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ABSTRACT

The goal of the thesis was to design and make use of a FIR filter with low pass by using
the latest architecture of Xilinx 7-series FPGA. The newest architectures and designs such
as Microblaze soft core processor and IP blocks in this thesis were used for the design.
Also, System Generator from Simulink extension was utilized to simulate the FIR filter
using Xilinx blocksets. Hence, the parallel implementation, various taps of filters and
simulations may be used for these purposes. In this context, detailed explanation of
resources usage, performance comparisons between Xilinx 7-series FPGAs and latency
were discussed. In addition, detailed design processes were shown. It was accomplished
that the filter that is used in the design carry out the demands, timing considerations and
resource usages.
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OZET

Son mimari yapiya sahip Xilinx 7-serisi FPGA kullanarak, al¢ak gegiren FIR filtreden
yararlanarak yapilan tasarim bu tezin amacinit olusturmaktadir. Microblaze soft-core
islemci ve IP bloklar gibi en yeni tasarimlar ve mimari yapilar tezde yapilan tasarimlarda
kullanilmistir. Ayrica, Xilinx blok setleri kullanarak System Generator uygulamasinda
FIR filtre simiilasyonlar1 yapilmistir. Dolayisiyla, paralel uygulama, ¢esitli filtre dereceleri
ve simiilasyonlar bu amaglar igin kullanilabilmektedir. Bu kapsamda, kaynaklarin
kullanimi, Xilinx 7-serisi FPGAler arasindaki performans karsilagtirmalar1 ve gecikme ile
ilgili konularin detayli agiklamalar1 bu tezde belirtilmektedir. Ek olarak, detayli tasarim
islemleri gosterilmektedir. Bu tezde kullanilan filtre ile ilgili zamanlama konular1 ve
kaynak kullanimlari, talepleri karsiladig goriilmiistiir.
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LIST OF ABBREVIATIONS AND UNITS

Symbols and abbrevations in which are used in this study are submitted below with their

explanations.

Abbreviations

ADC
BRAM
CAN
CE
CLB
CPU
DAC
DMA
DRAM
DRP
DSP
FIFO
FIR
FPGA
GPIO
HDL
HDMI
HLS
IR
ILA
IP

LC
LTI
LUT
MAC
PWM
RAM

Explanations

Analog-to-digital converter
Block random access memory
Controller are network

Clock enable

Configurable logic block
Central processing unit
Digital-to-analog converter
Direct memory access
Distributed ramdom access memory
Dynamic reconfiguration port
Digital signal processing
First-in-first-out

Finite impulse response

Field programmable gate array
General purpose input output
Hardware description language
High definition multimedia interface
High level synthesis

Infinite impulse response
Integrated logic analyzer
Intellectual property

Logic cell

Linear time invariant
Look-up-table

Multiply accumulate

Pulse width modulation

Random access memory
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1. INTRODUCTION

Digital filtering is one of the important aspect in digital signal processing world. Digital
filters are essentially used to filter unwanted portions of the signal for various applications
such as power electronics and control systems. Application of digital filters utilizes adders,
multipliers and shift register blocks. Architecture of the digital filters manipulates these
blocks and determines the speed, complexity and power [1].

The signals with noise that are considered in control cycle without filtering cause some
problems with respect to unstability or misdetection. Yet another problem is that the
systems that are processed with microprocessors cause some timing problems on account
of long time of filtering the signals. That is why with minimum latency, there is a
possibility that the performance of the control signals can be enhanced by filtering multiple

analog channels.

Analog filters can be cost friendly, quicker and vast dynamic range compared to digital
filters. However, as far as the performance is concerned, digital filters are superior to the

analog filters.

Digital signal processing is composed of few steps such as digitizing, mathematical
calculations and converting digital signals to analog signals. In this operation, an analog-
to-digital converter (ADC) receives analog signals with noise and digitizes the noisy
signal. After digitizing, Digital signal processor / Field programmable gate array
(DSP/FPGA) receives the samples and executes the suitable mathematical operations
according to the type of the filter and finally, a digital-to-analog converter (DAC) receives

the filtered signal to convert the signal from digital to analog form.

Nowadays, the latest trend for DSP is gradually changing into FPGAs. FPGAs are being
gradually used in digital signal processing world. New generation FPGAs comprise of
wide range of CLBs (configurable logic blocks). This structure provides speed, flexibility,
cost and performance compared to conventional DSP (Digital signal processing)

processors [2].



In this thesis, the newest architectures and designs such as IP blocks and Microblaze are
executed. In particular, efficient implementation of finite impulse response (FIR) filters
using Xilinx Artix-7 series (XC7A100T-1CSG324C) is implemented. This implementation
uses optimum resources regarding to Xilinx FPGA. Parallel implementation, various taps
of filters and simulations are used for this purpose. Detailed explanation of resource and
latency is discussed in this thesis. And besides, detailed design processes are shown in this

thesis.



2. DIGITAL SIGNAL PROCESSING

Digital signal processing is related with fulfilling operations upon digital signals such as
filtering, convolution, correlation and Fourier transforms. Those operations demand
summation and multiplication and thus, a multiply-accumulate (MAC) unit is included in
the DSP processors. DSP applications were utilized by making use of DSP processors. The
summation and multiplication are carried out sequentially in the DSP processors. As
applying filtering process in digital filters, a DSP processor may only fulfill single
summation-multiplication process in single-cycle. Thus, output of every tap of the filter is
carried out in single cycle, yet in a higher order filter more clock cycles are needed to
operate the filter specifications.

FPGAs are famous with their concurrency or parallelism. The summation and
multiplication processes are fulfilled concurrently in FPGAs. Unlike a DSP processor, an
FPGA operates multiple summation and multiplication processes in one cycle. Hence, the

FPGAs requires lower clock cycle compared to the DSP processors.

Algorithmic complexity increases as application demand increases. In order to implement
these new algorithms, higher performance signal processing hardwares are required.
Classic fixed architecture DSP processors cannot keep pace on their own. Because of that,
performance gap increases as algorithmic complexity increases. Figure 2.1 shows the
difference between the conventional DSP processor implementation and an FPGA

implementation [3].



standard DSP processor FPGA implementatior:l
(sequential implementation) (completely parallel design)
Data in
Data in
multiply
coefficient
cO
MAC unit
2000 clock r
cycles
needed 2000 operations
in clock cycle
’ l Data out
Data out
2GHz 600 MHz
——  =1000 KSPS ——— = 600 MSPS
2000 clock cycles 1 clock cycles

Figure 2.1. Conventional DSP and an FPGA

FPGAs are very well favorable to replenish this performance gap for the various reasons;

e They suggest extremely high-performance signal processing capability via concurrency.
e They ensure very low risk owing to the flexible architecture.

e They permit design migration to handle changing standards.

o Developers can utilize them to form a specialized and differentiated solution.

e Their price is relatively low.

e They provide very low power per function [3].

