

KOHEZYONLU ZEMİNLER İÇİN ÖNERİLEN SPT İLE ZEMİN DAYANIMI VE SIKIŞABİLİRLİK ÖZELLİKLERİ ARASINDAKİ İLİŞKİLERİN TÜRKİYE ZEMİN KOŞULLARI İÇİN İRDELENMESİ

Ertaç TUÇ

YÜKSEK LİSANS TEZİ İNŞAAT MÜHENDİSLİĞİ ANA BİLİM DALI

GAZİ ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ

OCAK 2019

Ertaç TUÇ tarafından hazırlanan "KOHEZYONLU ZEMİNLER İÇİN ÖNERİLEN SPT İLE ZEMİN DAYANIMI VE SIKIŞABİLİRLİK ÖZELLİKLERİ ARASINDAKİ İLİŞKİLERİN TÜRKİYE ZEMİN KOŞULLARI İÇİN İRDELENMESİ" adlı tez çalışması aşağıdaki jüri tarafından OY BİRLİĞİ ile Gazi Üniversitesi İnşaat Mühendisliği Ana Bilim Dalında YÜKSEK LİSANS TEZİ olarak kabul edilmiştir.

Danışman: Prof. Dr. Sami Oğuzhan AKBAŞ	
İnşaat Mühendisliği Ana Bilim Dalı, Gazi Üniversitesi	
Bu tezin, kapsam ve kalite olarak Yüksek Lisans Tezi olduğunu onaylıyorum.	
Başkan: Dr. Öğretim Üyesi Nabi Kartal TOKER	
İnşaat Mühendisliği Ana Bilim Dalı, Orta Doğu Teknik Üniversitesi	
Bu tezin, kapsam ve kalite olarak Yüksek Lisans Tezi olduğunu onaylıyorum.	
Üye: Prof. Dr. Nail ÜNSAL	
İnşaat Mühendisliği Ana Bilim Dalı, Gazi Üniversitesi	
Bu tezin, kapsam ve kalite olarak Yüksek Lisans Tezi olduğunu onaylıyorum.	

Tez Savunma Tarihi: 03/01/2019

Jüri tarafından kabul edilen bu tezin Yüksek Lisans Tezi olması için gerekli şartları yerine getirdiğini onaylıyorum.

.....

Prof. Dr. Sena YAŞYERLİ Fen Bilimleri Enstitüsü Müdürü

ETİK BEYAN

Gazi Üniversitesi Fen Bilimleri Enstitüsü Tez Yazım Kurallarına uygun olarak hazırladığım bu tez çalışmasında;

- Tez içinde sunduğum verileri, bilgileri ve dokümanları akademik ve etik kurallar çerçevesinde elde ettiğimi,
- Tüm bilgi, belge, değerlendirme ve sonuçları bilimsel etik ve ahlak kurallarına uygun olarak sunduğumu,
- Tez çalışmasında yararlandığım eserlerin tümüne uygun atıfta bulunarak kaynak gösterdiğimi,
- Kullanılan verilerde herhangi bir değişiklik yapmadığımı,
- Bu tezde sunduğum çalışmanın özgün olduğunu,

bildirir, aksi bir durumda aleyhime doğabilecek tüm hak kayıplarını kabullendiğimi beyan ederim.

Ertaç TUÇ 03/01/2019

KOHEZYONLU ZEMİNLER İÇİN ÖNERİLEN SPT İLE ZEMİN DAYANIMI VE SIKIŞABİLİRLİK ÖZELLİKLERİ ARASINDAKİ İLİŞKİLERİN TÜRKİYE ZEMİN KOŞULLARI İÇİN İRDELENMESİ

(Yüksek Lisans Tezi)

Ertaç TUÇ

GAZİ ÜNİVERSİTESİ

FEN BİLİMLERİ ENSTİTÜSÜ

Ocak 2019

ÖZET

Nispeten kolay belirlenen zemin parametrelerinin yardımı ile diğer zemin parametrelerinin tahminini sağlayan korelasyonlar veya ampirik denklemler geoteknik mühendisliğinde yaygın biçimde kullanılmaktadır. Söz konusu korelasyonların, en iyimser yaklaşımla dahi, zemin türü, parametrenin tespitinde kullanılan deney çeşidi ve zeminin homojenliğinden etkileneceği açıktır. Bu sebeple, literatürde yer verilen çok sayıda ampirik denklemin her birinin lokal şartlar için yeterli güvenilirlik ve geçerlilikte olması beklenemez. Yerel veri kullanılarak elde edilen korelasyonlara hızlı, ucuz ve güvenilir parametre tahmini için ihtiyaç duyulmaktadır. Kohezyonlu zeminler için sıkışma indisi, hacimsel sıkışma indisi ve drenajsız kayma dayanımı ile ilgili olarak doğal su muhtevası, likit limit, plastisite indeksi, SPT N darbe sayısı vb. birçok değişkene bağlı çok sayıda korelasyona ulaşmak mümkündür. Bu korelasyonların, alışkanlıklar çerçevesinde bölgesel zemin koşulları ve ampirik denklemin oluşturulduğu veri setine ait geoteknik özelliklerin uygulama sahasına benzerliği dikkate alınmadan parametre tayininde kullanılabildiği ve tasarımların da bu sonuçlara göre yapılabildiği gözlenmektedir. Bu çalışmada literatürde bulunan çok sayıda korelasyonun yerel (Ankara ve Türkiye) zemin koşullarındaki geçerlilikleri sıkışma indisi (Cc) için 283, hacimsel sıkışma indisi (mv) için 962, drenajsız kayma dayanımı (cu) için 864 adet yüksek kalitede laboratuvar verisi kullanılarak incelenmiştir. Bu amaçla, söz konusu korelasyonlar kök ortalama kare hata (RMSE), sapma faktörü (K), sıralama indisi (RI), sıralama mesafesi (RD) ve Theil eşitsizlik katsayısı (TIC) olmak üzere beş farklı istatistiksel ölçüt kullanılarak kıyaslanmıştır. Literatürde yer verilen korelasyonların yerel zemin koşulları için en başarılıları ve başarışızları belirtilmiştir.

Bilim Kodu	:	91105
Anahtar Kelimeler	:	Hacimsel sıkışma indisi, drenajsız kayma dayanımı, plastisite indisi, sıkışma indisi, korelasyon, SPT
Sayfa Adedi	:	86
Danışman	:	Prof. Dr. Sami Oğuzhan AKBAŞ

EVALUATION OF SPT - SOIL STRENGTH AND COMPRESSIBILITY CORRELATIONS FOR COHESIVE SOIL CONDITIONS IN TURKEY

(M. Sc. Thesis)

Ertaç TUÇ

GAZİ UNIVERSITY

GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

January 2019

ABSTRACT

The correlations and empirical equations that are developed for determination of soil parameters using easily determined ones are used in geotechnical engineering. It is quite clear that the aforementioned correlations are at least affected by soil type, the laboratory test type used in determination of parameter and soil homogeneity. Therefore, it can not be expected that, each of the empirical equations suggested in the literature is reliable and valid for all conditions. Correlations that are developed for local soils are needed for fast, economic and reliable parameter estimation. There are many correlations in the literature that are based on natural water content, liquid limit, plasticity index, SPT N blow counts, etc. for the determination of compression index, modulus of volume compressibility and undrained shear strength. These correlations are used for estimating soil parameters without taking into consideration the local soil conditions and similarity of the geotechnical properties of the set of data used in developing the empirical correlations and project area. It is also observed that designs are based on these thoughtlessly determined parameters. In this study, reliability and validity of the existing correlations on determination of compression index (C_c), coefficient of volume compressibility (m_v) and undrained shear strength (c_u) of local soil conditions are investigated using a database of 283, 962 and 864 high quality laboratory data for each parameter, respectively. The correlations are compared using five different statistical variable namely; root square mean error (RMSE), ratio of estimated to determined parameters (K), ranking index (RI), ranking distance (RD) and theil inequality coefficient (TIC) for this purpose. Also, the most and least successful correlations are determined for local soil conditions.

