bicluster: r  the 

range of possible ranks, q  the percentage of the regulating columns for each row, c  the 
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required consistency level for the biclusters, o  the desired number of the output biclusters, 

and f  the control parameter for overlaps among to-be-identified biclusters.  

 

3.14. CPB Algorithm 

Bozdağ et al. [49] introduced a two-step biclustering algorithm, which is known as CPB 

(Correlated Pattern Biclusters) algorithm. Algorithm based on using Pearson Correlation 

Coefficient (PCC) with a given gene reference to detected highly correlated biclusters. 

Algorithm able to detect overlapping biclusters and can detect a negative correlation by using 

PCC.  Bozdağ et al. [49] also in their work, were able to detect biclusters, they also proposed 

a method to extract correlation information from identified biclusters in an intuitive way. 

This method will evaluate the uniqueness of the information that has been captured in each 

bicluster and computes a correlation score for each gene based on how frequently and in how 

distinct biclusters it co-occurs with the reference gene. In addition, the correlation scores 

from all datasets are combined to filter out inconsistent information. This approach is 

illustrated in the following Figure 3.12: 

 

 

Figure 3.33. Source [49]: Overview of CPB algorithm 

Bozdağ et al. [49] addressed two challenges to use the PCC as follow: The first one is the 

PCC lacks transitivity property. To overcome this problem the proposed instead of measure 

the closeness to a reference pattern, which requires computing the reference pattern rows 

(genes) in the same bicluster to measure quality. Therefore, they showed if two rows have a 

sufficiently high correlation with a reference pattern, there is a lower bound for PCC between 

each of these two rows. The second challenge is PCC has good results if he used to measure 

coherence between rows only, but if it is used to measure coherence to columns 
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simultaneously will not give meaningful results. Therefore, CPB were developed to add 

columns to the biclusters just if it does not decrease correlation among the rows in the 

bicluster. Algorithm will compute the effect of adding a column to a bicluster, and the 

column will be mapped to real numbers and work to capture the change tendency of a gene 

expression in the bicluster. Then, by computing root mean squared error (RMSE) for each 

column to evaluate the fit of the column to this tendency pattern. 

 

The complete algorithm 

 

Let A  be a data matrix with a subset of rows R  and a subset set of columns C . For this 

matrix, the value 
rca  represents the relation between row r  and column c . CPB algorithm 

will use PCC to find whether a row belongs to a bicluster ( , )B X Y  or not, where X  is a 

subset of rows and Y  is a subset of columns. ( , , )pcc r s Y  is the absolute value of PCC 

between row r  and s  under the column Y . A row r  will be included in a bicluster if it has 

bigger that user-defined threshold ( , , )ipcc r x Y  for all ix X . The size of Y  also will be 

controlled to avoid obtain large PCC values merely by chance. The full CPB algorithm is 

outlined as follows: 
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Input: A : data matrix, rr : reference row,  : PCC threshold,  : minimum number of 

columns. 

Output: ( , )B X Y : biclusters where  , , , ,r i jr X m pcc x x Y     for all ,i jx x X  

Function ( , , , , )rCPB A r w    

1- ( , )B X Y where  rX r  and Y  is a random subset of columns of A . 

2- 
2 1

; ; ;
3 12 4

c c

m
m


      


        

3- repeat 

0step  

repeat 

1; savestep step B B    

Compute reference vector T  and normalization parameters 

if step mod 2 1  then 

Update X  such that ( , , )i cpocc x T Y   for all ix X  

else  

Let r  be the row with smallest ( , , ) cpocc r T Y   

Update lim
x

Y


 such that ( ) ( )kRMSE y RMSE r  for all ky Y  

Until step > 20 or saveB B                                                                          

;c c c c      
                                                                           

until c    

return ( , )B X Y  

Figure 3.34. CPB Algorithm  

The CPB algorithm will start with an initial bicluster ( , )B X Y  and work to improve it by 

adding or taking off rows and columns iteratively. This step is done by comparing PCC 

between each row and a reference vector T , which is the general tendency of rows in X  

with respect to the columns in the bicluster while deciding which rows to move. If row r  

has ( , , )pcc r T Y value bigger than a certain threshold, it will be included in the set X  and 

T  will be updated. In each iteration of the algorithm, the reference vector T  and parameters 
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elated to normalization of data values will be computed, then either we update X  or Y  not 

both in the same time to avoid large fluctuations in the bicluster structure.  

 

The idea of the normalization is to detect a tendency of rows in X  in a better way to take 

into account the different scaling and shifting patterns of rows in the bicluster. The 

normalized data values in the data matrix are computed as follow: 

 

ˆ i k i

i k

i

x y x

x y i k

x

a
a for each x X and y Y






             (3.68) 

 

where 
ix  is the shifting parameter and 

ix  is the scaling parameter associated with row 
ix

. Then each element in T  is computed as the arithmetic mean of ˆ
i kx ya  on all rows 

ix X . 

The values of T , 
ix  and 

ix  is computed in an iterative process. The computation process 

starts with 0
ix   and 1

ix   as starting values and T  will be computed. In order to obtain 

the best shifting and scaling parameters, which maximize alignment of each row ix  with the 

reference vector T , the least squares fitting, is being applied on the pairs 

    
11, , , ,

i i mx y m x yt t  . Then the intercept and slope that obtained in the least squares 

fitting are assigned to 
ix  and 

ix , respectively. Then by using the new values T  will be 

updated and repeat the process until convergence. 

 

As we mentioned before a row r  is a member of X  if  , ,ipcc r x Y   for all the rows in 

X . In order to not testing all the conditions against all of the rows in X , Bozdağ et al. [49] 

proposed of using   instead of   where   is selected such that ( , , )pcc r T Y   must 

ensure  , ,ipcc r x Y   for all ix X . However, it is very difficult to analytically compute 

a lower bound for    as a function of   because PCC originally is depending on the values 

and the length of the vectors. To overcome this problem, they generated a reference random 

vector e  with e  elements. In addition, they generated more random vectors. Form those 

random vectors the kept vectors that have an absolute value of PCC with the reference vector 

greater than  . Finally, they plotted the distribution for the absolute value of PCC between 
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each pair of these vectors. This experiment verified there is a lower bound for    and 

increases with   as presented in the following Figure: 

 

 

Figure 3.35. Source [49]: (a) Distribution of PCC between pairs of 200 random vectors 

with e elements that have PCC with reference vector greater than a threshold 

ρ1. (b) Relationship between PCC and RMSE on random vectors.  

The value of the root means squared error for a column ky  in the subset Y  is computed as 

follow: 

 

 
2

1

1
ˆ( )

i k

n

k x y k

i

RMSE y a t
n 

               (3.69) 

 

In addition, if a column c  does not belong to Y , RMSE is computed using the same 

formulation by using ct  instead of kt where ct  analogous to kt  that quantifies tendency of 

rows ix X in column c . To include a column to a bicluster it must have an RMSE value 

below a threshold  . The threshold   is controlling the ratio of the number of rows to the 

number of columns and its value in relation to  . Bozdağ et al. [49] proposed to set the 

value of RMSE for row r  which has the smallest ( , , )pcc r T Y . RMSE for a row ix X  is: 

2

1

1
ˆ( ) ( )

i k

m

i x y k

k

RMSE x a t
m 

              (3.70) 

 



85 

The biclusters that obtained using CPB algorithm have the ratio /n m , which will be close 

to /N M . However, in order to have a different ratio k  parameter can be used to control 

this ratio. That will be done by updating the number of columns Y , k  times.  

The CPB algorithm also uses the parameter   to make the reference row 
rr  has a larger 

impact on decision mechanisms of the algorithm. That is done by assigning a larger weight 

to the reference row when computing the vector T  and RMSE values. Then the total gain 

from rows except the row 
rr  will be multiplied by (1 )  . In addition, the contribution from 

rr  is multiplied by  , where   is an input parameter. The value of   must be carefully 

selected because the high value of it allows discovering patterns that more closely resemble 

rr . On other hand, small values will increase the sensitivity. 

 

As we mentioned before Bozdağ et al. [49] introduced the CPB algorithm as a two-step 

algorithm. The first algorithm that introduced work to detect biclusters from the data. The 

second step work to evaluate the founded biclusters using correlation information from the 

biclusters that obtained from different datasets as it presented in Figure 3.12 to obtain the 

best-corresponded information from multi data sets as follows: 

 

This stage includes three steps: In the first one the uniqueness of the information that 

captured by each bicluster will be quantified, then correlation score will be computed for 

each row based on co-occurrence frequency and uniqueness information associated with the 

row with respect to the reference row. Finally, correlation scores from different datasets will 

be combined. 

 

When two biclusters  ,v v vB X Y  and  ,w w wB X Y  have no common elements expect of 

a reference row rr  the biclusters represent two distinct relationships between rows and 

columns of the data matrix. In addition, if the bicluster 
wB  , for example, is contained in the 

vB  bicluster, wB  will be discarded from the results list.  

 

Let ( )IR  be the set of biclusters that contain all rows specified in the argument list, and 

( )IC  be the set of biclusters that contain all columns specified in the argument list. Let a 

row vr X  and a column vc Y  in the bicluster  ,v v vB X Y .  
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3.14. Definition: The bicluster uniqueness for a bicluster 
vB  with respect to other biclusters 

in set ( ) ( )IR r IC c on the relationship between r  and c  is: 

{ }

1

| ( , ) ( , ) |
( , , )

(| | 1) | |

i v r k vx X r y Y i k

v

v v

IR r x IC c y
BU B r c

X Y

   




 
           (3.71) 

 

The value of BU  is between 1/ | ( ) ( ) |IR r IC c  and 1. Bicluster uniqueness will have 1 as 

a value for the bicluster 
vB  if it does not overlap with any biclusters at row r  and column c . 

That means 1/ | ( , ) ( , ) |i kIR r x IC c y  contains just 
vB  for all 

ix X  and 
ky Y . In addition, 

it will take the minimum value when it is completely overlapped.  

 

 Uniqueness measure will be used to compute an overlap score ( , )OS r c . Overlap score will 

be computed for every row-column ( , )pair r c , which used to quantify the amount of 

different relationships identified between r  and c . ( , )OS r c  is computed by summing the 

uniqueness measure for all biclusters in ( ) ( )IR r IC c : 

 

( ) ( )

( , ) ( , , )
v

v

B IR r IC c

OS r c BU B r c
 

              (3.72) 

 

In the next step, for each row, a correlation score ( )CS r  will be computed, which provides 

us gathers total evidence on how frequently and in how distinct relationships row r  is 

correlated with the reference row 
rr , as follow: 

 

( ) ( , )
c C

CS r OS r c


               (3.73) 

The previous steps help to find more significance and meaningful results by applying this 

method to different datasets separately and combine correlation scores. The data sets should 

have the same row labels, which may not be practically possible [49].  
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 COMPARISON OF THE BICLUSTERING ALGORITHMS 

In this section, a two-stage comparison method will be applied to compare some of the 

biclustering algorithms. In the first stage, biclustering algorithms will be evaluated using 

DEA according to some measures. Using DEA helps on choosing the best parameters for the 

different algorithms and rank them according to some conditions. In the second stage, the 

results from the first stage will be used to make an order for the different biclustering 

methods from different sides.  