A DSP or an FPGA manipulates mathematical algorithms according to a digital filter used
in a system. A digital filter receives digital inputs and gives digital outputs. Typically, in a
filtering, a digital signal processor or an FPGA reads sample from an analog to digital
converter, manipulates mathematical processes according to the filter type and extracts the

result to a digital to analog converter. Figure 2.2 supports above statements.
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Figure 2.2. FPGA DSP flow

2.1. Sampling Process

Analog-to-digital transformation or digitization of analog signals is composed of the
sampling (or digitization in time) and quantization (or digitization in magnitude). The
sampling part represents an analog signal in a sequence of values. This process is
implemented with “sample-and-hold” circuit that retains the sampled level up to the
subsequent sample [4]. Figure 2.3 shows an basic DSP operation.

i :
X" (r) x(r) Antialiasing ADC x(rr) Other digital :
! D filter - systems :

1

S | |

Input channels

DSpP

hardware

Output channels

H Reconstruction Other digital
: () filter V() Vi) systems

S b

Figure 2.3. Basic DSP operation

The analog-to-digital process is carried out as follows;

e The bandlimited x(t) is sampled with uniformly gap. This process transforms an analog

signal in to a discrete time signal.

x[n] = x(nT) —o<n< o (2.1)

where T is the sampling period and n is a positive integer.



6

e The magnitude of each sample is quantized in to one 2% levels, where k is the number of

bits which the ADC has. And these samples are coded into binary representation.

An traditional ADC may be debated as a switch which opens and closes in every T

seconds. And therefore the sampling frequency is depicted as;

f.=1/T (2.2)

where f; is in Hz. The discrete-time signal x(nT) can be represented with a positive

integer at discrete time nT, n=0,1,2,...,00 [3]. This can be represented in Figure 2.4.

x(n)

' Ar( 7 }

: » Time, ¢
0 T 2T 3T 4T

Figure 2.4. x(t) and x(nT)

If an analog signal x(t) is represented by a discrete-time signal x(nT) precisely, the
sampling frequency f; need to have at least double the maximum frequency portion of the

analog signal, fy,. It is expressed as;

fs 2 2fu (2.3)

where fj; is commonly depicted as the “Nyquist frequency” and 2f;, which has to be

overpassed by the sampling frequency is defined as “Nyquist rate” [4].



2.2. Signal Resolution

Similarity of a digital signal, in other words, how analogous a digital signal is based on,
how many bits are utilized to exemplify the amplitude steps. These steps are named as

quantization steps, displayed with;

Xmax— Xmin
A== (2.4)
where x is the input signal and b exemplify the number of bits that exemplifies the signal.

A identifies the quantizer step size that are designated by an ADC [5].

Equation 2.4 indicates that a great enhancement in signal resolution in consequence of
enhancing the bit width. That situation may be displayed by an analog amplitude of 1 V.
Provided that a 4 bit digital signal is considered to be represented this signal, there are only
16 steps to exemplify that 1 V. Yet, provided that a 24 bit digital signal is utilized to
represent that analog signal, 224 steps are fitted. Provided that the quantization is uniform,

then each quantization step has matched size, and one step would be equal to;

v
224-1

= 0,0596 uV (2.5)
Provided that 4 bit digital is utilized, then each quantization step would be equal to;

Y —125mV (2.6)

241

2.3. Quantization and Quantization Error

The quantization and encoding processes are the processes that the discrete-time signal
x(nT) is represented in a binary number with finite number of bits. If an ADC has k bits,
then there are 2% different levels which may be utilized to depict a sample. If x[n] is
among two quantization values, then one of the process called rounding or truncation needs
to be applied. Rounding means the value of the nearest quantization level. Trancation

means that the value of the level below it [5].



The difference among the quantized value and the original value is called the quantization
error. The quantization error places in noise in the converted output. This can be also
defined as quantization noise. If an ADC has k-bits, then signal-to-quantization-noise-

error (SQNR) can be approached as;
SQNR ~ 6*k dB (2.7)
Practically, this 6k dB value is less than 6k dB because of the faultiness of the converters.

For example, an 8-bits ADC has 48 dB SQNR and an 16-bit ADC has 96 dB SQNR [5].

Figure 2.5 shows two-bits quantization and errors.

Quantization level
F 9

Quantization errors

Figure 2.5. 2-bits quantization and error representation

2.4. Digital Filtering

Digital filtering is succeeded implementing mathematical operations on the sampled data
(digitized data). In the analog filtering, filtering operations are implemented thanks to the
electronic circuits. Digital filtering operation is performed on the sampled signals with the
help of coefficients [6]. There are a whole range of filters, however in this thesis, one of
digital and linear time invariant (LTI) filters named the FIR filter is utilized. These LTI

filters may be categorized as: FIR and infinite impulse response (lIR) filters.



2.4.1. FIR filters

The output of LTI systems is the digitized input convoluted with the impulse response
coefficients of the system. Considering that the filter is causal, the output at time n is given

as;

ylnl = X2 hll] * x[n = 1] (2.8)

The process that implement the linear convolution requires four levels;

Fold x[!] about [ = 0 to obtain x[—I]
Shift x[—1] with “n” samples to the right to get x[n — []
Multiply h[l] with x[n — [] to get the products of h[l] * x[n — (] forall [

A

Add all the products to get the output at time n [4].

The FIR filters are chosen by users over IIR filters due to some disadvantages of IIR

filters. Some the of major benefits of FIR filters is stated as following;

1. The FIR filters are steady since no feedback is present from output and the absence of
poles.

2. The layout of linear-phase filters may be assured.

3. The finite precision faults are less powerful in FIR filters than IIR filters.

4. The FIR filters can be applied to the DSP processors and FPGAs efficiently [4].

In Figure 2.6 displays that the basic and the direct of the FIR filter. As seen in the Figure
2.6, x[n] is the input, y[n] is the output, h[I] is the coefficients and Z~1 is the delay.
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x(n)

L 4
N
N
[

‘71#{{}} :71;{11 h(N=2) ‘71;{.-1! 1)

Figure 2.6. Direct form of the FIR filter

Alternatively, the form can be transformed into the transposed structure as shown in Figure
2.7. As it can be seen that the transposed structure of the FIR filter benefits from the
advantage of a substantially shorter path than the conventional direct form. This advantage

results in an increase in efficiency and throughput.

Multiplier Block,

x(n)

Figure 2.7. Transposed structure of the FIR filter

2.4.2. Low pass FIR filters

The magnitude response of an ideal low pass filter is shown in Figure 2.8. The areas
0<w<w,and w > w, are called as the passband and the stopband respectively. The

frequency w, that divides the passband and stopband is called the cutoff frequency [4].
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0 . T

Figure 2.8. Magnitude response of the low pass filter

The magnitude of an ideal low pass which in the range of frequency has |H(w)| = 1 and
|[H(w)| = 0 in the range of w > w,. Hence, a low pass filter allows the low frequency
elements under the cutoff frequency and rejects the high frequency components over the
w, [4].