Science Code	:	91105
Key Words	:	Index of volume compressibility, undrained shear strength, plasticity index, compression index, correlation, spt
Page Number	:	86
Supervisor	:	Prof. Dr. Sami Oğuzhan AKBAŞ

TEŞEKKÜR

Bu çalışmanın gerçekleştirilmesinde ve yüksek lisans eğitimim süresince değerli bilgilerini benimle paylaşan, kendisine ne zaman danışsam bana kıymetli zamanını ayırıp sabırla destek olan ve gelecekteki mesleki hayatımda da bana verdiği değerli bilgilerden faydalanacağımı düşündüğüm danışman hocam Prof. Dr. Sami Oğuzhan Akbaş'a çok teşekkür ediyorum. Yine bana yüksek lisans eğitimine başlamam için cesaret veren ve eğitimimim her aşamasında yanımda olan, sonsuz bir özveri ve sabırla bana destek olan arkadaşım, abim İnşaat Yüksek Mühendisi Mehmet As'a sonsuz teşekkürlerimi sunuyorum. Çalışmam kapsamında kullandığım verileri sağlayan, 2010 yılından beridir de çalışanı olduğum Toker Sondaj ve İnşaat Müh. Müş. A.Ş.'ye ve firmanın zemin mekaniği laboratuvarındaki çalışma arkadaşlarıma teşekkür ediyorum. Son olarak Gazi Üniversitesi İnşaat Mühendisliği bölümünde ders aldığım tüm hocalarım ile her zaman yanımda olan ve tüm eğitim yaşamım süresince aldığım kararların arkasında duran değerli aileme teşekkür ediyorum.

İÇİNDEKİLER

ÖZET	iv
ABSTRACT	v
TEŞEKKÜR	vi
İÇİNDEKİLER	vii
ÇİZELGELERİN LİSTESİ	ix
ŞEKİLLERİN LİSTESİ	X
SİMGELER VE KISALTMALAR	xiii
1. GİRİŞ	1
2. SAHA ARAŞTIRMALARI VE LABORATUVAR DENEYLERİ	5
2.1. Zemin Araştırmaları	5
2.2. Saha Deneyleri	7
2.2.1. Standart penetrasyon deneyi (SPT)	7
2.2.2. Presiyometre deneyi	12
2.3. Laboratuvar Deneyleri	15
2.3.1. Üç eksenli basınç deneyi	16
2.3.2. Serbest basınç deneyi	17
2.3.3.Konsolidasyon deneyi	18
3. MATERYAL, YÖNTEM VE İSTATİSTİKSEL DEĞERLENDİRME	23
3.1. İstatistiksel Değerlendirme	25
3.1.1. Kök ortalama kare hata (RMSE)	25
3.1.2. Sapma faktörü (K)	25
3.1.3. Sıralama indisi (RI)	26
3.1.4. Sıralama mesafesi (RD)	27
3.1.5. Theil eşitsizlik katsayısı (TIC)	27

Sayfa

4. ANALİZLER	29
4.1. Sıkışma indisi (C _c)	29
4.1.1. Analizler	30
4.2. Drenajsız kayma dayanımı (c _u)	35
4.2.1. Analizler	36
4.3. Hacimsel sıkışma indisi (m _v)	46
4.3.1. Analizler	48
5. SONUÇ VE ÖNERİLER	69
KAYNAKLAR	77
EKLER	81
EK-1. Çalışma kapsamında kullanılan proje sahalarına ait bilgiler	82
ÖZGEÇMİŞ	86

viii

ÇİZELGELERİN LİSTESİ

Çizelge	Sayfa
Çizelge 1.1.	Türkiye'deki geoteknik raporlar kapsamında numune ve karot alımı ileilgiliinceleme kriterleri ve sonuçların yüzdesel değerleri2
Çizelge 1.2.	Türkiye'deki geoteknik raporlar kapsamında laboratuvar ile ilgiliinceleme kriterleri ve sonuçların yüzdesel değerleri2
Çizelge 2.1.	Zemin araştırma çalışmaları maliyetleri
Çizelge 2.2.	Ülkelere göre şahmerdan ve düşürme mekanizmasına bağlı şahmerdan verimleri
Çizelge 2.3.	Delgi çapı, tij uzunluğu ve örnekleyici düzeltmeleri
Çizelge 2.4.	SPT'nin avantajları ve dezavantajları 11
Çizelge 3.1.	Çalışma kapsamında kullanılan proje sahaları ile ilgili bilgiler 24
Çizelge 3.2.	K<1 değerlerinin yüzdesine bağlı emniyet derecesi
Çizelge 4.1.	Çalışma kapsamında kullanılan belirleyici istatistiksel değişkenler30
Çizelge 4.2.	Çalışma kapsamında incelenen korelasyonlar 31
Çizelge 4.3.	K<1 RMSE, K,RI ve RD analiz sonuçları
Çizelge 4.4.	Drenajsız kayma dayanımı ve SPT darbe sayısı arasındaki korelasyonlar
Çizelge 4.5.	Serbest basınç (SB) deneyi verileri kullanılarak yapılan çalışmalar 37
Çizelge 4.6.	Üç eksenli basınç (UU Yöntem 1) deneyi verileri kullanılarak yapılan çalışmalar
Çizelge 4.7.	Üç eksenli basınç (UU Yöntem 2) deneyi verileri kullanılarak yapılan çalışmalar
Çizelge 4.8.	Stroud (1974) tarafından önerilen korelasyon ile ilgili değerlendirmeler $(f_{1stroud} / f_1)$
Çizelge 4.9.	Zemin Sınıfı, N ₆₀ , PI ve σ_v ' değerlerine bağlı veri grupları

Çizelge 4.10. Stroud (1974) tarafından önerilen korelasyon ile ilgili değerlendirmeler 67

ŞEKİLLERİN LİSTESİ

Şekil	Sayfa
Şekil 2.1. Zemin araştırma çalışmaları aşamaları	6
Şekil 2.2. Halatlı sistem uygulanarak SPT deneyi yapılması	8
Şekil 2.3. SPT numune alıcısının boy kesiti	9
Şekil 2.4. Menard tipi presiyometre cihazı ve ekipmanları	12
Şekil 2.5. Presiyometre deneyi şematik eskizi	13
Şekil 2.6. Düzeltilmiş basınç-düzeltilmiş hacim grafiği	14
Şekil 2.7. Laboratuvar deneyleri	15
Şekil 2.8. Üç eksenli deney hücresi düzeneği	17
Şekil 2.9. Ödometre	20
Şekil 3.1. Çalışmada kullanılan rapor adetlerinin illere göre dağılımı	23
Şekil 4.1. Korelasyonlardan hesaplanan C _c - laboratuvarda ölçülen C _c (korelasyon 1 10)	- 32
Şekil 4.2. Korelasyonlardan hesaplanan C_c - laboratuvarda ölçülen C_c (korelasyon 11-20)	33
Şekil 4.3. Üç eksenli deneylerinden hesaplanan drenajsız kayma dayanımları	35
Şekil 4.4. SPT N ₆₀ - c _u - PI ilişkisi	39
Şekil 4.5. c _u - PI ilişkisi (SB deneyi)	40
Şekil 4.6. f _{1stroud} / f ₁ dağılımı (SB deneyi)	40
Şekil 4.7. cu - PI ilişkisi (UU Yöntem 1)	41
Şekil 4.8. f1stroud / f1 dağılımı (UU Yöntem 1)	41
Şekil 4.9. cu - PI ilişkisi (UU Yöntem 2)	42
Şekil 4.10. f _{1stroud} / f ₁ dağılımı (UU Yöntem 2)	42
Şekil 4.11. c _u - PI ilişkisi (SB deneyi, saha ortalamaları)	43
Şekil 4.12. f1stroud / f1 dağılımı (SB deneyi, saha ortalamaları)	43
Şekil 4.13. cu - PI ilişkisi (UU Yöntem 1, saha ortalamaları)	44