 

In this section, CC, FLOC, the Plaid Model, xMotif, Bimax, and Qubic algorithms [10, 15, 

28, 35-37] (APPENDIX-1 and APPENDIX-2 to see the used packages) will be used. In 

addition, the benchmark Yeast Saccharomyces Cerevisiae cell cycle expression dataset [34] 

will be used. The data contains 2884 rows (genes) and 17 columns (condition). The original 

data values have been transformed by scaling and logarithm 5100log(10 )x x  so the result 

was a matrix of integers in range between -1 and 595. The matrix contains values with -1 for 

the missing values and zeros that indicates there is no change under some conditions. 

However, in this study, we included -1 and the zeros as a normal number in the matrix.  

 

4.1. First Stage: Applying Data Envelopment Analysis 

4.1.1. Data envelopment analysis (DEA)  

 

DEA is a mathematical programming method for measuring the relative efficiency of 

decision-making units (DMUs) with multiple outputs and multiple inputs, which was 

introduced by Charnes, Cooper, and Rhodes (CCR) [56].  

 

The proposed CCR model assumes constant returns to scale of production technology. In 

other words, it assumes that all evaluated Decision Making Units (DMUs) are at the optimal 

production scale stage. However, many production units are not in a state of optimal scale 

of production, so it is concluded that the technical efficiency of CCR model contains the 

component of the scale efficiency. Therefore a variable returns to scale based model, which 

is known BCC s by Banker et al. [24] will be used in evaluating the biclustering result.  
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The BCC model makes it possible to investigate whether the performance of each DMU was 

conducted in the region of increasing, constant or decreasing returns to scale in multiple 

outputs and multiple inputs situations. The output-oriented and the input-oriented BCC 

model is as follow [23]: 

 

max

:

, 1,2,....,
01

, 1,2,...,
01

1
1

0, 1,2,...,

subject to

n
x x i pij j ij

n
y y r qrj j rj

n

kk

k n
k





 





 


 





 

             (4.1) 

 

where 1 2( , ,..., )i i i ipx x x x  is the input vector of 
iDMU , 1,2,....,i n  and 

0 01 02 0( , ,..., )px x x x  is the inputs vector of the target 
0DMU . In the same way, 

1 2( , ,..., )i i i iqy y y y  is the output vector of  
iDMU , 1,2,....,i n  and 0 01 02 0( , ,..., )qy y y y  is 

the output vector of the target 
0DMU . The output-oriented BCC model will be used in 

comparing the biclustering algorithms. We will be looking for maximization of the outputs 

from the different algorithms by applying each algorithm many times and using the model 

to look to the best outputs according to some outputs. The output-oriented model will show 

us which parameters are the best to have maximum outputs but will not show the order of 

them. So another important DEA technique will be used to make this order. The second 

technique is known as super-efficiency DEA (see [57]). The difference between the output-

oriented BCC and the super-efficiency is that the 
0DMU  under evaluation is excluded from 

the reference set (In our case algorithms which showed the best performance according to 

their parameters). In other words, algorithms with the best performances that obtained using 

DEA will be compared , which help us to make order according to their performances. 

 

Each algorithm’s parameters were chosen as inputs for the DEA model. These parameters 

were chosen according to the data type with respect to the previous works with the chosen 

data. In addition, we worked to cover a good of the possible parameters for each algorithm. 

The outputs were chosen as follow: 
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1. The first used output was the size of the biggest 5 biclusters (the sum of number of rows 

  number of columns for each bicluster). 

2. The number of the detected biclusters from the dataset. 

3. The stratification score 
kTS . 

4. The signVariance. 

 

For the first output we are interested in finding the biggest biclusters in our work, so we have 

included this variable as an output variable for the biggest 5 biclusters and more number can 

be included. In the same way, the more is the number of the founded biclusters are bigger 

that means we have better biclusters because it will contain data are more connected to each 

other. 

 

The stratification score 
kTS  (APPENDIX-3 to see the used package) [12] is a measure that 

can be used to classify the biclusters in 3 types: 

 

 The large positive value indicates that the bicluster has strong gene effect only, the large 

negative score indicates strong condition effect only, and when the score is small and close 

to zero the means that we have a strong gene as well as condition effects. In this work, we 

are interested in the third one, which means we are looking for the smallest values in this 

score without making attention for the sign. Our model is an output-oriented model, which 

is interested, in the maximum value in the output so the following transformation is being 

applied: 

 

1 max( ( ))k k kTS TS values TS                (4.2) 

 

The stratification score is computed as follow: 

 

( )

( ) 1 ( ) 0( )

2 ( ) 0

k

k k

T b a
LOG

TS b where k if SB bB b a

if SB b

  
  

    
 

 

          (4.3) 

 

Where b  is a number of the bicluster and 0 1a   is a small fudge factor to offset large 

ratios based on very small co-expression in both groups of a bicluster. ( )kT b , ( )kB b quantify 
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the T-type (strong gene only effects) and B-type (strong condition only effects) co-

expression of genes in a bicluster b , and computed as follows: 

 

( )
2

1,

( )1
ˆ( ) ( )

( ) ( )

I b

k
k ik

i i b k

E b
T b b

I b J b


 

                (4.4) 

( )
2

1,

( )1 ˆ( ) ( )
( ) ( )

kJ b

k
k jk

j j bk

E b
B b b

J b I b


 

                 (4.5) 

 

for 1k   and 2, ( )I b  is the number of genes in b  and ( )kJ b  is the number of conditions in 

kG  groups (two groups the first one contain the conditions that included in the b  bicluster 

and the second for ones that were not included) for b . 
îk  and ˆ

jk  are the estimates values 

for the effect of genes 
ig  in 

kG  and the effect of condition jkp  in 
kG  , respectively . Finally, 

( )SB b  is the differential co-expression score for bicluster b . Strong positive ( )SB b indicates 

strong co-expression in 
1G  and weaker or no co-expression in 

2G  vice versa, and is 

computed as follow: 

 

1 1

2 2

max( ( ) , ( ) )
( )

max( ( ) , ( ) )

T b a B b a
SB b LOG

T b a B b a

  
  

  
            (4.6) 

 

The last variable in the outputs is known as signVariance  (APPENDIX-3 to see the used 

package)[3], which was introduced by Rodrigo Santamaria and was built based on work of 

Madeira and Oliveira [9] for classifying biclusters. The variance is computed as follow taken 

into account a sign transformation will be used whether there is a change in values without 

looking at the real values and using the following equation: 

 

( ) ( ) ( )
2

1 1 1

1 1
( [ , ] [ , ])

( )*( ( ) 1) ( )

nrow x nrow x ncol x

i j k

signVariance x i k x j k
nrow x nrow x ncol x  

 
  

  
         

(4.7) 

 

where are interested making signVariance  small as we can also so we will find the 

maximum value and subtract all of the signVariance  value from the maximum value and 
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compute the average value for the biggest detected biclusters and work to find the smallest 

signVariance  with respect to all of the other outputs. 

 

4.1.2. Results 

 

δ-Biclusters (CC) algorithm 

 

Cheng and Church (CC) algorithm was applied to the dataset 54 times with the following 

parameters: 

 

1. The residual of the data is equal to 1109.568 in most works is being set to 300. The 

controlling variable in the CC algorithm is a delta. Before applying CC algorithm is being 

standardized and delta set to have values equal to *t residual  where [0.1,0.3,...,0.9]t . 

2. The second parameters are the scaling factor . The all possible values were scanned and 

the ones that work with the data is chosen. These values were 1,1.3,  1.5,  1.7,  1{ .9,  2} . 

 

Note: For CC algorithm and the other algorithms, most of the parameters can take many 

values different from the chosen ones. In most of the previous works, they took the same 

parameters that come as default with the programs, which is used for applying the 

biclustering algorithms. So other parameters can be chosen and other outputs variables can 

be taken according to the nature of the data and the field study. The following results tables 

will have a column named algorithm, which will have the algorithm name and the used 

parameters. In addition, the bold font will be used to show the algorithms, which showed the 

best performances using the output-oriented BCC model according to the chosen variables. 

CC algorithm was applied with different parameters, then both of the output-oriented BCC 

models, super-efficiency is being applied, and the results are in the following table: 
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Table 4.1. DEA results for CC algorithm  

Algorithm Score Rank Algorithm Score Rank 

CCD0.008A1 1.0000 1 CCD0.039A1.7 1.0000 5 

CCD0.008A1.3 1.0349 26 CCD0.039A1.9 1.1058 45 

CCD0.008A1.5 1.0000 4 CCD0.039A2 1.0436 28 

CCD0.008A1.7 1.0000 8 CCD0.047A1 1.0000 12 

CCD0.008A1.9 1.0000 13 CCD0.047A1.3 1.1143 47 

CCD0.008A2 1.0000 17 CCD0.047A1.5 1.0314 25 

CCD0.016A1 1.0160 21 CCD0.047A1.7 1.1272 50 

CCD0.016A1.3 1.0474 30 CCD0.047A1.9 1.0842 36 

CCD0.016A1.5 1.0467 29 CCD0.047A2 1.0093 20 

CCD0.016A1.7 1.0000 3 CCD0.054A1 1.1444 52 

CCD0.016A1.9 1.0009 19 CCD0.054A1.3 1.1322 51 

CCD0.016A2 1.0000 14 CCD0.054A1.5 1.0957 42 

CCD0.023A1 1.0000 2 CCD0.054A1.7 1.0000 10 

CCD0.023A1.3 1.0000 16 CCD0.054A1.9 1.1634 53 

CCD0.023A1.5 1.1063 46 CCD0.054A2 1.0848 37 

CCD0.023A1.7 1.0572 33 CCD0.062A1 1.0574 34 

CCD0.023A1.9 1.1220 49 CCD0.062A1.3 1.0736 35 

CCD0.023A2 1.1188 48 CCD0.062A1.5 1.0917 40 

CCD0.031A1 1.0187 22 CCD0.062A1.7 1.0520 31 

CCD0.031A1.3 1.0986 43 CCD0.062A1.9 1.0000 18 

CCD0.031A1.5 1.0000 7 CCD0.062A2 1.0000 9 

CCD0.031A1.7 1.0521 32 CCD0.07A1 1.0288 24 

CCD0.031A1.9 1.0000 15 CCD0.07A1.3 1.2080 54 

CCD0.031A2 1.0881 38 CCD0.07A1.5 1.0885 39 

CCD0.039A1 1.0000 11 CCD0.07A1.7 1.1007 44 

CCD0.039A1.3 1.0000 6 CCD0.07A1.9 1.0379 27 

CCD0.039A1.5 1.0200 23 CCD0.07A2 1.0946 41 

The first column, which includes the names of algorithms, include algorithm name and the 

used parameters. For example, CCD0.039A1.5 means CC algorithm with delta value equal 

to 0.039 and   value equal to 1.5.  