Practically, the infinitely sharp cutoff shape as it can be seen in Figure 2.8. As expected,
more graded cutoff in a transition band among the passband and the stopband needs to be
considered. The features can be given in tolerance (ripple), schemes and the transition
band is determined to allow the straight magnitude roll-off [4]. An expected and

conventional magnitude response of the low pass filter is shown in Figure 2.9.
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t |H ()
L+6p| 7_\_L___l Ap
1 VAR N4 — ldeal filter
I —=o6p | "7 77 \
L — Actual filter
A |
55 Siniinieiataieieinteleietele nintel . N N T, 0
0 (O8 W Wy T
Transition
<+—— Passband —>| band |4— Stopband —

Figure 2.9. Actual magnitude response of a low pass filter

As it can be seen from the Figure 2.9 that &, is a peak deviate in the passhand and a
maximum deviate &5 in the stopband. The magnitude of passband (0 <w < w,)

approximates unity in the error of +6,, and -5,,;

1-6,<|HW)| <1438, 0sw=w, (2.9)

The passhand ripple &, in the passhand is permitted in the magnitude reply. The gain of the
magnitude reply is normalized to 1 (0 dB). Likewise, in the stopband, the magnitude

response closes to zero with an error Jg;
|[HwW)| < 6, wg<w<Tm (2.10)
The stopband ripple &, above the w; is described as the minimum attenuation for signal

components. The peak passband attenuation and the minimum stopband ripple in decibels

are considered as follows:
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A, = 2010g10% in dB (2.11)
As = 201logy, 85 indB (2.12)
2.4.3. The systolic MAC filter architecture
In this thesis, the systolic multiply accumulate (MAC) architecture is used for optimum

performance, efficiency and storage. Figure 2.10 displays the simplified illustration of a
MAC FIR using a single MAC engine.

Data Storage
x{n} — ] ‘TN ‘TN ‘TN ‘_'N ——--- ?F\J
a(0) ‘
a(1)
a(2) ;
a(3) N > y(n)
| a(N-1) |
Coefficient Storage

Figure 2.10. Single MAC engine

This single application can be expandable to multi-MAC applications for usage with
managing superior performance filter specifications (greater number of coeficients,

superior sample rate and more channels) [7].

A range of multipliers needed to apply and the filter is configured by calculating a range of
multiplies needed to implement the calculation and dividing by a range of clocks present to
manipulate each input sample. The present clock cycles rate is all the time rounded down

and a range of multipliers rounded up to the nearest value [7].
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The output samples represent the padding of the coefficient vector. Therefore, a reply to an
implemented impulse includes a range of zeros prior to the first coefficient of the
designated impulse response occurs at the output. The FIR compiler automatically forms
the application which includes the user-defined performance needs with respect to the

system clock rate, the sampler rate, the number of taps and channels [7].

This architecture is practically asisted by the DSP-slice and makes possible are productive
and performance filter implementations. Moreover, this architecture expands to utilize
coefficient symmetry, and hence including farther resource savings [7]. Figure 2.11

illustrates multi-MAC implementation.

Figure 2.11. Multi-MAC engine
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3. HARDWARE

3.1. Fixed Point Representation

A commonly utilized format for symbolizing and storing binary data is the fixed-point
format, where a value “@” symbolized by apin—1,Amen—2,--,ao IS mMapped as
Amin—1> Amin—2, -, Ay Symbolizes the integer part of the data and the statement

Ap_1, Ap_z, -, Qg Symbolizes the fractional part of the data [6].

The major point while deciding on a fixed-point representation is the usage of dynamic
range in calculation. Scaling may be implemented to overcome the worst situation,
however that cause low dynamic range. Altering to have the topnotch implementation of
the dynamic range shows that overflow will occur in some situations and extra circuitry
need to be applied to get rid of that issue. This issue usually occurs in two’s complement
that causes entirely different sign. This issue may be fixed by applying saturation circuitry
to protect the worst situation negative or positive overflow, however that has a nonlinear
effect on performance [6]. The effect of overflow in two’s complimentary can be shown in

Figure 3.1.

Unsigned

s - O W

Figure 3.1. Effect of overflow in two’s complimentary
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If the addition of 7 (0111) and 1 (0001) is taken into consederation, it can be seen that 8
(1000) is the result in unsigned binary, however this value symbolizes -8 in two’s
complimentary that symbolizes the worst situation. A solution can be implemented in

circuitry that saturates at the output data which is 7 (0111) [6]. Figure 3.2 can display

saturation operation.

2n—1]

Signed

_2n

Unsigned

Figure 3.2. Saturation operation

3.2. Structure of an FPGA

The principal implementation of the FPGAs used by clients is to build customized system
using programmable logics. FPGAs are made of programmable logic blocks which are
interconnected in the system. At the edges, customizable 1/0 blocks are designated to

communicate with outside the world [8]. Figure 3.3 illustrates a basic structure of a

conventional FPGA.
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Figure 3.3. Basic structure of a conventional FPGA

Carry chains, block random access memories (RAMs) and DSP blocks may be executed in
configurable logics. And, all of the FPGAs contain these specifications. Clients take
advantage of these specifications and execute them in look-up-tables (LUTSs). Since the
FPGAs are being improved day by day, these specifications are being more cost friendly
and more efficient than obsolete FPGAs [8].

Even if all FPGAs are common in structure, their configurable logic amount differ from
each other due to the vendors. This situation permits the clients to choose the right FPGA
device for their needs. And also, the FPGAs differ from each other in speed, tempereture
and voltage perspective. The fastest FPGAs are roughly 25% faster than the slowest

FPGAs. Cost and performance wise specifications are choosable for clients [8].

Clock speed of the latest FPGAs are in the range of 100-500 MHz. Generally, conventional
designs require low-cost FPGAs and these FPGAs can operate at low frequency range.
More complex FPGASs can operate at mid frequency range. DSP targeted designs require
the highest frequency range and they make use of intensely DSP blocks and block RAM
(BRAM) [8].
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3.2.1. Interconnection

The structure of a conventional FPGA is composed of links that is linked together to link
any two blocks in an FPGA. This feature permit the clients take advantage of random logic

networks. If the client wants to observe the interconnected links, vendor tool can come to
aid [8].

3.2.2. Configurable logic blocks
The Xilinx configurable logic blocks (CLBs) are composed of 4-6 bit LUTSs, flip-flops, a

configurable carry chain and configurable hardware to enable customized configurations to

be created [8]. Figure 3.4 gives an idea about an configurable logic block of an FPGA.
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Figure 3.4. Configurable logic block

The combined form of the LUT, carry chain, flip-flop and registers is defined as a logic
cell (LC). The capable of an FPGA is generally obtained with logic cells. Xilinx Virtex
series FPGA is for example composed of 4 million LCs, as the slowest Spartan is
composed of 2000 logic cells [8].