Şekil Sa	yfa
Şekil 4.14. f1stroud / f1 dağılımı (UU Yöntem 1, saha ortalamaları)	44
Şekil 4.15. cu - PI ilişkisi (UU Yöntem 2, saha ortalamaları)	45
Şekil 4.16. f1stroud / f1 dağılımı (UU Yöntem 2, saha ortalamaları)	45
Şekil 4.17. SPT N ₆₀ - m _v - PI ilişkisi	47
Şekil 4.18. Kullanılan laboratuvar verilerinin USCS göre dağılımı	48
Şekil 4.19. m _v - PI ilişkisi (tüm veriler)	50
Şekil 4.20. f _{2stroud} / f ₂ dağılımı (tüm veriler)	50
Şekil 4.21. m _v - PI ilişkisi (saha ortalamaları)	51
Şekil 4.22. f _{2stroud} / f ₂ dağılımı (saha ortalamaları)	51
Şekil 4.23. m _v - PI ilişkisi (SC, SM, GC, GM, SC-SM)	52
Şekil 4.24. f _{2stroud} / f ₂ dağılımı (SC, SM, GC, GM, SC-SM)	52
Şekil 4.25. m _v - PI ilişkisi (OH, OL)	53
Şekil 4.26. f _{2stroud} / f ₂ dağılımı (OH, OL)	53
Şekil 4.27. m _v - PI ilişkisi (MH, ML)	54
Şekil 4.28. f _{2stroud} / f ₂ dağılımı (MH, ML)	54
Şekil 4.29. m _v & PI ilişkisi (CH, CL)	55
Şekil 4.30. f _{2stroud} / f ₂ dağılımı (CH, CL)	55
Şekil 4.31. m _v - PI ilişkisi (CH, CL, saha ortalamaları)	56
Şekil 4.32. f _{2stroud} / f ₂ dağılımı (CH, CL, saha ortalamaları)	56
Şekil 4.33. m _v - PI ilişkisi (4 <sptn<sub>60≤15)</sptn<sub>	57
Şekil 4.34. $f_{2stroud} / f_2 \text{ dağılımı} (4 < SPTN_{60} \le 15)$	57
Şekil 4.35. m _v - PI ilişkisi (15 <sptn<sub>60≤30)</sptn<sub>	58
Şekil 4.36. f _{2stroud} / f ₂ dağılımı (15 <sptn<sub>60≤30)</sptn<sub>	58
Şekil 4.37. m _v - PI ilişkisi (SPTN ₆₀ >30)	59
Şekil 4.38. f _{2stroud} / f ₂ dağılımı (SPTN ₆₀ >30)	59
Şekil 4.39. m _v - PI ilişkisi (PI < 20 – düşük plastisiteli zeminler)	60

xi

Sayfa

Şekil 4.40. f _{2stroud} / f ₂ dağılımı ($PI < 20 - d$ üşük plastisiteli zeminler)	60
Şekil 4.41. m _v - PI ilişkisi ($20 \le PI \le 30$ - orta plastisiteli zeminler)	61
Şekil 4.42. f _{2stroud} / f ₂ dağılımı ($20 \le PI \le 30$ - orta plastisiteli zeminler)	61
Şekil 4.43. m _v - PI ilişkisi (PI > 30 - yüksek plastisiteli zeminler)	62
Şekil 4.44. f _{2stroud} / f ₂ dağılımı (PI > 30 - yüksek plastisiteli zeminler)	62
Şekil 4.45. m _v - PI ilişkisi ($\sigma_v' \le 200 \text{ kPa}$)	63
Şekil 4.46. f _{2stroud} / f ₂ dağılımı ($\sigma_v' \leq 200 \text{ kPa}$)	63
Şekil 4.47. m _v - PI ilişkisi (200 < $\sigma_v' \le 400$ kPa)	64
Şekil 4.48. f _{2stroud} / f ₂ dağılımı (200 < $\sigma_v' \le 400$ kPa)	64
Şekil 4.49. m _v - PI ilişkisi (400 < $\sigma_v' \leq 600$ kPa)	65
Şekil 4.50. f2stroud / f2 dağılımı (400 < $\sigma_v' \leq 600 \ kPa$)	65
Şekil 4.51. m _v - PI ilişkisi (σ _v ' >600 kPa)	66
Şekil 4.52. f _{2stroud} / f ₂ dağılımı (σ_v ' >600 kPa)	66
Şekil 5.1. Sıkışma indisi (Cc) - başlangıç boşluk oranı (e0) ilişkisi	70
Şekil 5.2. m _v - PI ilişkisi (CH,CL, 4 <spt n<sub="">60 ve $\sigma'_v > 200$ kPa)</spt>	72
Şekil 5.3. f _{2stroud} / f ₂ dağılımı (CH - CL, 4 <sptn<sub>60 ve $\sigma'_v > 200$ kPa)</sptn<sub>	73
Şekil 5.4. Bu çalışma kapsamında önerilen f2 - PI ilişkisi	74
Şekil 5.5. Bu çalışma kapsamında önerilen f2 - PI ilişkisi ile ilgili denklem	74

Şekil

SİMGELER VE KISALTMALAR

Bu çalışmada kullanılmış simgeler ve kısaltmalar, açıklamaları ile birlikte aşağıda sunulmuştur.

Simgeler	Açıklamalar
C _B	Delgi çapı düzeltmesi
C _{BF}	Darbe hızı düzeltmesi
Cc	Sıkışma indisi
CE	Enerji düzeltmesi
СН	Yüksek plastisiteli kil
CL	Düşük plastisiteli kil
C _N	Jeolojik yük düzeltmesi
C _R	Tij uzunluğu düzeltmesi
Cs	Numune alıcı düzeltmesi
Cu	Drenajsız kayma dayanımı
e	Boşluk oranı
E _p	Presiyometre modülü
Em	Enerji verimi
eo	Başlangıç boşluk oranı
GC	Killi çakıl
Gs	Özgül ağırlık
kN	Kilonewton
kPa	Kilopaskal
LL	Likit limit
m ²	Metrekare
m ³	Metreküp
MH	Yüksek plastisiteli silt
ML	Düşük plastisiteli silt
m _v	Hacimsel sıkışma indisi
Ν	Standart penetrasyon deneyi darbe sayısı
N ₆₀	%60 Enerji seviyesine göre düzeltilmiş darbe sayısı

Açıklamalar
Yüksek plastisiteli organik malzeme
Düşük plastisiteli organik malzeme
Sünme basıncı
Plastisite indeksi
Zeminin denge yatay basıncı
Plastik limit
Presiyometre limit basıncı
Presiyometre net limit basınç değeri
Serbest basınç deneyi
Killi kum
Örselenmemiş numune
Konsolidasyonsuz drenajsız üç eksenli basınç deneyi
Doğal su muhtevası
İçsel sürtünme açısı
Efektif basınç

ASTM	American Society for Testing and Materials
BS	British standart
CEN	Comité European de Normalization
ISO	International Organization for Standardization
K	Sapma Faktörü
RD	Sıralama Mesafesi
RI	Sıralama İndisi
RMSE	Kök Ortalama Kare Hata
SPT	Standart Penetrasyon Deneyi
TIC	Theil Eşitsizlik Katsayısı
TS	Türk Standardı

Açıklamalar

Kısaltmalar

1. GİRİŞ

Günümüzde proje sürelerinin ve ödeneklerin kısıtlığı, zemin araştırma raporlarına yeterli önem verilmemesine ve istisnalar dışındaki projelerde zemin koşullarının değerlendirilmesi için yeterli miktarda saha ve laboratuvar deneyi yapılamamasına yol açabilmektedir.