 

FLOC algorithm 

 

FLOC algorithm was applied 62 times with the following parameters: 

 

1. The residua threshold r  was chosen as the same as the CC algorithm. 

2. Gene initial probability pGene  was given three values 0.3, 0.6, 0.9. 
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3.  Sample initial probability was given three values 0.2, 0.5, 0.8. 

4. The number of the biclusters founded in the results is not included for the analysis. 

5. The number of iterations was set to 225 

 

FLOC algorithm was applied with different parameters then both of the output-oriented BCC 

models, super-efficiency is being applied, and the results are in the following table (the name 

of the algorithms contains both FLOC word and the used parameters): 

 

Table 4.2. DEA results for FLOC algorithm 

Algorithm Score Rank Algorithm Score Rank 

FLOCR110.9568pG0.3pS0.2 1.0000 1 FLOCR332.8704pG0.6pS0.8 1.0038 39 

FLOCR110.9568pG0.3pS0.5 1.0000 3 FLOCR332.8704pG0.9pS0.2 1.0000 19 

FLOCR110.9568pG0.3pS0.8 1.0000 12 FLOCR332.8704pG0.9pS0.5 1.0027 38 

FLOCR110.9568pG0.6pS0.5 1.0000 7 FLOCR332.8704pG0.9pS0.8 1.0016 32 

FLOCR110.9568pG0.6pS0.8 1.0000 20 FLOCR443.8272pG0.3pS0.2 1.0000 27 

FLOCR110.9568pG0.9pS0.2 1.0000 2 FLOCR443.8272pG0.3pS0.5 1.0103 56 

FLOCR110.9568pG0.9pS0.5 1.0040 41 FLOCR443.8272pG0.3pS0.8 1.0000 17 

FLOCR110.9568pG0.9pS0.8 1.0053 46 FLOCR443.8272pG0.6pS0.2 1.0048 43 

FLOCR221.9136pG0.3pS0.5 1.0080 49 FLOCR443.8272pG0.6pS0.5 1.0100 54 

FLOCR221.9136pG0.3pS0.8 1.0000 11 FLOCR443.8272pG0.6pS0.8 1.0025 35 

FLOCR221.9136pG0.6pS0.2 1.0000 10 FLOCR443.8272pG0.9pS0.2 1.0021 33 

FLOCR221.9136pG0.6pS0.5 1.0014 30 FLOCR443.8272pG0.9pS0.5 1.0000 15 

FLOCR221.9136pG0.6pS0.8 1.0000 21 FLOCR443.8272pG0.9pS0.8 1.0071 48 

FLOCR221.9136pG0.9pS0.2 1.0000 18 FLOCR554.784pG0.3pS0.2 1.0000 6 

FLOCR221.9136pG0.9pS0.5 1.0025 34 FLOCR554.784pG0.3pS0.5 1.0130 61 

FLOCR221.9136pG0.9pS0.8 1.0113 58 FLOCR554.784pG0.3pS0.8 1.0111 57 

FLOCR300pG0.3pS0.2 1.0000 4 FLOCR554.784pG0.6pS0.2 1.0049 44 

FLOCR300pG0.3pS0.5 1.0000 24 FLOCR554.784pG0.6pS0.5 1.0000 14 

FLOCR300pG0.3pS0.8 1.0000 26 FLOCR554.784pG0.6pS0.8 1.0117 59 

FLOCR300pG0.6pS0.2 1.0026 36 FLOCR554.784pG0.9pS0.2 1.0015 31 

FLOCR300pG0.6pS0.5 1.0084 51 FLOCR554.784pG0.9pS0.5 1.0000 25 

FLOCR300pG0.6pS0.8 1.0000 28 FLOCR554.784pG0.9pS0.8 1.0081 50 

FLOCR300pG0.9pS0.2 1.0209 62 FLOCR665.7408pG0.3pS0.2 1.0000 5 

FLOCR300pG0.9pS0.5 1.0091 52 FLOCR665.7408pG0.3pS0.5 1.0009 29 

FLOCR300pG0.9pS0.8 1.0130 60 FLOCR665.7408pG0.3pS0.8 1.0000 8 

FLOCR300pG0.5pS0.5 1.0050 45 FLOCR665.7408pG0.6pS0.2 1.0000 13 

FLOCR332.8704pG0.3pS0.2 1.0000 22 FLOCR665.7408pG0.6pS0.5 1.0091 53 

FLOCR332.8704pG0.3pS0.5 1.0000 23 FLOCR665.7408pG0.6pS0.8 1.0067 47 

FLOCR332.8704pG0.3pS0.8 1.0000 16 FLOCR665.7408pG0.9pS0.2 1.0039 40 

FLOCR332.8704pG0.6pS0.2 1.0026 37 FLOCR665.7408pG0.9pS0.5 1.0100 55 

FLOCR332.8704pG0.6pS0.5 1.0042 42 FLOCR665.7408pG0.9pS0.8 1.0000 9 



94 

 

The Plaid Model 

 

The plaid model algorithm was applied to the data 64 times. However, the plaid model 

algorithm gives different results with the same parameters every time so we have repeated it 

many times until finding 5 biclusters to include in the DEA analysis. The chosen parameters 

are: 

 

1. The clusters parameters are set to ‘b ’ which means to apply the clustering on both of 

rows and columns. 

2. Fit model was set to default .modfit el y ~ m a b   

3. Background was set to TRUE, which means that the method will consider that a 

background layer (constant for all rows and columns) is present in the data matrix. 

4. .Row release  has the values  0.5,0.53,0.57,0.6,0.63,0.66,0.68,0.7 , which is used as a 

threshold to prune rows in the layers depending on row homogeneity. 

5. .col release  the same values in .Row release  which is used as a threshold to prune 

columns in layers depending on column homogeneity. 

6. The shuffle parameter is set to his default value equal to 3, which work as follow: Before 

a layer is added, its statistical significance is compared against a number of layers 

obtained by random defined by this parameter. 

7. The .back fit  parameter was set to zero. 

 

The plaid model algorithm was applied with different parameters then both of the output-

oriented BCC model, super-efficiency is being applied, and the results are in the following 

table (the name of the algorithms contains both of the plaid word and the used parameters): 
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Table 4.3. DEA results for Plaid Model algorithm 

Algorithm Score Rank Algorithm Score Rank 

PlaidR0.5C0.5 1.0000 1 PlaidR0.63C0.5 1.0087 36 

PlaidR0.5C0.53 1.0000 10 PlaidR0.63C0.53 1.0236 53 

PlaidR0.5C0.57 1.0000 9 PlaidR0.63C0.57 1.0224 52 

PlaidR0.5C0.6 1.0000 7 PlaidR0.63C0.6 1.0131 46 

PlaidR0.5C0.63 1.0000 6 PlaidR0.63C0.63 1.0244 54 

PlaidR0.5C0.66 1.0050 28 PlaidR0.63C0.66 1.0299 56 

PlaidR0.5C0.68 1.0000 8 PlaidR0.63C0.68 1.0372 58 

PlaidR0.5C0.7 1.0112 42 PlaidR0.63C0.7 1.0000 17 

PlaidR0.53C0.5 1.0000 12 PlaidR0.66C0.5 1.0000 4 

PlaidR0.53C0.53 1.0000 2 PlaidR0.66C0.53 1.0000 15 

PlaidR0.53C0.57 1.0039 27 PlaidR0.66C0.57 1.0028 25 

PlaidR0.53C0.6 1.0000 20 PlaidR0.66C0.6 1.0465 62 

PlaidR0.53C0.63 1.0000 11 PlaidR0.66C0.63 1.0088 38 

PlaidR0.53C0.66 1.0224 51 PlaidR0.66C0.66 1.0133 47 

PlaidR0.53C0.68 1.0116 43 PlaidR0.66C0.68 1.0061 31 

PlaidR0.53C0.7 1.0309 57 PlaidR0.66C0.7 1.0055 29 

PlaidR0.57C0.5 1.0000 19 PlaidR0.68C0.5 1.0000 18 

PlaidR0.57C0.53 1.0000 5 PlaidR0.68C0.53 1.0000 16 

PlaidR0.57C0.57 1.0089 39 PlaidR0.68C0.57 1.0528 64 

PlaidR0.57C0.6 1.0006 23 PlaidR0.68C0.6 1.0067 33 

PlaidR0.57C0.63 1.0182 49 PlaidR0.68C0.63 1.0129 45 

PlaidR0.57C0.66 1.0031 26 PlaidR0.68C0.66 1.0123 44 

PlaidR0.57C0.68 1.0093 41 PlaidR0.68C0.68 1.0074 34 

PlaidR0.57C0.7 1.006 30 PlaidR0.68C0.7 1.0000 22 

PlaidR0.6C0.5 1.0000 3 PlaidR0.7C0.5 1.0000 13 

PlaidR0.6C0.53 1.0000 14 PlaidR0.7C0.53 1.0167 48 

PlaidR0.6C0.57 1.0089 40 PlaidR0.7C0.57 1.0063 32 

PlaidR0.6C0.6 1.0082 35 PlaidR0.7C0.6 1.0024 24 

PlaidR0.6C0.63 1.0088 37 PlaidR0.7C0.63 1.0393 60 

PlaidR0.6C0.66 1.0000 21 PlaidR0.7C0.66 1.0217 50 

PlaidR0.6C0.68 1.0385 59 PlaidR0.7C0.68 1.0512 63 

PlaidR0.6C0.7 1.0290 55 PlaidR0.7C0.7 1.0430 61 

xMotif algorithm 

xMotif algorithm was applied to the data 60 times. In addition, the data works with the 

discrete matrix. The chosen parameters are: 

 

1. sn  the number of chosen columns set to  2,4,6,8,10,15 . 

2. dn  the number of repetitions is 1000. 
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3. ds  the sample size in repetitions are 1,2,4,5,6,8,10{ ,12} . 