A elevated performance carry chain permits the FPGA to execute very superior

performance adders. Carry chains of the latest FPGAs may execute 64 bit adder at 500
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MHz. Registers in the FPGA permit pipelined designs, that are play important role in
exploiting faster speed [8].

3.2.3. Memory

Xilinx shows us various memory sizes and customizations. The memory is configured as

columns displayed in Figure 3.5.

CcLB, DSF, Block RAM

CLB. DSP. Block RAM

cLB, DSPF, Block RAM

Figure 3.5. Organized memory blocks

Memory accessability is sychronized to the system clock and inputs, data address, clock
eables (CE) and write enables (WE) are filed with an option to turn off address latching An
another output data pipeline register permits higher clock rates however, it costs additional

cycle of latency [6].

Block RAMs may be customized vertically to build extended, fast memory arrays. Also
first in-first out (FIFOs) with widely decreased power consumption take important place in
FPGAs. BRAM blocks which stand unconsumed in the design are automatically turned off.
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BRAMs may be configured as 32K * 1-bit, 16K * 2-bit, 8K * 4-bit, 2K * 16-bit and 1K *
32-bit [6].

Registers or flip-flops are utilized to status and control registers, pipelining and shallow
FIFOs. Shift registers are generally utilized to signal delay and pipeline stability in DSP.
Distributed RAMs (DRAMs) are utilized to shallow memories until 64-bit deep. BRAMs

are also utilized for buffers and deeper memories [8].

3.2.4 DSP blocks

The latest FPGAs are composed of discrete multipliers to allow efficient DSP processing.

Conventional DSP implementations exploit pipelines or flow graphs and data streams [8].

Figure 3.6 illustrates a basic DSP flowgraph.

Input = 1 >
H[O] H[1] H[2] H[3]
— —

Clutput

\H
=

|| Coefficient Tuning

Figure 3.6. Basic DSP flowhgraph

In order to execute digital filtering and DSP implementations, multipliers and adders are
utilized to apply the flow graph. Xilinx FPGAs include a DSP block named as a DSP48
that include an 18-bit * 27-bit multiplier, a 48-bit accumulator and a 27-bit preadder. Four
levels of pipelining at 500 MHz may be implemented in high-end Xilinx devices [8].
Figure 3.7 can give an idea of a DSP48 block.
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Figure 3.7. DSP48 block diagram

3.2.5. 1/O blocks

One of the major feature of an FPGA can be that it accepts external input and output
signals. In order to make possible this feature, the latest FPGAs include blocks named 1/0
blocks. 1/0 blocks include high-powered buffers to support external signals and include

input receivers with registers to 1/0 signals. Figure 3.8 can display configurable 1/0 blocks.

e mmen T
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o|jo|jo|jo - 00 [ @
Programmable
. | olololelolo- -alo logic units
- [}
. II I II . Programmable
/0

Figure 3.8. 1/0O blocks representation

I/0 blocks can be driven a range of 1.2 — 3.3 V CMOS and LVDS as well. These 1/0
blocks can be different among the FPGAs. If a client wants low — cost FPGA, then there
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will be low amount of I/O blocks. For high — cost FPGAs, there will be tremendous
amount of 1/0O blocks [8].

3.2.6. Clocking in an FPGA
Xilinx FPGAs can support up to 24 clocks. Generally, the customized designs need

roughly 12 clocks. The untouched clock lines may be divided into smaller clock lines. That

may provide hundreds of smaller clock lines [8]. Figure 3.9 can illutrate this system.
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Figure 3.9. Clock network

Vivado can handle until 24 clocks with no problem. Also, there is a possibility that design

of a user can have more than clock line. But, this possibility can not pass 24 clocks [8].

The FPGAs can support powerful clock management an sythesis to clock management of
the particular device. Besides, the user should remember that the clocking of the
customized design need to suffice to support low — latency synchronous connections
utilized in DSP systems [6]. Figure 3.10 shows high level clock networks based on design.
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Figure 3.10. High level clock network
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3.3. Microblaze Soft Core Processor

The Microblaze central processing unit (CPU) is defined as a 32-bit reduced instruction
set computer (RISC) microprocessor, optimized to application in Xilinx FPGAs and system
on chip (SoC). Xilinx integrated the Microblaze to the Vivado design environment. And
thus, the users can utilize the Microblaze with their peripherals, memory and interface
features. It shows that the Microblaze processors can be utilized as an alternative to ARM

Cortex CPUs [9]. Figure 3.11 illustrates the block diagram of the Microblaze processor.
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Bus interface Bus interface

M_AXI_IC — Memory Management Unit (MMU) :> — M AXI DG
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— Purpose ALU —
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WPSH_01_041018
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Figure 3.11. Block diagram of the Microblaze processor

The Microblaze processor can be used with lots of intellectual property (IP) blocks. These
blocks are as follows: Multichannel direct memory access (DMA), ethernet subsystem,
controller area network (CAN), streaming FIFO, high definition multimedia interface
(HDMI) camera/display interface, video DMA, timer/watchdog, universal asynchronous
receiver transmitter (UART), universal serial bus (USB), quad serial peripheral interface

(SP1), general purpose input output (GP10) and pulse width modulation (PWM) [9].
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In case of situations at which a user need more process power, the Microblaze processors
can come aid with either one or two ARM Cortex — A9 processors. They may run
independently or in conjunction with applications which use the whole cores. In addition,
users also create their processors and they may obtain from IP vendors and open source

[9]. Figure 3.12 can give idea of combined the Microblaze and ARM processors.

Shared Access (via DMA)

DDR Controller

Flash Controller

ARM
Cortex™-A9
(Single or Dual-Core)

AXI Interconnect

512KB L2 Cache || 256KB OCM |
Timer " JTAG "f_?:_:-nfig "T GIC " DMA I

Block RAM

MicroBlaze, MicroBlaze, .- MicroBlaze,,

Multiple instantiations as needed —

WiPS01_05_ 040718

Figure 3.12. Combined form of the Microblaze and ARM processors

3.4. AXI Bus

AXI is the category of ARM AMBA, a part of microcontroller buses first released in 1996.

There are there types of AXI interfaces;

1. AXI4, for high performance memory-mapped applications.
2. AXI4-Lite, for simple, low throughput memory-mapped communications
3. AXI4-Stream, for high speed streaming data [10]
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The AXI interfaces define an interface among a single AXI master and a single AXI slave.
And, reflect IP cores which change information with each other. AXI14 and AXI4-Lite

interfaces are composed of five different channels as follows;

e Read Address Channel
e Write Address Channel
e Read Data Channel
e Write Data Channel

e Write Response Channel

Data may transmit in either directions among the master and slave simultaneously and
amount of data transfer may differ. The limitation for AXI4 is a burst transaction and up to
256 words of data transfers. However, AXI4-Lite is 32 words of data transfer per

transaction [10]. Figure 3.13 a and b shows read and write transactions respectively.