Özellikle zeminin dayanım ve deformasyon özelliklerinin laboratuvar koşullarında belirlenmesi için yapılan ve temel sistemi değerlendirilmesinde büyük önem taşıyan üç eksenli dayanım ve konsolidasyon deneyleri, özel ekipman gereksinimleri ve test süreleri (konsolidasyon deneyi için yaklaşık 10 gün) dikkate alındığında yetersiz sayı ve kalitede yapılabilmektedir. Bu durumda geoteknik değerlendirmeler yetersiz sayıda laboratuvar deney sonucuna dayandırılmaktadır. Laboratuvar sonuçlarının yetersiz olması durumunda kullanılan bir yöntem, arazi deneyleri kullanarak zemin parametrelerinin genellikle ampirik yaklaşımlar ile belirlenmesi ve bu parametreler yardımıyla tasarımın gerçekleştirilmesidir.

Özyurt ve Toker (2012) tarafından Türkiye'de parsel bazında yapılan zemin etüt raporları kullanılarak gerçekleştirilen "Geoteknik Etüt Raporlarındaki Yaygın Hataların Belirlenmesi ve İstatistiksel Değerlendirilmesi" başlıklı çalışma, Türkiye'deki numune alımı, laboratuvar deneyleri vb. konulardaki eksiklikleri istatistiksel olarak ortaya koymaktadır. Bu raporda sunulan numune ve karot alımı ve laboratuvar deneyleri ile ilgili inceleme kriterlerinin sayısal değerlendirilmesi sırasıyla Çizelge 1.1 ve 1.2'de sunulmaktadır.

Zeminlerin dayanım ve deformasyon özelliklerinin güvenli biçimde belirlenebilmesi için ideal olarak sahadan özenli bir şekilde örselenmemiş numune alınması önem taşımaktadır. Çizelge 1.1 ve 1.2'den görülebileceği üzere zeminin her tabakasından örselenmemiş numune alınma ve bu tabakalar için gerekli deneylerin yapılma oranı çok düşüktür. Bu durumda da tasarım için yeterli miktarda laboratuvar verisi ortaya konulamamakta ve bu eksiklik saha deneylerine bağlı ampirik korelasyonlar kullanılarak giderilmeye çalışılmaktadır.

Çizelge 1.1. Türkiye'deki geoteknik raporlar kapsamında numune ve karot alımı ile ilgili inceleme kriterleri ve sonuçların yüzdesel değerleri (Özyurt ve Toker, 2012)

	Evet	Hayır
Her tabakadan örselenmemiş numune alınmış mı?	%7	%93
Kayada karot alınmış mı?	%86	%14
Alınan numune veya karot sayıları yeterli mi?	%17	%83
Karot parametreleri belirtilmiş mi? (RQD, TCR)	%100 RQD, %75 TCR	

Çizelge 1.2. Türkiye'deki geoteknik raporlar kapsamında laboratuvar ile ilgili inceleme kriterleri ve sonuçların yüzdesel değerleri (Özyurt ve Toker, 2012)

	Evet	Hayır
Laboratuvar testleri her bir katman için yapılıyor mu? (mühendislik parametreleri belirlenmesi)	%3	%97
Laboratuvar testleri her bir katman için yapılıyor mu? (İndeks ve sınıflandırma)	%17	%83
Konsolidasyon deneyi var mı?	%70	%30
Konsolidasyon deneyinde boşaltma-yeniden yükleme işlemi yapılmış mı?	%0	%100
Üç eksenli basınç deneyi yapılmış mı?	%49	%51
Yenilme zarfının belirlenmesinde üç adet Mohr dairesi kullanılmış mı?	%0	%100
Mohr daireleri birbirinden yeterince uzak mı?	%67	%33
Üc eksenli deney sonucuna göre yenilme zarfı düzgün/uygun çizilmiş mi?	%83	%17
Karot örnekleri üzerinde hangi laboratuvar testleri yapılmış? (Nokta yükleme deneyi, Tek eksenli basınç dayanımı)	%96 nokta yükleme %4 tek eksenli sıkışma	

Literatürde killer için endeks özellikleri ve saha deneylerine bağlı olarak zeminin kayma dayanımı ve deformasyon özellikleri ile ilgili birçok korelasyon yer almaktadır. Genelde birçok farklı zemine ait veri kullanılarak oluşturulan korelasyonlar, zaman zaman ilgili proje sahasına ait zemin koşulları dikkate alınmadan bilinçsiz bir şekilde parametre tayininde kullanılabilmektedir. Bu durum dikkate alınarak, çalışmamızda kohezyonlu zeminler için arazi deneyleri ile dayanım ve deformasyon özellikleri arasındaki ilişkilerin sadece Türkiye saha verileri kullanılarak istatistiksel olarak incelenmesi amaçlanmaktadır.

Bu noktadan hareketle bu çalışmada; öncelikli olarak Türkiye'de ve dünyada yaygın olarak kullanılan saha araştırmaları ve laboratuvar deneyleri hakkında bilgiler (Bölüm 2), çalışma kapsamında kullanılan materyal, yöntem ve istatistik değerlendirme hakkında bilgiler (Bölüm 3), literatürde hacimsel sıkışma indisi (m_v), sıkışma indisi (c_c) ve drenajsız kayma dayanımı (c_u) için verilen korelasyonların Türkiye ve Ankara özelinde geçerliliği ile ilgili yapılan analizler ve değerlendirmeler (Bölüm 4) ve son olarak çalışma sonucunda elde edilen bulguların genel bir değerlendirmesini içeren sonuç ve öneriler (Bölüm 5) sunulmaktadır.

2. SAHA ARAŞTIRMALARI VE LABORATUVAR DENEYLERİ

Geoteknik tasarım aşamasında kullanılmak üzere zemin profilinin ve zemin profilinde yer alan her bir katmana ait özelliklerin tayini amacı ile detaylı saha araştırmaları ve laboratuvar deneylerine gereksinim duyulmaktadır.

2.1. Zemin Araştırmaları

Rowe (1972) tarafından yapılan çalışma kapsamında değişik iş kalemleri için zemin araştırma çalışmalarının maliyetinin toplam yatırım maliyeti ve toprak işleri ve temel maliyetinin yüzdesi cinsinden belirlenen değeri Çizelge 2.1' de sunulmaktadır.

İnşaat Türü	Toplam Yatırım Maliyetinin Yüzdesi Cinsinden	Toprak İşleri ve Temel İnşaatı Maliyetinin Yüzdesi Cinsinden
Toprak Barajlar	0,89- 3,30	1,14- 5,20
Dolgu	0,12- 0,19	0,16- 0,20
Rıhtım	0,23- 0,50	0,41- 1,67
Köprüler	0,12- 0,50	0,26- 1,30
Binalar	0,05- 0,22	0,50- 2,00
Yollar	0,20- 1,55	1,60- 5,67
Demiryolları	0,60- 2,00	3,5
Genel Ortalama	0,70	1,5

Çizelge 2.1. Zemin araştırma çalışmaları maliyetleri (Rowe, 1972)

Zemin araştırma çalışmaları genel olarak ofis ön çalışmaları, saha gezisi, planlama, uygulama ve raporlama aşamalarından oluşmaktadır. Her bir aşamada yapılan çalışmalar Şekil 2.1'de özetlenmektedir.