4. The scaling factor   is set to 0.01,0.03,0.04,0.05,0.06,0.08,0.09,  0.1,0,11,0.12{ ,0.013

,0.014,0.15,0.17,0.22,0.23,0.26,0.29} 

 

The xMotif algorithm was applied with different parameters then both of the output-oriented 

BCC model, super-efficiency is being applied, and the results are in the following table (the 

name of the algorithms contains both of the xMotif word and the used parameters): 

 

Table 4.4. DEA results for xMotif algorithm 

Algorithm score Rank Algorithm score Rank 

xMotifNs2Sd1A0.01 1.0000 1 xMotifNs2Sd2A0.15 1.0067 48 

xMotifNs2Sd1A0.05 1.0000 9 xMotifNs4Sd1A0.03 1.0000 29 

xMotifNs2Sd1A0.08 1.0000 27 xMotifNs4Sd2A0.04 1.0000 16 

xMotifNs2Sd1A0.1 1.0000 18 xMotifNs4Sd2A0.09 1.0000 30 

xMotifNs2Sd2A0.01 1.0000 2 xMotifNs6Sd2A0.04 1.0000 38 

xMotifNs2Sd2A0.06 1.0000 36 xMotifNs6Sd2A0.014 1.0000 39 

xMotifNs2Sd2A0.12 1.0000 7 xMotifNs6Sd4A0.05 1.0148 53 

xMotifNs2Sd2A0.17 1.0000 24 xMotifNs6Sd4A0.12 1.0033 46 

xMotifNs4Sd1A0.01 1.0000 15 xMotifNs6Sd4A0.23 1.0000 21 

xMotifNs4Sd1A0.05 1.0000 37 xMotifNs8Sd4A0.05 1.0006 42 

xMotifNs4Sd1A0.08 1.0000 10 xMotifNs8Sd4A0.14 1.0150 54 

xMotifNs4Sd1A0.11 1.0000 22 xMotifNs8Sd4A0.22 1.0002 41 

xMotifNs4Sd2A0.01 1.0227 56 xMotifNs8Sd4A0.26 1.0090 50 

xMotifNs4Sd2A0.06 1.0000 32 xMotifNs8Sd6A0.01 1.0000 3 

xMotifNs4Sd2A0.12 1.0000 34 xMotifNs8Sd6A0.05 1.0000 33 

xMotifNs4Sd2A0.17 1.0121 52 xMotifNs8Sd6A0.09 1.0000 13 

xMotifNs6Sd2A0.01 1.0000 20 xMotifNs10Sd5A0.01 1.008 49 

xMotifNs6Sd2A0.06 1.0000 25 xMotifNs10Sd5A0.05 1.0000 17 

xMotifNs6Sd2A0.12 1.0387 59 xMotifNs10Sd5A0.13 1.0000 11 

xMotifNs6Sd2A0.17 1.0001 40 xMotifNs15Sd8A0.01 1.0000 5 

xMotifNs6Sd4A0.01 1.0000 6 xMotifNs15Sd8A0.05 1.0092 51 

xMotifNs6Sd4A0.08 1.0000 35 xMotifNs15Sd8A0.14 1.0000 28 

xMotifNs6Sd4A0.17 1.0000 14 xMotifNs15Sd4A0.01 1.0000 23 

xMotifNs6Sd4A0.29 1.0183 55 xMotifNs15Sd6A0.01 1.0000 12 

xMotifNs8Sd4A0.01 1.0000 19 xMotifNs15Sd10A0.01 1.0000 4 

xMotifNs8Sd4A0.08 1.0029 45 xMotifNs15Sd12A0.01 1.0427 60 

xMotifNs8Sd4A0.17 1.0000 26 xMotifNs15Sd4A0.05 1.0044 47 

xMotifNs8Sd4A0.29 1.0317 58 xMotifNs15Sd6A0.05 1.0026 44 

xMotifNs2Sd2A0.04 1.0026 43 xMotifNs15Sd10A0.05 1.0307 57 

xMotifNs2Sd2A0.09 1.0000 31 xMotifNs15Sd12A0.05 1.0000 8 
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Bimax algorithm 

 

Bimax algorithm was applied to the data 54 times. It searches for submatrices of ones in a 

logical matrix. The parameters are: 

 

1. Binarize  threshold has the values  69,110,139,179,208,240,271,314,371 .  

2. The minimum row size of the resulting bicluster sets to 2. 

3. The minimum column size of the resulting biclusters sets to  2,  4,  7,  9,11,14  

The Bimax algorithm was applied with different parameters then both of the output-oriented 

BCC model, super-efficiency is being applied, and the results are in the following table (the 

name of the algorithms contains both of the Bimax word and the used parameters): 

Table 4.5. DEA results for Bimax algorithm 

Algorithm Score Rank Algorithm Score Rank 

BimaxR2C2B69 1.0000 1 BimaxR2C9B69 1.0000 5 

BimaxR2C2B110 1.0004 37 BimaxR2C9B110 1.0017 49 

BimaxR2C2B139 1.0000 4 BimaxR2C9B139 1.0000 20 

BimaxR2C2B179 1.0000 17 BimaxR2C9B179 1.0000 24 

BimaxR2C2B208 1.0000 22 BimaxR2C9B208 1.0003 36 

BimaxR2C2B240 1.0000 6 BimaxR2C9B240 1.0008 41 

BimaxR2C2B271 1.0011 44 BimaxR2C9B271 1.0026 53 

BimaxR2C2B314 1.0000 12 BimaxR2C9B314 1.0001 31 

BimaxR2C2B371 1.0000 7 BimaxR2C9B371 1.0000 21 

BimaxR2C4B69 1.0000 8 BimaxR2C11B69 1.0000 3 

BimaxR2C4B110 1.0002 33 BimaxR2C11B110 1.0009 43 

BimaxR2C4B139 1.0008 40 BimaxR2C11B139 1.0012 45 

BimaxR2C4B179 1.0000 10 BimaxR2C11B179 1.0042 54 

BimaxR2C4B208 1.0006 39 BimaxR2C11B208 1.0000 19 

BimaxR2C4B240 1.0000 11 BimaxR2C11B240 1.0000 29 

BimaxR2C4B271 1.0004 38 BimaxR2C11B271 1.0023 51 

BimaxR2C4B314 1.0000 23 BimaxR2C11B314 1.0001 32 

BimaxR2C4B371 1.0000 27 BimaxR2C11B371 1.0000 30 

BimaxR2C7B69 1.0017 48 BimaxR2C14B69 1.0000 2 

BimaxR2C7B110 1.0009 42 BimaxR2C14B110 1.0000 25 

BimaxR2C7B139 1.0003 34 BimaxR2C14B139 1.0000 13 

BimaxR2C7B179 1.0000 28 BimaxR2C14B179 1.0000 9 

BimaxR2C7B208 1.0003 35 BimaxR2C14B208 1.0024 52 

BimaxR2C7B240 1.0022 50 BimaxR2C14B240 1.0000 14 

BimaxR2C7B271 1.0014 47 BimaxR2C14B271 1.0013 46 

BimaxR2C7B314 1.0000 15 BimaxR2C14B314 1.0000 26 

BimaxR2C7B371 1.0000 18 BimaxR2C14B371 1.0000 16 
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Qubic Algorithm 

 

Qubic algorithm was applied to the data 63 times with the following parameters: 

 

1. Affect the granularity of the biclusters q . The percentage of the regulating conditions for 

each gene. The choice of q ’s value depends on the specific application goals; that is if 

the goal is to find genes that are responsive to local regulators, we should use a relatively 

small q value ; otherwise we may want to consider larger q value . The values are 

 0.01,0.06,0.1,0.2,0.3,0.40.49 .  

2. Affect the granularity of the biclusters r . The range of possible ranks. A user can start 

with a small value of r  (the default value is 1 so the corresponding data matrix consists 

of values ’1’, ’-1’ and ’0’), evaluate the results, and then use larger values (should not be 

larger than half of the number of the columns) to look for fine structures within the 

identified biclusters. The values are  1,4,7 . 

3. The minimum width of columns is set to  5,6,7 .  

4.  The rest of the parameters are set to their default values. 

 

The Qubic algorithm was applied with different parameters then both of the output-oriented 

BCC model, super-efficiency is being applied, and the results are in the following table (the 

name of the algorithms contains both of the Qubic word and the used parameters): 
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Table 4.6. DEA results for Qubic algorithm 

 

 

4.2. Second Stage: The Quality Comparison 

In this stage, the comparison will be done using the results, which were obtained using the 

DEA method. Algorithms in this stage have been chosen according to their ranks from the 

best performance. The maximum number of the detected biclusters using each algorithm is 

being set to 20 at most. In this stage, an algorithm with different parameters according to 

their ranks will be applied to the dataset until 60 biclusters are obtained.  

Algorithm Score Rank Algorithm Score Rank 

QubicQ0.01R1M5 1.0000 1 QubicQ0.2R4M7 1.0162 45 

QubicQ0.01R1M6 1.0000 5 QubicQ0.2R7M5 1.0000 18 

QubicQ0.01R1M7 1.0000 23 QubicQ0.2R7M6 1.0165 47 

QubicQ0.01R4M5 1.0000 3 QubicQ0.2R7M7 1.0177 49 

QubicQ0.01R4M6 1.1250 63 QubicQ0.3R1M5 1.0000 22 

QubicQ0.01R4M7 1.0000 10 QubicQ0.3R1M6 1.0357 52 

QubicQ0.01R7M5 1.0000 25 QubicQ0.3R1M7 1.0498 56 

QubicQ0.01R7M6 1.0000 21 QubicQ0.3R4M5 1.0000 26 

QubicQ0.01R7M7 1.0000 36 QubicQ0.3R4M6 1.0114 43 

QubicQ0.06R1M5 1.0000 11 QubicQ0.3R4M7 1.0133 44 

QubicQ0.06R1M6 1.0561 57 QubicQ0.3R7M5 1.0000 16 

QubicQ0.06R1M7 1.0000 34 QubicQ0.3R7M6 1.0175 48 

QubicQ0.06R4M5 1.0000 28 QubicQ0.3R7M7 1.0384 54 

QubicQ0.06R4M6 1.0000 33 QubicQ0.4R1M5 1.0000 9 

QubicQ0.06R4M7 1.0049 41 QubicQ0.4R1M6 1.0000 29 

QubicQ0.06R7M5 1.0318 51 QubicQ0.4R1M7 1.0041 39 

QubicQ0.06R7M6 1.0645 60 QubicQ0.4R4M5 1.0000 31 

QubicQ0.06R7M7 1.0224 50 QubicQ0.4R4M6 1.0000 12 

QubicQ0.1R1M5 1.0000 4 QubicQ0.4R4M7 1.0009 37 

QubicQ0.1R1M6 1.0000 35 QubicQ0.4R7M5 1.0000 14 

QubicQ0.1R1M7 1.0607 58 QubicQ0.4R7M6 1.0071 42 

QubicQ0.1R4M5 1.0045 40 QubicQ0.4R7M7 1.0365 53 

QubicQ0.1R4M6 1.0000 20 QubicQ0.49R1M5 1.0000 7 

QubicQ0.1R4M7 1.0163 46 QubicQ0.49R1M6 1.0000 8 

QubicQ0.1R7M5 1.0000 15 QubicQ0.49R1M7 1.0000 27 

QubicQ0.1R7M6 1.0627 59 QubicQ0.49R4M5 1.0000 32 

QubicQ0.1R7M7 1.0735 62 QubicQ0.49R4M6 1.0000 19 

QubicQ0.2R1M5 1.0000 13 QubicQ0.49R4M7 1.0000 17 

QubicQ0.2R1M6 1.0000 30 QubicQ0.49R7M5 1.0000 24 

QubicQ0.2R1M7 1.0000 2 QubicQ0.49R7M6 1.0032 38 

QubicQ0.2R4M5 1.0000 6 QubicQ0.49R7M7 1.066 61 

QubicQ0.2R4M6 1.0396 55   
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The original data matrix is presented in the following heatmap figure: 