Read address channel

Address
and
control
Master Slave
interface Read data channel interface
Read Read Read Read
data data data data

X12076

Figure 3.13. a) Read transaction

Write address channel

Address
and
control

Wirite data channel

Master Write WWrite Write VWrite Slave
interface data data data data interface

WWrite response channel

WWrite
response

Figure 3.13. b) Write transaction
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The AXI4-Stream protocol can be utilized in to implementations which generally include a
data-centric and data-flow paradigm that the address is not available or not needed. The

AXI4-Stream is a single unidirectional channel for a handshake flow [10].

3.4.1. AXI4-Stream

The AXI4-Stream interface allows the user to operate IP blocks each other with this
standard. IP blocks with AXI interface compatible consists of tvalid, tready, tdata, tlast
and tuser. tvalid and tready apply handshake to transmit the message, where the mission
load is tuser and tlast. IP blocks manages on the data with the input data channel named
s_axis_data_tdata and the output data channel m_axis_data tdata. The IP blocks also
allow to transmit a user port in tuser and tlast signal from input data channel to the output

data channel with the same latency for the data [11].

3.4.2. Handshake protocol

In this handshake protocol, tvalid is driven by the master side and tready is driven by the
slave side. tvalid shows that the data in tdata, tuser and tlast is effective. tready shows that
the slave side is waiting to get data. As tready and tvalid are both correct in the cycle, then

the data transfer happens [11].

tlast may electively be utilized to show the last sample in a cycle of interleaved data.
Likewise, tuser may optionally be utilized to transmit the user field and/or channel ID field

[11]. Figure 3.14 display the illustration of the basic handshake protocol.

acek! || L L L b
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TREADY | l I |/ i i i i i
TDATAE o1 ): DQIK DSII D4_
TLAST, L1 Y 2 f 3 ) La
| I I | | | T
TUSER ! U1 Y vz X va Y ua

Figure 3.14. Basic handshake protocol
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3.5. Integrated Logic Analyzer

The customizable integrated logic analyzer (ILA) IP core is a logic analyzer that may be
used as a monitoring device to observe the signals at the system. Signals in the design are
attached to ILA core clock and probes. Connected inputs are sampled at design speed and
stocked up using BRAM [12]. Figure 3.15 figures the ILA IP core.

ILA Core
— | clk trig_out —
— trig_in trig_in_ack ——®
— irig_out_ack Slot_0_AX| [-——

—»| probel
—»| probe?2
-

—=| probe1023

X13368

Figure 3.15. ILA IP core

3.6. Xilinx Analog to Digital Converter

The Xilinx analog-to-digital converter (XADC) provides a dual 12-bit, 1 Mega sample per
second (MSPS) ADC and on-chip sensors. This ADCs include a general purpose, high
precision features for variable applications [13]. Figure 3.16 displays the block diagram of
the XADC.
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Figure 3.16. XADC block diagram

3.6.1. Unipolar mode

The analog input range is 0-1 V in this mode. The XADC designates “000h” when 0 V is
applied on the XADC and “FFFh” when 1 V is applied onto the input [13]. Figure 3.17
displays transfer function for unipolar mode and Figure 3.18 displays range of unipolar

input.
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Figure 3.17. Transfer function for unipolar mode
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Figure 3.18. Unipolar input range

3.6.2. Bipolar mode

The analog input range is -0.5-0.5 V in this mode. In observing differential signal type, this
mode may be useful to get information about the analog input signal. “000h” is designated
to 0 V. When -0.5 V is applied to the input, “800h” is designated. When 0.5 V is applied to
the input, “7FFh” is designated. As it can be seen that two’s complimentary is used to
show that relative VVn and Vp [13]. Figure 3.19 displays the transfer function for bipolar
mode and Figure 3.20 displays the bipolar input range.
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Figure 3.19. Transfer function for bipolar mode
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Figure 3.20. Bipolar input range

3.7. Digital to Analog Converter

A DAC is a device that converts a digital signal to analog signal. In this thesis, 12 bit
output, 12 bit parallel input and 20.4 MSPS DAC that is manufactured by Texas
Instruments model of 7821. This DAC utilizes from parallel input capability that brings up
top notch performance. In Figure 3.21, the schematic of the DAC can be seen.
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Figure 3.21. Digital to analog converter schematic
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4. SOFTWARE

4.1. IP Blocks

IP blocks are essential benchmark as choosing which FPGA provider to select to a specific
design. These IP blocks allows the user to include mixed design in their designs from high
speed GHz transceivers to DSPs, from Microblaze soft core processor to ARM Cortex A9.
Xilinx based IP blocks are optimized for users to facilitate from DSP, image processing,
high speed transceivers, etc [8]. Figure 4.1 displays the design flow of the IP blocks.
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Figure 4.1. IP block design flow
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Other than using Xilinx-based IP blocks for the designs, Xilinx allows the clients to
expand or to recreate IP blocks for their designs and reuse the IP blocks created by the

clients. These IP blocks are creared as follows;

e Using with Vivado High Level Synthesis (HLS) tool (users can use C/C++ programming
languages to create and compile IP blocks).

e Using with System Generator for DSP designs (users can use Simulink to create and
simulate their designs).

e Using with third-party IP vendors.

e Using with Vivado IP packager tool (users can use this tool to create reusable IP blocks
and add the blocks their IP catalog).

4.2. XADC Wizard

The XADC wizard creates an hardware description language (HDL) wrapper to customize
XADC for users to configure channels, operations and alarms. Besides, converting analog
to digital, it monitors the tempereture and voltage of the FPGA, generates alarms to user-
specification, is suitable for AXI interface and calculates all the parameters and register
values [14]. Figure 4.2 illustrate the detailed block diagram of the XADC IP block.
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Figure 4.2. Detailed block diagram of XADC IP block
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4.3. FIR Compiler

The Xilinx FIR compiler IP core procures an interface to implement extremely
parameterizable, area-effective and superior performance FIR filters. Other than filtering
operation, it features AXI interface. It supports high performance FIR, polyphase
decimator, polyphase interpolator, half-band, half-band decimator, half-band interpolator,
Hilbert transform and interpolated filter implementations. Also, it supports up to 256 sets
of coefficients and input data in 49-bit precision (also for coefficients). By supporting for
multiple parallel data channels, it allows the user to implement multichannel signal
processing. User selectable output rounding and architecture enables more efficient and

optimized results [7]. Figure 4.3 gives an idea about FIR compiler IP core.
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Figure 4.3. FIR compiler IP core

4.3.1 The coefficient quantization

The FIR compiler IP block demonstrates three quantization settings as follows;
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1. Integer coefficient
2. Quantize only

3. Maximize dynamic range

If the coefficients are designated in binary or hexadecimal, the integer coefficient option is
allowed. Conversely, if the coefficients are specified in non-integer decimal values, then

the quantize only and maximize dynamic range options are allowed [7].