1	
•	
	•

Ofis Ön Çalışmaları	 Eski ve Yeni Topografik Haritaların İncelenmesi Hava Fotoğraflarının İncelenmesi Yakın Sahalarda Yapılan Çalışmaların İncelenmesi Proje Sahası için Yapılan Eski Çalışmaların İncelenmesi Mevcut Jeolojik Haritaların İncelenmesi
Saha Gezisi	 Topografyanın Kontrolü Saha Ulaşım İmkanlarının İncelenmesi Şev Stabilite Problemlerinin Gözlenmesi Açık Şevlerin İncelenmesi Büzülme Çatlaklarının İncelenmesi Komşu Yapılara ait Temel Sistemlerinin İncelenmesi Yüzey Zemininin İncelenmesi Çevresel Kirliliğinin Gözlenmesi Yüzey Sularının Gözlenmesi
Planlama	 Sondaj Sayısı, Derinliği, Yeri, Aralığı Araştırma Kuyusu Sayısı, Derinliği, Yeri, Aralığı Sondaj Metodu Numune Tipi, Adedi Laboratuvar Deney Tipi ve Adedi Saha Deneylerinin Tipi ve Adedi
Uygulama	• Sondaj Yapımı • Araştırma Çukuru Açılması • Saha Deneylerinin Yapılması • Laboratuvar Deneylerinin Yapılması
Raporlama	•Arazi Verileri Sunumu •Arazi Çalışmaları Raporu •Geoteknik (Tasarım) Raporu

Şekil 2.1. Zemin araştırma çalışmaları aşamaları

2.2. Saha Deneyleri

Zemin araştırmaları kapsamında yapılan saha deneylerinin en sık kullanılanları aşağıda özetlenmektedir.

- 1. Standart Penetrasyon Deneyi (SPT)
- 2. Dinamik Penetrasyon Deneyi (DPT)
- 3. Konik Penetrasyon Deneyi (CPT)
- 4. Kanatlı Kesici Deneyi (VST)
- 5. Plaka Yükleme Deneyi (PLT)
- 6. Presiyometre Deneyi (PMT)
- 7. Dilatometre Deneyi (DMT)

Ülkemizde yaygın olarak kullanılan deneyler Standart Penetrasyon ve Presiyometre deneyleridir. İlgili deney yöntemleri aşağıda özetlenmektedir.

2.2.1. Standart penetrasyon deneyi (SPT)

Zemin araştırmalarında en yaygın kullanılan yöntemlerden biri olan Standart Penetrasyon Deneyi; standart boyutlardaki yarık tüpün, 623 N (63.5 kg) ağırlığındaki bir şahmerdanın, 76±0.030cm'den düşürülmesi suretiyle zemine çakılması esasına dayanan dinamik bir sonda deneyidir (Şekil 2.2.).

Şekil 2.2. Halatlı sistem uygulanarak SPT deneyi yapılması (Coduto, 2001: 117)

Standart penetrasyon testleri homojen zeminlerde 1.50m veya daha dar aralıkla yapılmakta olup ayrıca zemin katmanının değiştiği her seviyede gerçekleştirilmelidir. ASTM D-1586'da önerilen test prosedürü aşağıda özetlenmiştir:

- Sondaj, istenilen numune derinliğine kadar ilerletilir. Eğer kuyuda yıkıntı varsa muhafaza borusu kullanılır.
- Penetrometre tije takılır ve deney yapılacak seviyeye kadar zemine düşürmeden kuyu tabanına indirilir.
- Örnekleyicinin net ağırlığı, tijler, şahmerdan ve boş ağırlık kuyu dibine oturtulur.
- Sondaj tijleri peş peşe 0,15 m aralıklarla işaretlenir böylece şahmerdan etkisi altındaki örnekleyicinin ilerlemesi her 0,15 m artışta kolayca izlenebilir.
- 63,5 kg ağırlığındaki şahmerdan, 0,76 m yukarıdan serbest düşüş şeklinde bırakılır ve her 0,15 m için uygulanan vuruş sayısı aşağıdakilerden biri olana kadar sayılır:
- Herhangi bir 0,15 m boyunca uygulanan toplam 50 vuruş
- Şahmerdanın 10 ardışık darbesi boyunca hiç ilerleme gözlemlenmediğinde
- Örnekleyicinin her 0,15 m ilerlemesi için gereken vuruş sayısı (N) kaydedilir.
- İlk 0,15 m oturma hamlesi olarak düşünülür. İkinci ve üçüncü 0,15 m'nin gömülmesi için gereken vuruş sayılarının toplamı "standart penetrasyon direnci" ya da "N-değeri"

olarak adlandırılır. Eğer 50 vuruş sonunda 0,15 m gömülmeye ulaşılamazsa, standart penetrasyon direnci N=50+ (refü) olarak alınır.

SPT deneyi sırasında örselenmiş numune alınmakta olup SPT numune alıcısının boy kesiti Şekil 2.3 'de sunulmaktadır.

Şekil 2.3. SPT numune alıcısının boy kesiti (TES NENV 1997-3)

Skempton (1986) tarafından düzeltilmiş darbe sayısı elde etmek için önerilen eşitlik aşağıda sunulmaktadır.

$$(N_1)_E = N_{arazi} * C_E * C_N * C_B * C_S * C_R * C_{BF}$$

$$(2.1)$$

Burada;

(N1)E: Düzeltilmiş darbe sayısı
Narazi: Arazide elde edilen ham darbe sayısı
CN: Jeolojik yük düzeltmesi
CE: Enerji düzeltmesi
CB: Delgi çapı düzeltmesi
CS: Numune alıcı düzeltmesi

C_R: Tij uzunluğu düzeltmesi

CBF: Darbe hızı düzeltmesi

McGregor ve Duncan (1998), jeolojik yük ve darbe hızı düzeltmelerinin kohezyonlu nitelikteki ince daneli zeminlerde pratikte yapılmadığını belirtmiştir. Bu durumda literatürde geoteknik parametrelerin belirlenmesi için önerilen bağıntılarda ağırlıklı olarak

%60 enerji oranına göre düzeltilen darbe sayısının da kullanıldığı dikkate alındığında ince taneli zeminler için düzeltilmiş darbe sayısı aşağıdaki eşitlik ile hesaplanabilecektir.

(2.2)

 $N_{60} = N_{arazi} * E_m / 0,60 * C_B * C_S * C_R$

Bu eşitlikte;

Em: Şahmerdan ve düşürme mekanizmasına bağlı enerji verimi

Clayton (1990) tarafından önerilen enerji verimleri Çizelge 2.2'de özetlenmektedir.

Çizelge 2.2. Ülkelere göre şahmerdan ve düşürme mekanizmasına bağlı şahmerdan verimleri (Clayton, 1990)

Ülke	Şahmerdan Tipi	Düşürme Mekanizması	Şahmerdan Verimi (E _m)
Arjantin	Donut	Kedibaşı	0.45
Brezilya	İğneli Ağırlık	Elle bırakmalı	0.72
Çin	Otomatik	Serbest Bırakma (Trip)	0.60
	Donut	Elle bırakmalı	0.55
	Donut	Kedibaşı	0.50
Kolombiya	Donut	Kedibaşı	0.50
Japonya	Donut	Tombi Trigger	0.78-0.85
	Donut	Kedibaşında 2 Tur + Özel Bırakma	0.65-0.67
İngiltere	Otomatik	Serbest Bırakma (Trip)	0.73
ABD	Emniyetli	Kedibaşında 2 Tur	0.55-0.60
	Donut	Kedibaşında 2 Tur	0.45
Venezüella	Donut	Kedibaşı	0.43

Delgi Çapı, tij uzunluğu ve örnekleyici düzeltmeleri için literatürde yaygın olarak Skempton (1986) tarafından önerilen değerler kullanılmakta olup düzeltme faktörleri Çizelge 2.3'de sunulmaktadır

Düzeltme Faktörü	Sembol	Değişken	Düzeltme Faktörü
		65-115mm	1.0
Delgi Çapı Cı	C_{B}	150 mm	1.05
		200 mm	1.15
Tij Uzunluğu C _R		3-4 m	0.75
	C	4-6 m	0.85
	CR	6-10 m	0.95
		≥ 10m	1
Örnekleyici Düzeltmesi Cs	C _S	lç Tüpü Olan Standart Örnekleyici Kullanılması Durumunda	1.0
		İç Tüpü Olmayan Örnekleyici Kullanılması Durumunda	1.2

Çizelge 2.3. Delgi çapı, tij uzunluğu ve örnekleyici düzeltmeleri (Skempton, 1986)

SPT deneyinin avantajları ve dezavantajları Çizelge 2.4'te özetlenmektedir. (Erol ve Çekinmez, 2014: 3)