 

 

Figure 4.1. Heatmap figure for the original dataset 

For CC algorithm, CCD0.008A1, CCD0.023A1 and CCD0.016A1.7 were chosen. The 

heatmap figures are presented in the following: 

 

 
                            (a)                                                   (b)                                                   (c)  

Figure 4.2. Heatmap figures for CC algorithm: (a) CCD0.008A1, (b) CCD0.023A1 and (c) 

CCD0.016A1.7  

For FLOC algorithm, FLOCR110.9568pG0.3pS0.2, FLOCR110.9568pG0.9pS0.2, 

FLOCR110.9568pG0.3pS0.5 and FLOCR300pG0.3pS0.2 were chosen. The heatmap 

figures for FLOC algorithm with the chosen parameters are: 

 



101 

 
                       (a)                                             (b) 

 
                              (c)                                                     (d) 

Figure 4.3. Heatmap figures for FLOC algorithm: (a) FLOCR110.9568pG0.3pS0.2,               

(b) FLOCR110.9568pG0.9pS0.2, (c) FLOCR110.9568pG0.3pS0.5 and                 

(d) FLOCR300pG0.3pS0.2 

For Plaid model algorithm, PlaidR0.5C0.5, PlaidR0.53C0.53, PlaidR0.6C0.5, 

PlaidR0.66C0.5 and PlaidR0.57C0.53 were chosen. The heatmap figures for Plaid Model 

algorithm with the chosen parameters are: 
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                     (a)                                          (b)                                         (c) 

 
                      (d)                                          (e) 

Figure 4.4. Heatmap figures for Plaid Model algorithm: (a) PlaidR0.5C0.5, (b) 

PlaidR0.53C0.53, (c) PlaidR0.6C0.5, (d) PlaidR0.66C0.5 and (e) 

PlaidR0.57C0.53 

For xMotif algorithm, xMotifNs2Sd1A0.01, xMotifNs2Sd2A0.01, xMotifNs8Sd6A0.01 

and xMotifNs15Sd10A0.01 were chosen. The heatmap figures for xMotif algorithm with the 

chosen parameters are: 
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                       (a)                                             (b) 

 
                        (c)                                            (d) 

Figure 4.5. Heatmap figures for xMotif algorithm: (a) xMotifNs2Sd1A0.01, (b) 

xMotifNs2Sd2A0.01, (c) xMotifNs8Sd6A0.01 and (d) 

xMotifNs15Sd10A0.01 

For the Bimax algorithm, BimaxR2C2B69, BimaxR2C14B69 and BimaxR2C11B69 were 

chosen. The heatmap figures for Bimax algorithm with the chosen parameters are: 

 

 
                    (a)                                            (b)                                          (c) 

Figure 4.6. Heatmap figures for Bimax algorithm: (a) BimaxR2C2B69, (b) 

BimaxR2C14B69 and (c) BimaxR2C11B69 
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For Qubic algorithm, QubicQ0.01R1M5, QubicQ0.2R1M7, QubicQ0.01R4M5, and 

QubicQ0.1R1M5 were chosen. The heatmap figures for Qubic algorithm with the chosen 

parameters are: 

 

 
                        (a)                                            (b) 

 
                        (c)                                            (d) 

Figure 4.7. Heatmap figures for Qubic algorithm: (a) QubicQ0.01R1M5, (b) 

QubicQ0.2R1M7, (c) QubicQ0.01R4M5 and (d) QubicQ0.1R1M5 

For each of the previous algorithms with the chosen parameters, the comparison will be 

according to the numbers of the rows, the numbers or the columns, the whole size and the 

variances of the detect bicluster. In this study, the results for each algorithm with different 

parameters are considered as one algorithm. For example, CCD0.008A1, CCD0.023A1, and 

CCD0.016A1.7 will be considered as CC algorithm and so on for the rest. 

 

The numbers of rows, the numbers of the columns and the whole sizes for CC, FLOC, Plaid, 

xMotif, Bimax and Qubic algorithm are presented in the following boxplot graphics: 
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                      (a)                                         (b)                                          (c) 

Figure 4.8. The sizes of the detected biclusters: (a) the number of rows, (b) the number of 

the columns and (c) the whole size for the detected biclusters 

Figure 4.8(a) is presenting the numbers of rows for the detected biclusters with the different 

used algorithms using the boxplot graphic. The graphic shows that the FLOC and the Bimax 

algorithms have the biggest numbers of the rows for the detect biclusters. Figure 4.8(b) is 

presenting the numbers of columns for the detected biclusters, which also shows the same 

similar numbers for the columns in the used dataset. Finally, the figure 4.8(c) is representing 

the sizes of the detected biclusters (number of rows   number of columns) and we can see 

that the Bimax algorithm has the biggest biclusters. 

 

Besides the sizes, other important measures were chosen. The measures are known as 

constance and coherence measures (APPENDIX-3 to see the used package), which were 

introduced by Rodrigo Santamaria [3]. These measures are computed for each bicluster 

separately. The are 4 types of the measures, which have been built based on Madeira and 

Oliveira [9]. These types are constant-variance, additive-variance, multiplicative-variance, 

and sign-variance. These measures are included in the ‘biclust’ package [58]. An important 

parameter for using these measures is the dimension of the variance parameter, which can 

take row, column or both values. In this study, ‘both’ were chosen.  

 

The constant-variance is a function that returns the corresponding variance of rows as the 

average of the sum of Euclidean distances between all rows of the bicluster x : 
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In addition, the additive-variance, the multiplicative-variance, and the sign-variance can be 

computed using the equation 4.8. However, the computation is done by applying additive, a 

multiplicative or a sign transformation to the bicluster. 

 

Using the 4 types of the variance helps in deciding which algorithm is better according to 

the 4 types. In addition, a value equal to 0 means the bicluster is ideally constant or coherent 

and value that bigger than 1.5 determine the bicluster is not coherent or constant. 

 

 The constant-variance, the additive-variance, the multiplicative-variance and the sign-

variance for CC, FLOC, Plaid, xMotif, Bimax and Qubic algorithm are presented in the 

following boxplot graphics: 

 

 
                               (a)                                                          (b)                           

 
                                (c)                                                         (d) 

Figure 4.9. The boxplot figures for the different variances types for the detected biclusters: 

(a) Constant-Variance, (b) Additive-Variance, (c) Multiplicative-Variance and 

(d) Sign-Variance 

Figure 4.9 as presented above summarized the values for each of the constant-variance 

(figure 4.9(a)), additive-variance (figure 4.9(b)), multiplicative-variance (figure 4.9(c)) and 

sign-variance (figure 4.10 (d)), which will be compared using the Kruskal-Wallis (KW) test 

[59] in the following.   
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The next step is to compare each of the previous measures. The nonparametric method KW 

test is chosen for these comparisons. This method is an alternative method of the One-Way 

Analysis of Variance (ANOVA). The propose of choosing the nonparametric method that 

the data was tested using Kolmogorov–Smirnov test for normality and none of the variables 

have a normal distribution as presented in Table 4.7. In addition, as we can see in the boxplot 

figures we have some outliers. The outliers were not deleted because we are interested in all 

of the values. KW test compares the mean ranks for each group, which give good results 

with datasets that have outliers. The KW test will tell us whether there is a difference 

between the groups but will not show where the differences are. So if the KW shows that 

there are statistically significant differences, the Dunn’s post hoc test [60] will be used in 

pairs to detect the differences. The Dunn’s test uses the Bonferroni adjustment, which uses 

adjustment p-value by multiplying the value of the computed p-value by the total number of 

the tests. This step will reduce the amount of the error for the pairwise comparison tests. 

 

Table 4.7. Test of normality 

 
Kolmogorov-Smirnov Shapiro-Wilk 

Statistic df Sig. Statistic df Sig. 

number of rows .271 223 .000 .754 223 .000 

number of columns .215 223 .000 .854 223 .000 

whole size .325 223 .000 .642 223 .000 

constant-variance .133 223 .000 .948 223 .000 

additive-variance .097 223 .000 .915 223 .000 

multiplicative-variance .113 223 .000 .828 223 .000 

sign-variance .154 223 .000 .917 223 .000 

The Table 4.8 is presenting the numbers of the accepted biclusters, which will be used in the 

second stage of the comparison. Just in the multiplicative-variance row, we can see that we 

were not able to include 60 biclusters for CC, FLOC, Plaid Model and Qubic algorithm. That 

because of the outputs in R program were presented as infinity.   
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Table 4.8. The number of accepted values for the detected values 

Number of valid value///Algorithm CC FLOC Plaid xMotif Bimax Qubic 

Number of Rows 60 60 60 60 60 60 

Number of columns 60 60 60 60 60 60 

Size 60 60 60 60 60 60 

Constant-variance 60 60 60 60 60 60 

Additive-variance 60 60 60 60 60 60 

Multiplicative-variance 28 43 11 60 60 21 

Sign-variance 60 60 60 60 60 60 

Number of rows 

 

KW with 0.05   is used to test whether there are statistically significant differences 

between CC, FLOC, Plaid, xMotif, Bimax and Qubic algorithm for the number of rows in 

the detected biclusters. The results are 2

5 287.35; 0.000 0.05p    , which means that 

there are high statistically significant differences between the groups. Table 4.9 presents the 

pairwise comparisons of the used algorithms as follow:    

Table 4.9. Multiple comparisons table for the number of rows 

algorithm 1-algorithm 2 median 1 median 2 Test Statistic Adj. Sig. 

Qubic-CC 11.0 35.5 44.667 0.281 

Qubic-xMotif 11.0 35.0 -46.408 0.219 

Qubic-Plaid 11.0 182.0 128.142 0.000** 

Qubic-FLOC 11.0 1880.0 217.000 0.000** 

Qubic-Bimax 11.0 2078.5 250.683 0.000** 

CC-xMotif 35.5 35.0 -1.742 1.000 

CC-Plaid 35.5 182.0 -83.475 0.000** 

CC-FLOC 35.5 1880.0 -172.333 0.000** 

CC-Bimax 35.5 2078.5 206.017 0.000** 

xMotif-Plaid 35.0 182.0 81.733 0.000** 

xMotif-FLOC 35.0 1880.0 170.592 0.000** 

xMotif-Bimax 35.0 2078.5 204.275 0.000** 

Plaid-FLOC 182.0 1880.0 88.858 0.000** 

Plaid-Bimax 182.0 2078.5 122.542 0.000** 

FLOC-Bimax 1880.0 2078.5 33.683 1.000 
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As we can see from the table all of the groups are different from each other expect the results 

obtained using Qubic-CC, Qubic-xMotif, CC-xMotif and FLOC-Bimax algorithms. The 

mean rank values for each group are presented in the following figure: 

 

 

Figure 4.10. Line chart for the mean ranks of the number of rows for each algorithm 

According to the previous tests in Table 4.9 and Figure 4.10 with this dataset and the used 

conditions in the DEA analysis, the best performance was obtained using the Bimax 

algorithm with no significant difference with the FLOC algorithm, which means that the two 

algorithms were able to detect biclusters with the biggest numbers of rows. Plaid algorithm 

comes in the second place for the numbers of rows in the detected biclusters. xMotif, CC 

and Qubic algorithms with no significant difference come in the last place with the smallest 

numbers of rows for the used dataset and the variables that were used in the DEA stage.  