Since the coefficients are generated in non-integer values using FDA Tool from one of the
Simuling blocks, quantize only option is used for tests and simulation purposes. In
quantize only option, the coefficients are quantized to the designated bit width. The
coefficients are rounded to nearest quantum utilizing “simple round towards zero
algorithm”. The coefficients are divided into integer and fractional bits. If the designated
bit width is fewer than the required bit width, coefficients are rounded [7].

Because the whole coefficients are among -1 and 1, only one integer bit is required (to
retain the sign identification), the rest bits are designated to fractional bits [7]. Figure 4.4
shows an implementation of coefficient quantization regarding to simple round towards

zero algorithm.
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Figure 4.4. Coefficient quantization instance
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4.3.2. Output rounding

The users can determine the output width of the filter in terms of their needs. In MAC
implementations, the FIR compiler IP block allows the users to determine the output bit-

width and round the outcome to the nearest number in this bit-width [7].

Non symmetric rounding up (or to positive) rounding mode is used for the testing and the
simulation purposes. In this mode, 0.5 is added to the accumulator outcome and the most
least significant bit (LSBs) are removed. This can be done with fewer or no resource cost

in specific hardware. Figure 4.5 shows an representation for this mode.

Figure 4.5. Output rounding

4.4. System Generator for DSP

System Generator is a DSP design support, which is from Xilinx and enable the user to
utilize Simulink from MathWorks for a FPGA design. Xilinx FPGA or register transfer
level (RTL) are not needed as utilizing System Generator tool. Users design their systems
using Xilinx based blockset in Simulink [15]. Also, users by using System Generator can
create IP blocks and then import their IP blocks in VHDL or Verilog into Vivado or using
hardware co-simulation feature, they can simulate an implement the design both on
Simulink and specific Xilinx FPGA. Figure 4.6 shows some blocksets associated with

Xilinx block sets.
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Figure 4.6. Some blocks sets regarding to Xilinx block sets

Design blocks of System Generator differ from conventional Simulink blocks. They can be
found in the library of Matlab/Simulink. However, System Generator blocks can not
interface directly with the Simulink blocks. In order to overcome this issue, Xilinx

provided “Gateway In” and “Gateway Out” blocks must be used for these circumstances.

If the users want to implemenet targets named IP catalog and hardware co-simulation, they
need to facilitate a token named System Generator token. In this token, the users can adjust

simulation time, their boards, type of implementations etc.
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5. SIMULATION AND VERIFICATION

In this thesis, for the testing and simulation studies, Xilinx Artix-7 (XC7A100-1CSG324C)
series FPGA, Vivado 2017.4 version design tool and System Generator have been utilized
in order to implement simulation and test. Other than using the FPGA itself, the
Microblaze soft-core processor, which are composed of the FPGA fabric, and IP blocks are
utilized for the design itself. The Vivado design tool is very powerful and versatile tool for
users who have zero knowledge about VHDL. Thanks to the Vivado, the IP blocks used
for designs are converted to the VHDL language via HDL wrapper operation. This
operation turns IP blocks into specific VHDL code and a user can observe this VHDL code
to analyze the specific design.

In Figure 5.1, the overall system can be observed. In this system, Nexys 4 DDR board,
which contains Xilinx Artix-7 (XC7A100-1CSG324C) is utilized for this thesis. Also,
there is a signal generator device which is called Analog Discovery 2. This device is
developed by Digilent and utilizes a Xilinx FPGA and it can create every one of the signal
that a user wants. On the left hand side, there is a DAC circuit that accepts 12 bit parallel

signals coming from Nexys 4 DDR board to observe the filtered analog signal.

———

Figure 5.1. Overall system overlook




38

In Figure 5.2, the noised signal that is used for filtering is displayed. The noised signal has
been generated through Analog Discovery 2 device. Base voltage of 0.5, offset voltage of
0.5 and frequency of 10 kHz are set to observe the digital filtering for a high frequency

noised signal.
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Figure 5.2. Noised signal

The FIR compiler developed by Xilinx is used in order to observe the digital filtering. The
coefficients implemented on the FIR compiler are generated via FDA tool from Simulink
block. The sampling frequency, cut-off frequency and stopband frequency are set to 20
kHz, 4 kHz and 5 kHz respectively. Passband magnitude and stopband magnitudes are set
to 1 dB and 80 dB respectively.

Elaborated design perspective gives an complete vision of the specific design. In Figure
5.3, the elaborated design for the two channels implementation used in thesis and, in
Figure 5.4, single channel elaborated design can be seen. As it can be seen from the Figure

5.3 and 5.4 that all of the inputs and outputs can be observed.
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Figure 5.3. Elaborated design for two channels implementation
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Figure 5.4. Elaborated design for single channel implementation

In Figure 5.5, the whole design implemented for two channels application can be seen. All
of the components including the XADC wizard, the FIR compiler, ILA, clock
componentsand all of the AXI interface components can be observed. Likewise, in Figure
5.6, for single channel implementation can be observed. In Figure 5.7 and 5.8, the closer

look of the two channels implementation and single channel implementation can be seen.
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Figure 5.6. The whole design of the single channel

In closer look of the designs, components that are being used for these designs can be
displayed. The data buses are connected together via AXI smart-connect and AXI
interconnect. These two AXI IP blocks connect the IP blocks used in the design in
conjuction with the Microblaze soft-core processor, clocks, DDR2 RAM etc.

The channel multiplexer is utilized to seperate the bus used for two interleaved signals.

The XADC wizard is set to run as dynamic reconfiguration port (DRP) mode. With this
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mode, a user can reach the signals via using the address of the related signals. Xslice IP
blocks are used to extract the 12-bit from the most significant bit of 16-bit. System ILAS
are being utilized as probes to observe the filtered signals. AX1 UART-lite is being utilized

to run serial communication between the FPGA and the PC.
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Figure 5.7. The closer look for two channels implementation
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Figure 5.8. The closer look for single channel implementation

As it mentioned before, System Generator can be utilized for simulation purposes using
Xilinx block sets. For this purpose, the noised signal is generated using band-limited white
noise to observe the digital filtering. In Figure 5.9, the whole design can be seen for
simulation purposes. The token named System Generator is utilized to set the timing,
board, producing IP block in order to implement in Vivado design tool, hardware co-
simulation, generating VHDL netlists etc. The FIR compiler v7.2 is the counterpart of the
Vivado design tool. The blocks called Gateway In and Gateway Out are blocks that are
used to interact with the Simulink blocks. Normally, the Xilinx block sets and Simulink
blocks are not connected without the Gateway In and Gateway Out. These two blocks can
be thought as inputs and outputs of the design. FFT block and registers are used for their

purposes. Scopes and spectrum analyzers are being used for observing the signals.
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Figure 5.9. System Generator design

In Figure 5.10, the generated band-limited white noise with sine wave can be seen. The

sine wave is set to 1V and 150 Hz to observe the low frequency filtering.