Çizelge 2.4. SPT'nin avantajları ve dezavantajları

Avantajlar	Dezavantajlar	
Deney süresinin kısalığı	Operatör hatasından etkilenmesi	
Basit bir deney yöntemi oluşu	• Deney sonuçlarının uygulama yöntemi ve	
 Uluslararası düzeyde yaygın bir şekilde kullanılması 	kullanılan ekipman gibi birçok değişkene bağlı ve hassas olması	
 Penetrasyon direnci ölçümünün ve numune alımının eş zamanlı olarak yapılabilmesi 	 İri granüler zeminlerde ve bloklu malzemelerde örnek alıcının zarar görebilecek olması ve sağlıklı sonuçlar elde edilememesi 	
• Kohezyonlu ve kohezyonsuz zeminlere uygulanabilmesi	 Çok yumuşak ve hassas killerde yanıltıcı sonuçlar verebilmesi 	
 Literatürde SPT verilerinden faydalanılarak zemin parametrelerinin belirlenmesi için çok sayıda yöntem bulunması 	• Yeraltı suyu seviyesi altında kuyu tabanında kaynamaya sebep olma ve yanıltıcı sonuçlar verme olasılığına sahip olması	

2.2.2. Presiyometre deneyi

Geoteknik tasarımda kullanılan zemin parametreleri arazi ve laboratuvar deneyleri yardımı ile belirlenmekte olup örselenmemiş numune almanın zorluğu, yeterli numune alınamaması ve numunenin sahadaki genel zemin özelliğini yeterince temsil edememesi vb. nedenlerle yerinde yapılan deneylerden elde edilen veriler büyük önem arz etmektedir. Saha deneylerinin ülkemizde en yaygın olarak kullanılanlardan bir tanesi olan presiyometre deneyi basınç altında esnek silindirik bir probun genişlemesi ile zemin ve zayıf kayaların şekil değiştirmesinin yerinde ölçümlerini kapsamaktadır. Zeminin mukavemet ve deformasyon özelliklerinin tayininde kullanılan presiyometre verileri aynı zamanda doğrudan taşıma gücü ve oturma hesaplarında kullanılmaktadır.

Ön Sondajlı (PBP), Kendinden Delmeli (SBP) ve Zemine İtilen (PIP) olmak üzere 3 tip presiyometre cihazı (Mair ve Wood, 1987:3-12) bulunmakta olup ülkemizde en yaygın kullanılanı sondaj kuyusu içerisine indirilerek test yapmaya olanak sağlayan ve ön sondajlı presiyometre tipi olan Menard tipi (MPM) presiyometre cihazıdır. Menard tipi presiyometre cihazı Şekil 2.4.'de sunulmaktadır.

Şekil 2.4. Menard tipi presiyometre cihazı ve ekipmanları (Apageo, 2009)

Presiyometre testi yaygın olarak ASTM D4719'da "Standard Test Methods for Prebored Pressuremeter Testing in Soils" başlığı altında önerilen yöntem kullanılarak gerçekleştirilmekte olup ilgili yöntem aşağıda özetlenmektedir;

- Testin yapılacağı derinliğe kadar çapı, havası boşaltılmış probun çapına uygun olan sondaj kuyusu açılır.
- Sondaj kuyusu döküntü malzemelerden temizlenir.
- Hacim ve basınç kalibrasyonları yapılmış olan prob test yapılması istenen derinliğe indirilir. Test derinliği probun orta noktası olarak belirlenir.
- Kontrol ünitesinden eşit basınç kademeleri uygulanarak prob şişirilir. Zeminlerde yapılan testler için genelde 25, 50, 100 veya 200 kPa'lık basınç kademeleri uygulanır. Çok düşük basınç kademeleri uygulanması çok uzun deney sürelerine, çok yüksek basınç kademelerinin seçimi ise yeterli hassasiyet sağlanamamasına neden olmaktadır. Basınç artış kademeleri 7-10 kademelik basınç artışı uygulanacak şekilde ayarlanmalıdır.
- Her yük kademesi için basınçlar sabitlendikten sonra 30 ve 60 sn'lik zaman dilimlerinde hacim değişimleri kayıt edilir.
- Maksimum test yüküne çıkıldıktan sonra prob ilk hacmine indirilerek kuyudan çıkarılır. Presiyometre deneyinin şematik eskizi Şekil 2.5.'de sunulmaktadır.

Şekil 2.5. Presiyometre deneyi şematik eskizi (Apageo, 2009)

Her bir deneyin yaklaşık 10 dakika sürmesi beklenmektedir. İki deney seviyesi arasındaki minimum aralık probun şişen kesiminin uzunluğunun 1.5 katından daha küçük olmamalıdır. Sahada uygulanan test aralığı genellikle 1-3 metre arasında değişmektedir. Sert kıvamlı zeminler ve ayrışmış kayalarda kuyunun açık bırakılmasının herhangi bir yıkılmaya sebebiyet vermemesi durumunda kuyu birçok test seviyesini kapsayacak şekilde açılabilecek ve testler prob kuyudan çıkarılmadan devamlı olarak yapılabilecektir.

Deney sırasında, başlangıçtan itibaren probun zemine temas edişine kadar hızlı bir hacim artışı meydana gelir. Hacim artışının yavaşladığı ve başlangıçtan itibaren basınç-hacim eğrisinin ilk kırılma noktasının yatay eksen ile kesiştiği nokta zeminin denge yatay basıncına (Pi) tekabül eder. Daha sonra zeminin direnci ile hacim artışları yavaşlar ve basınç-hacim değişimi doğrusal bir davranış gösterir. Eğrinin doğrusal olduğu kesim psüdo-elastik faz olarak tanımlanır ve bu fazın tamamlanıp plastik faza geçildiği nokta sünme basıncı (Pf) olarak tanımlanır. Plastik faza geçildiği nokta sünme basıncı (Pf) olarak tanımlanır. Plastik faza geçildiği ve limit basınç olarak tanımlanın noktaya (PL) ulaşılır. Deney sonrası her bir test seviyesi için yatay eksen düzeltilmiş basınç, düşey eksen düzeltilmiş hacim olacak şekilde basınç-hacim grafiği çizilir. Presiyometre deneyi sonrası elde edilen tipik bir düzeltilmiş basınç-düzeltilmiş hacim grafiği Şekil 2.6'da sunulmaktadır.

Şekil 2.6. Düzeltilmiş basınç-düzeltilmiş hacim grafiği

Pseudo-Elastik Faz'daki eğim yardımıyla presiyometre modülü (E_p) değeri hesaplanabilmektedir. Aynı zamanda limit basınçtan (P_L) zeminin denge yatay basıncının (P_i) çıkarılması ile net limit basınç değeri (P^*_L) değeri elde edilir. Net limit basınç değeri kullanılarak zeminlere ait drenajsız kayma dayanımı ve içsel sürtünme açısı değerlerinin yanı sıra ilgili zeminlere taşıtılacak temeller için taşıma gücü değerlendirmesi yapılabilmektedir. Presiyometre modülü değerleri kullanılarak ise zeminlere ait deformasyon modülü, hacimsel sıkışma indisi değerleri ve temellere ait oturma mertebeleri belirlenebilmektedir.

2.3. Laboratuvar Deneyleri

Saha çalışmaları esnasında alınan örselenmiş ve örselenmemiş numuneler üzerinde zeminin fiziksel ve mekanik özelliklerinin belirlenmesi amacı ile laboratuvar deneyleri yapılmaktadır. Uluslararası düzeyde yaygın olarak yapılan sınıflandırma, dayanım, sıkışabilirlik ve geçirgenlik deneylerinden bazıları Şekil 2.7'de sunulmaktadır.