 

Note: big numbers of rows may not be a good every time. In this study the comparison is 

based on the logic of biggest sizes is better and smallest variances are also better. 

 

Number of columns 

 

KW test with 0.05   is used to test whether there are statistically significant differences 

between CC, FLOC, Plaid, xMotif, Bimax and Qubic algorithm for the numbers of columns 

in the detected biclusters. The result is 
2

5 176.687; 0.000 0.05p    ,  which means that 
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there are high statistically significant differences between the groups. Table 4.10 presents 

the pairwise comparisons of the used algorithms as follow: 

 

Table 4.10. Multiple comparisons table for the number of columns 

algorithm 1-algorithm 2 median 1 median 2 Test Statistic Adj. Sig. 

FLOC-Qubic 2 4 -59.033 0.025** 

FLOC-Plaid 2 5 -89.933 0.000** 

FLOC-xMotif 2 7 -105.742 0.000** 

FLOC-Bimax 2 11 159.950 0.000** 

FLOC-CC 2 12 226.992 0.000** 

Qubic-Plaid 4 5 30.900 1.000 

Qubic-xMotif 4 7 -46.708 0.195 

Qubic-Bimax 4 11 100.917 0.000** 

Qubic-CC 4 12 167.958 0.000** 

Plaid-xMotif 5 7 -15.808 1.000 

Plaid-Bimax 5 11 70.017 0.000** 

Plaid-CC 5 12 137.058 0.000** 

xMotif-Bimax 7 11 54.208 0.059 

xMotif-CC 7 12 121.250 0.000** 

Bimax-CC 11 12 -67.042 0.000** 

As we can see from the results in Table 4.10 all of the groups are different from each other 

expect the results obtained using Qubic-Plaid, Qubic-xMotif, Plaid-xMotif and xMotif-

Bimax algorithms. The mean rank values for each group are presented in the following 

figure: 

 

 

Figure 4.11. Line chart for the mean ranks of the number of columns for each algorithm 
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According to the previous tests in Table 4.10 and Figure 4.11 with this dataset and the used 

conditions in the DEA analysis, the best performance for the numbers of columns in the 

detected biclusters was with the CC algorithm. In the second place, Bimax and xMotif 

algorithms. Plaid algorithm and Qubic algorithms come in the third place for the numbers of 

columns. The worst performance for the numbers of columns was with FLOC algorithm for 

the detected biclusters from the used data and the used variables in the DEA stage.   

 

Size of the biclusters 

 

KW test with 0.05   is used to test whether there are statistically significant differences 

between CC, FLOC, Plaid, xMotif, Bimax and Qubic algorithm for the sizes of the detected 

biclusters. The result is 2

5 298.549; 0.000 0.05p    , which means that there are high 

statistically significant differences between the groups. Table 4.11 presents the pairwise 

comparisons of the used algorithms as follow: 

Table 4.11. Multiple comparisons table for the biclusters sizes 

algorithm 1-algorithm 2 median 1 median 2 Test Statistic Adj. Sig. 

Qubic-xMotif 36.0 245.0 -61.983 0.017** 

Qubic-CC 36.0 400.0 98.517 0.000** 

Qubic-Plaid 36.0 895.5 141.250 0.000** 

Qubic-FLOC 36.0 3958.0 224.500 0.000** 

Qubic-Bimax 36.0 22863.5 279.750 0.000** 

xMotif-CC 245.0 400.0 36.533 0.818 

xMotif-Plaid 245.0 895.5 79.267 0.000** 

xMotif-FLOC 245.0 3958.0 162.517 0.000** 

xMotif-Bimax 245.0 22863.5 217.767 0.000** 

CC-Plaid 400.0 895.5 -42.733 0.368 

CC-FLOC 400.0 3958.0 -125.983 0.000** 

CC-Bimax 400.0 22863.5 181.233 0.000** 

Plaid-FLOC 895.5 3958.0 83.250 0.000** 

Plaid-Bimax 895.5 22863.5 138.500 0.000** 

FLOC-Bimax 3958.0 22863.5 55.250 0.055 
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As we can see from the results in Table 4.11, all of the groups are different from each other 

expect the results obtained using xMotif-CC, CC-Plaid, and FLOC-Bimax algorithms. The 

mean ranks values for each group are presented in the following figure: 

 

Figure 4.12. Line chart for the mean ranks of the sizes of the detected biclusters for each 

algorithm 

According to the previous tests in Table 4.11 and Figure 4.12 with this dataset and the used 

conditions in the DEA analysis, the best performance for the sizes of the detected biclusters 

was with the Bimax and FLOC algorithms. In the second place as presented in the figure, 

Plaid model, CC algorithms. In the third place, xMotif algorithm comes with no significant 

difference with the CC algorithm. The smallest bicluster sizes were obtained using the Qubic 

algorithms for the used dataset and according to the used variables in the DEA stage. 

 

Constant-variance 

 

KW test with 0.05   is used to test whether there are statistically significant differences 

between CC, FLOC, Plaid, xMotif, Bimax and Qubic algorithms according to the constant-

variance measure. The result is  
2

5 147.258; 0.000 0.05p    , which means that there are 

high statistically significant differences between the groups. Table 4.12 presents the pairwise 

comparisons of the used algorithms as follow: 
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Table 4.12. Multiple comparisons table for the constant-variance values 

algorithm 1-algorithm 2 median 1 median 2 Test Statistic Adj. Sig. 

Qubic-FLOC 56.536 93.770 63.617 0.012** 

Qubic-Plaid 56.536 127.836 130.167 0.000** 

Qubic-xMotif 56.5356 133.996 -133.733 0.000** 

Qubic-Bimax 56.536 181.184 176.100 0.000** 

Qubic-CC 56.536 159.941 195.083 0.000** 

FLOC-Plaid 93.770 127.836 -66.550 0.007** 

FLOC-xMotif 93.770 133.996 -70.117 0.003** 

FLOC-Bimax 93.770 181.184 112.483 0.000** 

FLOC-CC 93.770 159.941 131.467 0.000** 

Plaid-xMotif 127.836 133.996 -3.567 1 

Plaid-Bimax 127.836 181.184 45.933 0.234 

Plaid-CC 127.836 159.941 64.917 0.01** 

xMotif-Bimax 133.996 181.184 42.367 0.386 

xMotif-CC 133.996 159.941 61.350 0.019** 

Bimax-CC 181.184 159.941 -18.983 1 

As we can see from Table 4.12 all of the groups are different from each other expect the 

results obtained using Plaid-xMotif, Plaid-Bimax, xMotif-Bimax and Bimax-CC algorithms. 

The mean ranks values for each group are presented in the following figure: 

 

 

Figure 4.13. Line chart for the mean ranks of the constant-variance values for each 

algorithm 
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According to the previous tests in Table 4.12 and Figure 4.13 with this dataset and the used 

conditions in the DEA analysis, the best performance for the constant-variance measure for 

the detected biclusters was with the Qubic algorithm. However, we must notice the smallest 

constant-variance and the smallest sizes at the same time. FLOC algorithm comes in the 

second place with good sizes. In addition, the Plaid model, xMotif, and Bimax with no 

statistically significant differences between them, come in the third place. CC algorithm has 

detected the biggest constant-variance values in the used dataset and according to the used 

variables in the DEA stage. 

 

Additive-variance      

 

The KW test with 0.05   is used to test whether there are statistically significant 

differences between CC, FLOC, Plaid, xMotif, Bimax and Qubic algorithms according to 

the additive-variance measure. The result is 2

5 200.628; 0.000 0.05p    , which means 

that there are high statistically significant differences between the groups. Table 4.13 

presents the pairwise comparisons of the used algorithms as follow: 

 

Table 4.13. Multiple comparisons table for the additive-variance values 

algorithm 1-algorithm 2 median 1 median 2 Test Statistic Adj. Sig. 

FLOC-Qubic 9.715 20.673 -59.233 0.027** 

FLOC-xMotif 9.715 34.348 -100.250 0.000** 

FLOC-Plaid 9.715 38.389 -130.783 0.000** 

FLOC-Bimax 9.715 75.340 208.733 0.000** 

FLOC-CC 9.715 58.525 218.700 0.000** 

Qubic-xMotif 20.673 34.348 -41.017 0.463 

Qubic-Plaid 20.673 38.389 71.550 0.002** 

Qubic-Bimax 20.673 75.340 149.500 0.000** 

Qubic-CC 20.673 58.525 159.467 0.000** 

xMotif-Plaid 34.348 38.3889 30.533 1 

xMotif-Bimax 34.348 75.340 108.483 0.000** 

xMotif-CC 34.348 58.525 118.450 0.000** 

Plaid-Bimax 38.389 75.340 77.950 0.001** 

Plaid-CC 38.389 58.525 87.917 0.000** 

Bimax-CC 75.340 58.525 -9.967 1 



115 

As we can see from the table all of the groups are different from each other expect the results 

obtained using Qubic-xMotif, xMotif-Plaid and Bimax-CC algorithms. The mean ranks 

value for each group are presented in the following figure: 

 

 

Figure 4.14. Line chart for the mean ranks of the additive-variance values for each 

algorithm 

According to the previous tests in Table 4.13 and Figure 4.14 with this dataset and the used 

conditions in the DEA analysis, the best performance for the additive-variance measure for 

the detected biclusters was with the FLOC algorithm. In the second place as presented in the 

Figure 4.14, Qubic and xmotif algorithms come. In addition, Plaid Model comes in the third 

place. Finally, both of the Bimax and CC algorithms were able to detect the biggest additive-

variance values from the used dataset and according to the used variables in the DEA stage.     

 

Multiplicative-variance 

 

KW test with 0.05   is used to test whether there are statistically significant differences 

between CC, FLOC, Plaid, xMotif, Bimax and Qubic algorithms according to the 

multiplicative-variance measure. The result is 
2

5 107.955; 0.000 0.05p    , which means 

that there are high statistically significant differences between the groups. Table 4.14 

presents the pairwise comparisons of the used algorithms as follow: 
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Table 4.14: Multiple comparisons table for the multiplicative-variance values 

algorithm 1-algorithm 2 median 1 median 2 Test Statistic Adj. Sig. 