Figure 5.10. Noised sine wave for System Generator
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6. RESULTS

All of the filtering results, simulation outcomes, resource outcomes are explained in
detailed. 3-taps, 4-taps, 5-taps and 8-taps low-pass FIR filters are used for single channel
filtering. For these taps, 4, 5, 6 and 9 coefficients are used via FDA tool. Figure 6.1
illustrates 3-taps, Figure 6.2 illustrates 4-taps, Figure 6.3 illustrates 5-taps and Figure 6.4

illustarates 8-taps filtered signals using noisy signal showed in Figure 5.1.
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Figure 6.1. 3-taps filtered signal displayed in ILA
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Figure 6.2. 4-taps filtered signal displayed in ILA
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Figure 6.3. 5-taps filtered signal displayed in ILA



46

Waveform - hw_ila_1 2 _aX
Q + > B G AQ Y KM Ll &
ILAStatus: Ide o i

Name Value ‘s 000, |Ln 000 |15 000 |zn 000 ‘zs 000 ‘an 000 ‘as 000 ‘40 000 ‘45 000 ‘sn 000 ‘55 000 ‘sn 000 ‘ss 000

ENAVANAVAVAVAVAN

Figure 6.4. 8-taps filtered signal displayed in ILA

In addition to the hardware ILA to observe the filtered signal, a 12 bit DAC is used to
compare and observe the filtered signals in adjacent with the results obtained with ILA.
Figure 6.5 displays 3-taps filtered, Figure 6.6 displays 4-taps filtered signal, Figure 6.7
displays 5-taps filtered signal and finally, Figure 6.8 displays 8-taps filtered signal obtained
from the DAC.

In comparison with DAC, the resutls obtained from the hardware ILA are consistent with
results obtained from DAC. This also employs that hardware ILA can be trustful when

there is no DAC that can be used for these situations.

Figure 6.5. 3-taps filtered signal output of DAC
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Figure 6.6. 4-taps filtered signal output of DAC

As it can be seen from the Figure 6.5, Figure 6.6, Figure 6.7 and Figure 6.8 that even if the
test is implemented in low taps, the results is very promising as far as a low-cost FPGA is
concerned. Thanks to the architecture and optimization Xilinx, there is a greeat amount of

resource for further taps.

Figure 6.7. 5-taps filtered signal output of DAC
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Figure 6.8. 8-taps filtered signal output of DAC

As it can be seen from the Figure 6.1, 6.2 and 6.3 that digital filtering process is done and
as the greater the taps, the smoother the signal is. Input and output widths are set to 12-bit.
12-bit output are sent to the ILA to get the results displayed in Figure 6.1, 6.2 and 6.3. For
single channel DSP slice resource usage, for example, for 8-taps we need 5 DSP slices.
Thanks to the systolic MAC architecture, resource usage for DSP slice is decreased. That
being said, maximum of 478 taps FIR filter can be used for single channel. Since the used
board has maximum of 240 DSP slices.

Two channels implementation is designed and applied in this thesis. Figure 6.9 and Figure
6.10 can display the parallel two channel implementation. In this implementation, latency
is not changed and DSP slice usage is two times the single channel. 8-taps, two channel
implementation results in no latency.
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Figure 6.9. Filtered signal for third channel
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Figure 6.10. Filtered signal for eleventh channel

In resource purpose, 8 parallel channels configuration to set to see the latency and resource
usage. Table 6.1-6.7 outlines the latency and LUTs and flip-flops other than DSP slice. As
it can be seen from the tables that increase of the parallel channel (in this case maximum of
8) does not change dramatically in respect to flip-flops and LUTs. As mentioned above
maximum of 478-taps can be used for single channel. it can be seen from the results that up

to 64-taps, there are more resources if we want to increase the number of channel.

Table 6.1. DSP slice usage (for single channel)

DSP SLICE
Taps
Utilization Available Utilization %

3 2 240 0.83
4 3 240 1.25
8 5 240 2.08
16 9 240 3.75
32 17 240 7.08
64 33 240 13.75
128 65 240 27.08
256 129 240 53.75

In Table 6.1, as it can be seen that utization DSP slice usage does not increase
dramatically. As for Table 6.2, until 64 taps, it is implemented 8 parallel channel and 8
times more than DSP slice usage seen on Table 6.1. It can be said that DSP slice usage
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again does not increasing dramatically. It also shows that how the DSP slice usage can be

optimized by Xilinx itself.

Table 6.2. DSP slice usage (for 8 channels maximum)

DSP SLICE
Taps
Utilization Available Utilization %

3 16 240 6.67

4 24 240 10

8 40 240 16.67

16 72 240 30

32 136 240 56.67
64(max 7-Channel) 231 240 96.25
128(max 3-Channel) 195 240 81.25
256(max 1-Channel) 129 240 53.75

Table 6.3. LUT usage (for single channel)

LUT
Taps
Utilization Available Utilization %
3 13812 63400 21.79
4 13844 63400 21.84
8 13908 63400 21.94
16 14036 63400 22.14
32 14292 63400 22.54
64 14805 63400 23.35
128 16326 63400 25.75
256 21080 63400 33.25

The same situation continues here. For single channel usage, LUT resource usage does not
change greatly. This can be said that for the multiple channel appllication. Again, it is the

same as the before and until 64 taps it is implemented with 8 channels. Thanks to the
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Xilinx’s good optimization features, the LUT usage for multiple channel implementation,

it does not change dramatically.

Table 6.4. LUT usage (for 8 channels maximum)

DSP SLICE
Taps
Utilization Available Utilization %
3 14036 63400 22.14
4 14292 63400 22.54
8 14804 63400 23.35
16 15828 63400 24.97
32 17876 63400 28.20
64(max 7-Channel) 22629 63400 35.69
128(max 3-Channel) 21414 63400 33.78
256(max 1-Channel) 21080 63400 33.25

As it can be seen from the Table 6.5 that flip-flop usage for single channel does not change

dramatically thanks to the optimization Xilinx.

Table 6.5. Flip-flop usage (for single channel)

FLIP-FLOP
Taps
Utilization Available Utilization %
3 14769 126800 11.65
4 14802 126800 11.67
8 14900 126800 11.75
16 15096 126800 11.91
32 15488 126800 12.21
64 16272 126800 12.83
128 17840 126800 14.07
256 21044 126800 16.60
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As it mentioned above, the same situation goes on here. In comparison with one channel
implementation, flip-flop usage for multiple channel implementation, it increases slightly

thanks to the Xilinx’s optimization.

Table 6.6. Flip-flop usage (for 8 channels maximum)

FLIP-FLOP
Taps
Utilization Available Utilization %
3 15665 126800 12.35
4 15922 126800 12.56
8 16692 126800 13.16
16 18232 126800 14.38
32 21312 126800 16.81
64(max 7-Channel) 26776 126800 21.12
128(max 3-Channel) 24112 126800 19.02
256(max 1-Channel) 21044 126800 16.60

In the Table 6.7, it can be seen that latency between the single channel implementation and
multiple channel implementation remains the same. The reason why the multiple channel
implementation is fulfilled is that the latency remains the same even if 8 channels is
implemented. This feature can be useful when there is more than one signal and in

addition, it does it fast compared to DSP processors.