Sınıflandırma	Dayanım	Sıkışabilirlik	Geçirgenlik
Deneyleri	Deneyleri	Deneyleri	
 Su Muhtevası Kıvam Limitleri Özgül Ağırlık Elek Analizi Hidrometre Göreceli Sıkılık Doğal Birim Hacim Ağırlık 	 Üç Eksenli Basınç Direkt Kesme Serbest Basınç Kaliforniya Taşıma Oranı Kanatlı Kesme 	•Konsolidasyon •Standart Proktor •Modifiye Proktor	•Sabit Seviyeli •Düşen Seviyeli

Şekil 2.7. Laboratuvar deneyleri

Geoteknik tasarımda gerekli olan kayma dayanımı ve deformasyon özelliklerinin tayinine yönelik olarak sahadan alınan örselenmemiş numuneler üzerinde üç eksenli basınç, serbest basınç ve konsolidasyon deneyleri sıklıkla yapılmaktadır. İlgili deneylere ait özet bilgiler ve yapım yöntemleri aşağıda sunulmaktadır.

2.3.1. Üç eksenli basınç deneyi

Bu deney temel tasarımı, şev stabilite analizleri ve derin kazıların tasarımı gibi birçok alanda kullanılan kayma dayanımı parametrelerinin belirlenmesinde kullanılan en yaygın laboratuvar deney yöntemlerinden bir tanesidir. Deney esnasında eksenel gerilmenin yanı sıra çevre basıncı da uygulanarak saha koşulları daha iyi modellenmektedir.

Uygulamada kullanılan Konsolidasyonsuz-Drenajsız (UU), Konsolidasyonlu – Drenajsız (CU) ve Konsolidasyonlu-Drenajlı (CD) olmak üzere üç tipi bulunmaktadır. Parsel bazında hazırlanan jeolojik-jeoteknik raporlar kapsamında süre ve ekonomi dikkate alındığında ağırlıkla doğal su içeriğinde, boşluk suyu ölçülmeden yapılan ve kısa sürede tamamlanan UU tipi deney tercih edilmektedir.

UU tipi üç eksenli basınç dayanımı deneyleri TS 1900-2, ASTM D 2850, CEN ISO/TS 17892-8 veya BS 1377 standartlarına göre gerçekleştirilmektedir. ASTM D2850'de belirtilen deney metoduna ait özet bilgiler aşağıda sunulmaktadır.

- Deneyler sondajlar sırasında alınan örselenmemiş numuneler (UD) veya sıkıştırılmış örselenmiş numuneler üzerinde yapılmaktadır.
- Numune, çapı minimum 3.3 cm, boy/çap oranı=2.0-2.5 olacak şekilde hazırlanır.
- Hazırlanan numune lastik kılıfa geçirilerek üç eksenli hücresine yerleştirilir.
- Çevre basıncı vermek için kullanılacak olan akışkan (genelde su) hücreye doldurulur ve hücre basıncı istenen değere getirilir.
- Eksenel yük uygulanmaya başlanır ve belirli aralıklarla yük ve deformasyon değerleri okunur.
- Deney %15-%20 eksenel boy değiştirme gerçekleştiğinde, deviatorik gerilme pik değerine ulaşıp bu değerin %20'sine düştüğünde veya eksenel boy kısalması pik deviatorik gerilmenin meydana geldiği eksenel boy kısalmasını %5 geçtiği noktada sonlandırılır.
- Deney aynı koşullarda hazırlanan ve farklı hücre basınçları uygulanan 3 farklı numune üzerinde tekrarlanır.
- Kesme gerilmesi düşey eksende, normal gerilme yatay eksende olacak şekilde hazırlanan grafik üzerine üç adet deneye ait Mohr Daireleri çizilir.

- Mohr dairelerine teğet olacak şekilde doğru çizilerek kırılma zarfı elde edilir.
- Kırılma zarfının düşey ekseni (kesme gerilmesi) kestiği nokta kohezyon değeri (c) kırılma zarfının yatayla yaptığı açı ise içsel sürtünme açısı (φ) olarak kabul edilir.
- Suya doygun kil zeminlerde içsel sürtünme açısının sıfır olması beklenmektedir.

Deney sırasında kullanılan hücrenin şematik gösterimi Şekil 2.8'de sunulmaktadır.

Şekil 2.8. Üç eksenli deney hücresi düzeneği (Craig, 2004:96)

2.3.2. Serbest basınç deneyi

Drenajsız kayma dayanımının belirlenmesinde kullanılan ilgili deney kohezyonlu zeminlerden alınan numuneler üzerinde yapılmaktadır. Deneyde drenaj koşulları kontrol edilememekte ve hızlı yükleme yapılarak drenajsız durum için kayma dayanımının belirlendiği varsayılmaktadır. Kolay ve hızlı bir deney tipi olan serbest basınç dayanımı yaygın olarak kullanılmaktadır.

Serbest Basınç Deneyleri TS 1900-2, ASTM D 2166, CEN ISO/TS 17892-7 ve BS 1377 standartlarına göre gerçekleştirilmektedir. ASTM D2166'da belirtilen deney metoduna ait özet bilgiler aşağıda sunulmaktadır.

- Deneyler sondajlar sırasında alınan örselenmemiş numuneler (UD) veya sıkıştırılmış örselenmiş numuneler üzerinde yapılmaktadır.
- Numune, çapı minimum 30 mm, boy/çap oranı=2.0-2.5 olacak şekilde hazırlanır. Numune içindeki en büyük tane, numune çapının 1/10'undan daha büyük olmamalıdır. Numune çapının 72 mm veya daha fazla olması durumunda içerisindeki maksimum tane boyutu numune çapının 1/6'sından daha büyük olmamalıdır.
- Numune presin alt platformuna merkezlenecek şekilde oturtulur.
- Presin üst platformu numuneye tam değecek şekilde ayarlanır.
- Komparatör sıfırlanır veya başlangıç okuması kayıt edilir.
- Yük dakikada % 0.5 % 2 arası birim boy kısalması oluşturacak şekilde uygulanır.
- Gerilme-birim boy değiştirme eğrisi çizebilmek için yük ve boy değişimi yeterli aralıklarla kaydedilir (10-15 nokta yeterlidir).
- Boy değiştirme oranı numunenin maksimum 15 dakikada kırılmasına olanak sağlayacak şekilde seçilmelidir.
- Yükleme, yük azalmasına rağmen birim boy değişimin arttığı noktaya veya birim boy değiştirmenin %15 oranına geldiği noktaya kadar devam ettirilir.
- Deney sonrası numunenin göçme şekli çizilir veya fotoğrafi çekilir. Numunede belirgin bir göçme düzlemi oluşmuş ise ilgili düzlemin yatay ile yaptığı açı ölçülür.
- Birim boy değiştirmenin %15 oranına geldiği yükün veya yenilme yükünün, birim boy değiştirme kullanılarak belirlenen düzeltilmiş alana bölünmesi ile tek eksenli basınç dayanımı değeri elde edilmektedir.

2.3.3.Konsolidasyon deneyi

Zeminler; üzerlerinde yapı inşa edilmesi, dolgu yapılması, yeraltı suyunun düşürülmesi vb. nedenlerle meydana gelen gerilme artışları nedeniyle sıkışmaktadır. Zemin sıkışması yaygın olarak 3 ana nedene bağlanmaktadır (Özocak ve Altundağ, 2016).

- 1) Zemin danelerinin sıkışması
- 2) Zemin boşluklarındaki hava ve/veya suyun sıkışması
- Boşluklardaki hava ve suyun dışarı çıkması sonucu danelerin birbirine yaklaşması ve zeminin toplam hacminin azalmasıdır.

Zeminlerde meydana gelen sıkışma sonucunda zemin yüzeyinde veya zemin üzerindeki yapıda oluşan seviye kaybı oturma olarak tanımlanmaktadır. 3. madde oturmaların önemli kısmını oluşturmakta olup 1. ve 2. madde nedeniyle meydana gelecek olan oturmalar genellikle ihmal edilebilir mertebededir.