FLOC-Qubic 0.0546 0.0745 -20.955 1.000 

FLOC-xMotif 0.0546 0.2994 -99.590 0.000** 

FLOC-Plaid 0.0546 0.2601 -107.543 0.000** 

FLOC-Bimax 0.0546 0.3501 108.157 0.000** 

FLOC-CC 0.0546 0.2676 109.371 0.000** 

Qubic-xMotif 0.0745 0.2994 -78.636 0.000** 

Qubic-Plaid 0.0745 0.2601 86.589 0.005** 

Qubic-Bimax 0.0745 0.3501 87.202 0.000** 

Qubic-CC 0.0745 0.2676 88.417 0.000** 

xMotif-Plaid 0.2994 0.2601 7.953 1.000 

xMotif-Bimax 0.2994 0.3501 8.567 1.000 

xMotif-CC 0.2994 0.2676 9.781 1.000 

Plaid-Bimax 0.2601 0.3501 0.614 1.000 

Plaid-CC 0.2601 0.2676 1.828 1.000 

Bimax-CC 0.3501 0.2676 -1.214 1.000 

As we can see from the table all of the groups are different from each other expect the results 

obtained using FLOC-Qubic, xMotif-Plaid, xMotif-Bimax, xMotif-CC, Plaid-Bimax, Plaid-

CC and Bimax-CC algorithms. The mean ranks values for each group are presented in the 

following figure: 

 

 

Figure 4.15. Line chart for the mean ranks of the multiplicative-variance values for each 

algorithm 

144.46

35.09

142.64
134.68

143.25

56.05

0

20

40

60

80

100

120

140

160

CC FLOC Pliad Model xMotif Bimax Qubic

Mean Ranks



117 

Not like other measures, multiplicative-variance values may go high. Therefore, some values 

go to infinity in R program (which considered as missing values). Therefore, the best 

performance can be considered as which algorithms were able to detect 60 biclusters with 

small multiplicative-variance. According to this idea, xMotif and Bimax will be the best 

followed by FLOC algorithm. In addition, Plaid Model algorithm will be the last one. 

 

On other hand using the same evaluation that used for the previous measures: According to 

the previous tests in Table 4.14 and Figure 4.15 with this dataset and the used conditions in 

the DEA analysis, the best performance for the multiplicative-variance measure for the 

detected biclusters was with the FLOC and Qubic algorithms with the smallest means ranks 

for the medians of the multiplicative-variance values. Bimax, xMotif, Plaid model and CC 

algorithms come in the second place for the multiplicative-variance measure.  

 

Sign-variance 

 

KW test with 0.05   is used to test whether there are statistically significant differences 

between CC, FLOC, Plaid, xMotif, Bimax and Qubic algorithms according to the sign-

variance measure. The result is 2

5 205.181; 0.000 0.05p    , which means that there are 

high statistically significant differences between the groups. Table 4.15 presents the pairwise 

comparisons of the used algorithms as follow: 
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Table 4.15. Multiple comparisons table for the sign-variance values 

algorithm 1-algorithm 2 median 1 median 2 Test Statistic Adj. Sig. 

Qubic-FLOC 0.3335 0.4591 44.408 0.291 

Qubic-Plaid 0.3335 1.0125 111.458 0.000** 

Qubic-xMotif 0.3335 1.0771 -121.667 0.000** 

Qubic-Bimax 0.3335 2.0879 205.275 0.000** 

Qubic-CC 0.3335 1.6599 218.142 0.000** 

FLOC-Plaid 0.4591 1.0125 -67.050 0.006** 

FLOC-xMotif 0.4591 1.0771 -77.258 0.001** 

FLOC-Bimax 0.4591 2.0879 160.867 0.000** 

FLOC-CC 0.4591 1.6599 173.733 0.000** 

Plaid-xMotif 1.0125 1.0771 -10.208 1.000 

Plaid-Bimax 1.0125 2.0879 93.817 0.000** 

Plaid-CC 1.0125 1.6599 106.683 0.000** 

xMotif-Bimax 1.0771 2.0879 83.608 0.000** 

xMotif-CC 1.0771 1.6599 96.475 0.000** 

Bimax-CC 2.0879 1.6599 -12.867 1.000 

As we can see from the table all of the groups are different from each other expect the results 

obtained using Qubic-FLOC, Plaid-xmotif and Bimax-CC algorithms. The mean ranks value 

for each group are presented in the following figure: 

 

 

Figure 4.16.  Line chart for the mean ranks of the sign-variance values for each algorithm 
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According to the previous tests in Table 4.15 and Figure 4.16 with this dataset and the used 

conditions in the DEA analysis, the best performance for the sign-variance measure for the 

detected biclusters was with the Qubic and FLOC algorithms. Plaid model and xMotif come 

in the second place. Finally, the worst performance for this measure was with the Bimax and 

CC algorithms for the used dataset and according to the used variables in the DEA stage. 

 

4.3. Discussion and Recommendations 

Biclustering method is one of the most important techniques in the data mining, which can 

be applied in any filed if the dataset can be presented as a data matrix. Many algorithms have 

been introduced until now [9]. Each algorithm has advantage and disadvantages. Algorithms 

that introduced in this work can be summarized as follow: 

 

Most of the introduced biclustering algorithms were developed originally to deal with gene 

expression datasets. Even though Block Clustering algorithm was applied to voting results 

in the US and UN [2]. This algorithm opens the door to develop many algorithms to deal 

with the gene expression data and any kind of data, which can be presented as a data matrix 

shape. The main idea in this algorithm is to split the data matrix into k bicluster using 

variance to evaluate the detected biclusters. The biggest disadvantages of this algorithm are 

the early splitting of the data matrix, which may cause losing lots of important patterns in 

the data and the obtained biclusters are non-overlap with constant values biclusters [40]. 

Finally, Tibshirani et al. [61] developed a practical way to use DC algorithm by finding a lot 

number of blocks instead of finding K  blocks and combine them using a backward pruning 

method to have the number of biclusters equal to K . 

 

DC algorithm [2] is the first known biclustering algorithm, but Chang and Church [28] were 

the first to apply the biclustering concept to gene expression data with their algorithm using 

the mean square residue to find the biclusters in the data. CC algorithm was tested in their 

work using yeast data [62] and human B-cells expression data [63] and was able to find more 

interesting patterns than the patterns can be detected using clustering methods. In addition, 

the CC algorithm is able to find constant or coherent type biclusters. To use this algorithm, 

the data should have no missing values. However, if there are missing values it will be 

replaced by random numbers. In addition, the CC algorithm will detect a single bicluster in 
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every iteration and replace it with random numbers in the same way that used to deal with 

missing values. Inserting random values may cause finding meaningless biclusters. 

 

FLOC algorithm [15] was introduced to improve the way that CC algorithm [28] works by 

giving biclusters with a controlled amount of missing values instead of inserting random 

values to the data. In addition, FLOC algorithm works faster than CC algorithm. FLOC 

algorithm will discover the wanted number of the biclusters in the same time. In addition, 

like CC algorithm it will look for arbitrarily positioned overlapping biclusters with coherent 

values type. The FLOC algorithm depends on the initial biclusters, which makes it fails to 

find a high-quality biclusters lot of time [64]. 

 

Plaid model [35, 51] is additive biclusters model. Algorithm will work to detect K  biclusters 

that modeled as the sum of a background effect, cluster effect, row effects, column effects 

and a random noise. The Plaid model algorithm will work to find Arbitrary positioned 

overlapping biclusters with coherent values and find K  bicluster at the same time. Algorithm 

is located in distribution parameter identification category that works to fit bicluster 

membership parameters into a model. Finally, Plaid Model is known as the most flexible 

algorithm because we can control many features so we can obtain users wanted biclusters 

according to the kind of the researchers.  

 

Getz et al. [43, 52] developed CTWC, which can use any clustering method to find biclusters. 

They advised using Superparamagnetic clustering algorithm SPC because they thought it is 

more suitable for gene expression data. Before applying CTWC, the data values are being 

normalized by dividing each column by its mean then each row by its mean also to detect 

biclusters with constant columns. CTWC is following Combined Clusters strategy, which 

means finding clusters using any clustering method and combining them using specific 

conditions. 

 

The ITWC algorithm was introduced by Tang et al. [44] to find biclusters with possible row 

overlapping. It follows clusters combine strategy. It looks for one bicluster with coherent 

values each iteration. 

 

𝛅-pCluster algorithm was proposed by Wang et al. [45] to improve the quality of the gene 

expression data analysis. They proposed using pCluster value to evaluate the quality of the 
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submatrices. This algorithm has important features like each submatrix in the pCluster 

(bicluster) is also a pCluster, and the pClusters do not contain outliers. Algorithm is able to 

find coherent values with additive model or by changing the values with its logarithms 

multiplicative model pClusters. 

 

SAMBA algorithm  [64]  was introduced to detect coherent evolution or constant types of 

biclusters. Algorithm can find arbitrarily positioned Overlapping K  biclusters at the same 

time. Algorithm is working on Exhaustive Bicluster Enumeration approach, which means it 

will search for all the possible biclusters of the data matrix can be made find the best 

biclusters. In addition, algorithm cannot deal well with the noise in the data [41]. 

 

Murali and Kasif [36] introduced the xMotif algorithm, which follows a greedy iterative 

search and chooses locally optimal sets and hopes that they might be globally optimal. The 

idea may not give good results, especially with not very good parameters. xMotif Algorithm 

is designed to detect biclusters with the coherent evolution of rows type, it can also detect 

biclusters with constant values on rows, and it cannot deal very well with binary data sets. 

The xMotif algorithm has a problem with dealing with the noise in the data  [65]. xMotif 

algorithm has time in complexity equal to ( )d sO N n n  . 

 

ROBA algorithm was introduced by Tchagang and Tewfix  [47] has time in complexity 

equal to ( )bO LN NM  where L is the number of distinct values present in the N M  input 

data matrix and Nb  is the number of the biclusters. Algorithm follows matrix algebra 

strategy to detect four biclusters types. It deals with missing data and the noise in the data, 

which make it a good algorithm to be used to detect the bicluster in the data. 

 

The main goal of proposing Bimax algorithm by Prelic et al. [10] to be a reference method 

,which helps to choose other methods parameters. This algorithm will work to detect 

submatrix (bicluster) that have ones and cannot be in a bigger submatrix. 

 

RMSBE algorithm was introduced by Wang and Liu [48] and works to detect biclusters of 

constant or additive types. RMSBE algorithm is able to find different bicluster sizes and deal 

well with deferent noise levels. It is unnecessary to mask previously discovered biclusters 
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during the process [66]. Algorithm can find nearly squared biclusters and can be extended 

to find rectangular biclusters. 

 

Qubic algorithm was introduced by Li et al. [37], which employs a graph-theoretic approach 

to solve the biclustering problem is less sensitive to outliers from many other biclustering 

methods [67]. It is good to be used with very big data sets. In addition, algorithm able to find 

many types of the biclusters especially constant columns or rows bicluster types in a 

reasonable time. 