Ability of multichannel implementations may be required in power electronics circuits,
control circuits or communication. Based on importance of time and parallel
implementation, as it can be viewed from the Table 6.1-6.7 that FPGAs can handle this
situation successfully and give promising results even if low-cost Artix-7 model FPGA is

utilized.



Table 6.7. Latency (single channel vs 8 channels)

LATENCY (CYCLES)
Teps ?:ifr:gr:?qel Multichannel Difference
3 9 9 -
4 10 10 -
8 12 12 -
16 16 16 -
32 24 24 -
64(max 7-Channel) 40 40 -
128(max 3-Channel) 72 72 -
256(max 1-Channel) 140 - -
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As far as the power usage is concerned Vivado design tool comes to the aid. Figure 6.11

and Figure 6.12 shows the power usage for single channel and two channels

implementations. As it can be seen from the figures that the power usage difference

between the single and two channel implementation has slight difference. This shows how

this system efficient and suitable for this application.

change after implementation.
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Figure 6.11. Single channel power usage
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Figure 6.12. Two channels power usage

In System Generator side, Figure 6.9 illustrates the filtered signal. For this simulation, 32-
taps lowpass FIR filter is used. Besides, it has 500 Hz sampling frequency, 150 Hz cut-off
frequency and 200 Hz stopband frequency.

Figure 6.13. Filtered signal simulated in System Generator

Since the Simulink blocks are double formatted (i.e. 64-bit) and since the output signal
fixed point and is 12-bit, the output signal is displayed in Figure 6.9. Drastic decrease in

output width results in output signal like in Figure 6.9.




Spectrum of the noised signal and filtered signal illustrate in Figure 6.10 and Figure 6.11
respectively. As it can be seen from the spectrum of the filtered signal, the filter does not

pass fregency above 150 Hz.

Figure 6.14. Spectrum of the noised signal

Froquency (4

Figure 6.15. Spectrum of the filtered signal
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7. COMPARISON OF PERFORMANCES OF XILINX FPGAs

Xilinx’s 7-Series FPGA family consists of four elements regarding cost and performance.
This family ranges from short cost, little form factor, cost sensitive, superior performance
practices to superior connectivity bandwidth, logic capability and most importantly signal

processing capacity for the various applications. These family members are named as;

e Spartan-7 Series: Short cost, least power, superior 1/O performance and small form-
factor.

e Artix-7 Series: For little power practices related to serial transceivers and superior DSP
and logic outcome. This makes this series lowest material cost for superior outcome and
cost sensitive practices.

e Kintex-7 Series: Topnotch price productivity with a X2 improvement by comparison
with the prior generations.

e Virtex-7 Series: High-end system performance and capacity compared to other series of

family.

Figure 7.1 can display the summary of the phrases mentioned above. The higher the

performance they give, the lower the form-factor get smaller.

45nm 28nm 20nm 16nm

5 | ,

UraSCALE

3 ’ ‘

UtraSCALE

Increasing Performance and Functionality

Figure 7.1. Xilinx 7-Series FPGA family
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As for the DSP capability, Xilinx 7-Series FPGAs can really handle what users want from
performance wise. DSP slices with 25 x 18 multiplier, 48-bit accumulator, and pre-adder

for superior-performance filtering, includes optimised symmetric coefficient filtering.

- - - - -
Digital Signal Processing Metrics
DSP Slice Count
XCTSE Spartan®-7 FPGAs
HCT515 % Speed grade -1 -2
:g;i;; ey [MH2] 464 550
XCTSTS Max GMAC/s 148 176
KC7s100 Artin®-7 FPGAs
:E;:E: % Speed grade -1 -2 -3
xc7aosT Fyqay [MH2] 454 550 628
xc7a3sT  Edl Max GMAC/s 686 814 929
xcrasor  [EEA
xczazsT  EED Kintex®-7 FPGAs
xcratooT  ETE
NCTA200T Speed grade -1 -2 -3
Mo 220 | Fyqay [MH2] 454 550 741
oSG 500 | Max GMAC/s 1,781 2,112 2,845
pofcrlg 0 0 840 |
xereassT [T Virtex®-7 FPGAs
xcrearor [ T
KCTKezoT Speed grade 12 3
xcrrszot (N T Foax [MHZ] 547 550 741
xcrvsssT I N Max GMAC/s 2,756 3,276 3,734
xezvzooor [ T
XCTVXII0T
xervxarsT [T
KCTVXASST
XCTVHS50T
eVl 3600 |
xervxesor [
st 00000000 3360 |
XCTVHSEOT
xcrvazzor [ T

Figure 7.2. Xilinx 7-Series FPGAs DSP performance

As Figure 7.2 depicts that, whilst the DSP performance and slices increases, family
members gets powerful. XC7S, XC7A, XC7K and XC7V are named as Spartan, Artix,
Kintex and Virtex respectively.
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8. CONCLUSION

Various taps and low pass FIR filters are implemented in FPGA. Systolic Multiply-
Accumulator architecture is used to preserve resource. As it can be seen from the results
that parallel multichannel implementation is possible as long as the DSP slice is available.
For one channel, 478 taps can be executed to fully use the DSP slice. 8-channel is executed
to show parallel implementation, however, it can be seen from the results that up to 64 taps,
there are more resources if we want to increase the number of channel. The Flip-flops and
LUTSs change slightly with respect to the number of taps and parallel multichannel. As long
as DSP slice is available for multichannel implementation, latency does not change. Filtered
signals are captured through ILA and DAC. Phase difference between the original noisy
signal and the filtered signal is small. In this implementation, it is seen that hardwares that
are based on FPGA parallel data processing capabilities can get rid of the unwanted portions
of signals with FIR filters in minimum time considerations. The low cost Artix 7-series
FPGA with low-taps filter the noisy signal as intended. Considering the cost of the
conventional DSP processors, as it can be seen that an FPGA with DSP handling

capabilities displays better results.

Noisy signals which are involved to control cycle without filtering cause some troubles
related to instability and misdetection. Yet another important issue is that the systems that
are processed only microprocessors have performance and response time loss due to long
time of filtering the signals. In power electronics applications, a large number of signals
mostly included switching noises need to read and evaluate regarding protection or control.
That is why the need of filtering the signals with minimum latency is a must to enhance the

performance of the systems.

Minimum latency and parallel multichannel processing features enable the users to real-
time process with no latency for critical systems such as power electronic devices used for
smart grids for the future scope and also the unwanted portions of the signals (noise) that
are produced from switching devices etc. can be eliminated. Thanks to the parallel
processing implementation feature of the FPGAs, the users can use these systems required

high speed applications.



60

Finally, Artix-7 FPGA used in this implementation is up to date, low-cost and shows high
performance. Time considerations acquired from the results could be used as benchmark

timings for further implementations and applications.
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