 

CPB algorithm was introduced by Bozdağ et al. [49] and uses Pearson correlation coefficient 

between columns and rows to detect highly correlated biclusters in the data. Algorithm starts 

with a randomly chosen subset of columns and rows and improves the quality by adding or 

moving rows and columns from the bicluster iteratively. Algorithm well suited for 

identifying shift-scale patterns. The CPB algorithm is good to analyze multi datasets and 

merge results from each dataset and can be used at the same time for one data set. 

 

As presented in the previous preview, each one of the biclustering algorithms has some of 

its important properties. In addition, algorithms can be classified into groups according to 

the target. The Target can be a specific bicluster type but there are many algorithms to have 

this type in different ways. Therefore, comparing biclustering algorithms is very important 

to help in choosing the right algorithms.  

 

As introduced in the literature view section there are many works for evolution and 

comparing the biclustering works. In our thesis, a two-stage comparison way was introduced 

and being applied to 6 biclustering algorithms.  

 

In the first stage, the DEA method was used to compare the 6 biclustering algorithms, which 

were repeated more than 50 times with different parameters. Then using the output-oriented 

BCC model and the super-efficiency DEA techniques to give a rank or order according to 

some variables. In this study as presented before, some general conditions are chosen in the 

DEA stage like variance or size or other variables to give an example. In real life studies, the 

experts will choose the variable that will be used in the DEA stage according to the field 

study.   
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After each one of the chosen algorithms were ranked in the DEA stage. Starting from the 

best algorithms to generate 20 biclusters at most from each one. Some of the chosen 

algorithms may not be able to generate 20 biclusters so we continue choosing algorithms 

until we have 60 biclusters for each algorithm. The 60 biclusters will be from different 

parameters values in each algorithm. However, we are dealing with them as if they were 

generated using just the same parameters values. In this study, CC, FLOC, Plaid Model, 

xMotif, Bimax and Qubic algorithms were chosen. For these 60 biclusters from each 

algorithm, which give us 360 biclusters, the non-parametric methods for comparing medians 

(KW test and Dunn’s test) used to compare them according to size and the variance.   

 

 The results from the two-stage comparison for the yeast dataset and the chosen variables in 

the DEA stage: 

 

1. The best performance for the numbers of rows in the detected biclusters were obtained 

using the Bimax and FLOC algorithms, respectively, while Qubic, CC, and xMotif 

algorithms have the worst performance with detecting biclusters with the smallest number 

of rows within it. 

2. For the numbers of columns, the best performance recorded using CC algorithm. FLOC 

algorithm detected biclusters with the smallest numbers of columns. 

3. The biggest biclusters sizes were detected using the Bimax and FLOC algorithms. In 

addition, Qubic algorithm was able to detect the smallest biclusters.  

4.  As presented in the boxplot Figures none of the chosen algorithms were able to detect 

biclusters with constant values types because all of the values of constant-variance are 

bigger than 1.5. However, the biclusters that were detected using the Qubic algorithm 

where have the smallest constant-values with the smallest sizes also. In addition, the CC 

algorithm has the highest constant-variance values with no statistically significant 

difference with significance level equal to 0.05  according to the chosen variables in 

the DEA stage and the dataset. 

5. In addition, the chosen biclusters were not able to detect biclusters with an additive model, 

with expecting to 5 ideal biclusters with additive-variance values equal to 0. Like in 

constant-variance if we looked at the smallest values: The detected biclusters using FLOC 

algorithm were the best in this study. The worst performance was with the Bimax and CC 

algorithms for the additive-variance values. 
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6. Just with xMotif and Bimax algorithms we were able to detect the chosen number (60) 

with the multiplicative model were the multiplicative-variance values smaller the 1.5. 

However, by looking just to the values FLOC and Qubic algorithms were able to detect 

biclusters with smaller variance values followed by Qubic algorithms with small 

biclusters sizes and some multiplicative values equal to zero. The worst performance was 

with the rest of the used algorithms with no statistically significant differences. 

7. Finally, for the sign-variance, which is important, because it is the one, which is used in 

the DEA, stage. FLOC, Plaid Model and Qubic algorithms where able to detect the full 

number of biclusters with sign-variance values smaller than 1.5. For the 6 algorithms, 

FLOC algorithm and Qubic algorithms were the best with no statistically significant 

differences between them according to the KW test and Dunn’s tests. However, by taking 

in account the sizes, FLOC algorithm will be better. In addition, CC and Bimax also have 

no statistically significant differences between them, which make them come in the last 

place.  

 

The previous results are presented in the following table: 

Table 4.16. The results of the two-stage comparison study 

Rank Rows Columns Size constant additive Multiplicative Sign 

1 
Bimax 

FLOC 
CC 

Bimax 

FLOC 
Qubic FLOC 

FLOC 

Qubic 

FLOC 

Qubic 

2 Plaid 
Bimax 

xMotif 

Plaid 

CC 
FLOC 

Qubic 

xMotif 

Bimax 

Plaid 

xMotif 

CC 

Plaid 

xMotif 

3 

xMotif 

CC 

Qubic 

Plaid 

Qubic 
xMotif 

Plaid 

xMotif 

Bimax 

Plaid  
Bimax 

CC 

4  FLOC Qubic CC 
Bimax 

CC 
  

The result in the previous table is based on using the DEA method to choose the best 

parameters according to some variable. Of course, choosing other variables in the DEA stage 

may affect the results. That means the results could not be generalized. The chosen variables 

have been chosen according to a statistical logic. Each field study has its own characteristics. 

In addition, all of the studies that were presented in the previous studies section and most of 

the studies, in general, did not use the ensemble method [3]. The results in the Tables 4.1 to 

4.6, which presents the DEA methods results, showed that the starting points for each 
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algorithm were the best. That comes because one of the used variables in the DEA stage was 

the sign-variance. In addition, most of the introduced biclustering algorithms work to detect 

biclusters with similar patterns, which make the variance values in the detected biclusters 

smaller with make these results logical somehow. So using the ensemble method help to 

merge the best results from the DEA stage to have more features.    

 

By comparing some of the previous results from the literature studies with our results that 

presented in Table 4.16. In the study, which was done by Nepomuceno [17], as presented in 

the previous works section if we looked at the numbers of rows in the detected biclusters, 

the numbers of rows was bigger CC then xMotif and Bimax algorithms. However, the 

numbers of rows in our results showed that the Bimax algorithm was able to detect the bigger 

numbers of rows in the detected biclusters. In addition, xMotif and Bimax algorithm have 

no statistically significant difference between them. In addition, with the same used data, the 

CC algorithm was able to detect biclusters with a bigger numbers of columns than Bimax 

and xMotif algorithm, which match our results. For the bicluster sizes in the previous study, 

the CC algorithm was able to detect biclusters with bigger sizes than Bimax and xMotif. 

However, here the results showed that the bigger bicluster sizes were with the Bimax 

algorithm and xMotif still the last. In addition, as presented in our results the FLOC 

algorithm is able to detect bigger bicluster the also was obtained in  Yin and Liu’s work [20] 

as the results in table 4.16.  

 

In addition, for the results in Eren et al.’s work [22], which used other datasets and compared 

the Bimax, CC, Plaid Model, Qubic and xMotif algorithms according to algorithms ability 

to detect different biclusters types. In that study, the xMotif algorithm was the best in 

detecting biclusters with constant type, while in our study the Qubic algorithm was the best 

of course with yeast dataset here. For additive types, the result of the previous study showed 

that the Plaid Model algorithm was the best, but here in Table 4.16 as is presented the FLOC 

algorithm was the best and Plaid Model was not so good in comparing with the other 

algorithms. Finally, the multiplicative model in Eren et al.’ study, CC algorithm had a good 

performance in detecting this type, but in our results both of the FLOC and Qubic algorithms 

have good performances but with a big difference in the sizes of the detected biclusters.   

 

Finally, not all of the results can be compared because each one of the previous works in the 

biclustering field have been done to compare the biclustering algorithm from different sides. 
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In addition, in this study, an idea has been proposed to choose the best parameters, and make 

a classification for some of the biclustering algorithms with a single dataset. The 

generalization of results cannot be done until more algorithms must be used, more variables 

in the DEA stage must be included and more datasets is being included in bigger studies. 
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APPENDIX-1. Installing and loading packages in R software. 

# RcmdrPlugin.BiclustGUI library contains packages to apply CC, FLOC, Plaid model,      

xMotif, Bimax and Qubic algorithm. In addition, it contains Chia and Karuturi function 

and Coherence measures.  

install.packages("RcmdrPlugin.BiclustGUI") 

library(RcmdrPlugin.BiclustGUI) 

 

# biclust package is used to apply the CC, Plaid model, xMotif, and Bimax algorithms. In 

addition, it contains Chia and Karuturi function and Coherence measures. 

install.packages("biclust") 

library(biclust) 

 

# BicARE is used to apply the FLOC algorithm. 

source("http://bioconductor.org/biocLite.R") 

biocLite("BicARE") 

library(BicARE) 

 

# rqubic is used to apply the Qubic algorithm 

source("http://bioconductor.org/biocLite.R") 

biocLite("rqubic") 

library(rqubic) 
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APPENDIX-2. Using the biclustering libraries in R software. 

# Applying the CC algorithm 

biclust(x, method=BCCC(), delta = 1.0, alpha=1.5, number=100) 

 

# Applying the FLOC algorithm 

FLOC(sample.bicData, k=15, pGene=0.3, pSample=0.6, r=0.01, 10, 8, 200) 

 

# Applying the Plaid model algorithm 

biclust(x, method=BCPlaid(), cluster="b", fit.model = y ~ m + a + b, background = TRUE, 

background.layer = NA, background.df = 1, row.release = 0.7, col.release = 0.7, shuffle = 

3, back.fit = 0, max.layers = 20, iter.startup = 5, iter.layer = 10, verbose = TRUE) 

 

# Applying the xMotif algorithm 

biclust(x, method=BCXmotifs(), ns=10, nd=10, sd=5, alpha=0.05, number=100) 

 

# Applying the Bimax algorithm 

biclust(x, method=BCBimax(), minr=2, minc=2, number=100) 

 

# Applying the Qubic algorithm 

quantileDiscretize(as.ExprSet(used_matrix), q=0.49,rank=7) 

generateSeeds(data.disc,minColWidth=7) 

quBicluster(seeds, eset, report.no = 100L, tolerance = 0.95, filter.proportion = 1) 
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APPENDIX-3. Chia and Karuturi function and Coherence measures in R software. 

# Computing the classification scores as described in the paper of Chia and Karuturi. 

 

ChiaKaruturi(x, bicResult, number) 

 

# Computing the Coherence measures following Madeira and Oliveira classification of 

biclusters. 

 

constantVariance(x, resultSet, number, dimension="both") 

additiveVariance(x, resultSet, number, dimension="both") 

multiplicativeVariance(x, resultSet, number, dimension="both") 

signVariance(x, resultSet, number, dimension="both") 
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