Zeminlerde meydana gelen toplam oturma, ani (elastik) oturma ve zamana bağlı olan konsolidasyon oturmalarından oluşmaktadır. Ani oturma; çakıl, kum, silt ve kil gibi tüm zemin tiplerinde meydana gelmekte olup konsolidasyon oturmaları ise yalnızca ince daneli kohezyonlu zeminlerde gözlenmektedir. Suya doygun kohezyonlu zeminlerde meydana gelen oturmaların büyük bölümü genellikle konsolidasyon oturmalarından kaynaklanmaktadır.

Konsolidasyon oturmalarının hesaplanması için hacimsel sıkışma indisi (m_v) , sıkışma indisi (C_c) , yeniden yükleme indisi (C_r) ve boşluk oranı (e) gibi parametrelerin belirlenmesine ihtiyaç duyulmaktadır. Ayrıca oturmaların toplam süresi konsolidasyon katsayısının (c_v) belirlenmesi ile hesaplanabilecektir.

Bu durumda özellikle killi zeminlerin hakim olduğu yerleşim alanlarında yapı tasarımında önemli bir yere sahip olan konsolidasyon oturmalarının doğru bir şekilde hesaplanabilmesi adına yukarıda bahsedilen parametrelerin titizlikle tayin edilmesi gerekmektedir. İlgili parametrelerin belirlenmesinde "Tek yönlü konsolidasyon deneyi" kullanılmakta olup deney TS 1900-2, ASTM D 2435, CEN ISO/TS 17892-5 ve BS 1377'de önerilen metodolojiler kullanılarak yapılmaktadır.

ASTM D2435 standardında Test Metodu A olarak tanımlanan ve yaygın olarak kullanılan deney yöntemi aşağıda özetlenmektedir.

- Deney minimum çapı ve yüksekliği sırası ile 50mm ve 12mm olan ve çap / yükseklik oranı 2.5'tan daha küçük olmayan bir numune üzerinde gerçekleştirilir.
- Gözenekli disk, filtre kağıdı ve numune ödometre hücresi içerisine yerleştirilir (Şekil 2.9).

Şekil 2.9. Ödometre (Craig, 2004:228)

- Ödometre konsolidasyon aleti üzerine yerleştirilir.
- Okuma saati düşey oturmaları veya şişme miktarını ölçebilecek şekilde yükleme halkasının üzerine yerleştirilir, yaklaşık 5 kPa basınca neden olacak ön yük yüklenir, okuma saati ayarlanır ve başlangıç okuması not edilir.
- Numune suya boğulur ve şişme meydana gelmesi durumunda ön yük şişmeyi engelleyecek şekilde arttırılır.
- Deney yükü bir sonraki basınç mevcut basıncın iki katı olacak şekilde arttırılır ve numune üzerindeki toplam basınç sırasıyla 12, 25, 50, 100, 200 kPa vb. olacak şekilde uygulanır.
- Deney sırasında uygulanacak maksimum basınç, numunenin alındığı noktadaki efektif düşey basınç ve yapılacak yükleme nedeni ile aynı noktada meydana gelecek gerilme artışının toplamından daha büyük olacak şekilde seçilmelidir.
- Her yük kademesinde meydana gelen eksenel deformasyonun ölçümü amacı ile belirli sürelerde (0.1, 0.25, 0.5, 1, 2, 4, 8, 15, 30 dakika ve 1, 2, 4, 8 ve 24 saat) komparatör saatlerinin göstergelerindeki değerler kayıt edilir.
- Maksimum basınç altında eksenel deformasyon ölçümlerinin not edilmesinin ardından yük başlangıç ön basıncına (5 kPa) kadar kademeli olarak düşürülür.

Düşey eksende boşluk oranının (e), yatay eksende logaritmik olarak basınç kademelerinin çizilmesi ile oluşturulan basınç (σ)- boşluk oranı (e) grafiği yardımı ile sıkışma indisi (C_c) ve yeniden yükleme indisi (C_r) değerleri belirlenir.

Düşey eksende komparatör saati okumalarının, yatay eksende logaritmik olarak okuma sürelerinin karekökünün çizilmesi ile oluşturulan grafik yardımıyla konsolidasyon için gereken süre ve bu değerler kullanılarak konsolidasyon katsayısı (Cv) değeri hesaplanabilir.
3. MATERYAL, YÖNTEM VE İSTATİSTİKSEL DEĞERLENDİRME

Çalışma kapsamında, Toker Sondaj ve İnşaat Mühendislik Müşavirlik A.Ş. firması tarafından Türkiye'nin çeşitli illerinde yapılan jeolojik- jeoteknik etütler kapsamında gerçekleştirilen saha ve laboratuvar deneylerinden yararlanarak, öncelikle Stroud (1974) tarafından önerilen ve ülkemizde de yaygın bir şekilde kullanılan SPT N- plastisite indeksi (PI) – hacimsel sıkışma indisi (m_v) ve SPT N- PI – drenajsız kayma dayanımı (c_u) arasındaki korelasyonların Türkiye zemin koşulları için uygunluğu üzerinde incelemeler yapılmıştır. Ayrıca, yine bu çalışma kapsamında sıkışma indisi (c_c) ile ilgili literatürde önerilmiş olan korelasyonlar ile c_u - SPT arasındaki ilişkilerin lokal veriler için geçerliliği incelenmiştir.

Literatürde yer alan korelasyonların Türkiye zemin koşulları için geçerliliğini araştırmak amacı ile 42 farklı proje alanında elde edilen SPT verileri ile ilgili sahalardan zemin araştırmaları kapsamında alınan örselenmemiş numuneler (UD) üzerinde yapılan laboratuvar deney sonuçları kullanılmıştır. Verileri kullanılan proje sahalarına ait bilgiler Çizelge 3.1.'de sunulmakta olup, tüm saha ve laboratuvar deneyleri TOKER Sondaj ve İnşaat Mühendislik ve Müşavirlik A.Ş. tarafından yapılmıştır. Ayrıca çalışma kapsamında kullanılan proje sahalarının coğrafi dağılımı Şekil 3.1'de sunulmuştur.

Şekil 3.1. Çalışmada kullanılan rapor adetlerinin illere göre dağılımı

		Sonda	aj Verileri	Labor	atuvar Çalışmala	arı Adedi
No	Proje İsmi	Sondaj	Toplam Derinlik	Üç Eksenli Basınc	Tek Eksenli Basınc	Konsolidasyon
		Adedi	(m)	Deneyi (UU)	Deneyi	Deneyı
1	Eurostar	35	1086.4	43	64	43
2	Afyon	9	183.3	20	15	18
3	Boğazlıyan	15	443.0	27	16	27
4	Gazi Üniversitesi	10	223.5	5	12	16
5	Bayraktar Via Green	8	262.2	13	20	24
6	Toki Fatsa	10	337.6	13	22	30
7	Konya Sarıdağlar	11	667.8	15	18	13
8	Oyak Eryaman	31	1724.9	56	58	65
9	Nata Vega	9	388.0	15	17	20
10	Başbakanlık	20	627.9	25	42	41
11	İskitler Mia	11	524.6	26	47	39
12	İzmir Ulucamii	4	301.8	25	21	20
13	Petlas Kırşehir-1	23	653.0	34	42	30
14	Cumhurbaşkanlığı	8	257.2	18	11	16
15	TCDD Gar	9	273.1	16	15	32
16	Soma-1	163	3560.3	90	9	42
17	Ulaştırma Bakanlığı	11	380.7	41	23	28
18	Kayseri Harikalar Diyarı	18	380.5	1	18	25
19	Hızlı Tren Garı	19	451.1	32	38	32
20	Yaşamkent 61061	23	949.7	47	28	25
21	Oyak Sincan	25	605.9	41	36	34
22	Eti Maden Kırka	12	503	6	15	65
23	Konya Selçuklu	2	71.1	6	6	8
24	İSG Havaalanı	10	262.7	16	20	11
25	Next Level	17	947.4	49	72	39
26	Soma-2	185	4590	49	33	67
27	Aytaş Aykule	16	558.6	31	27	26
28	Ege Grup	17	559.1	38	47	30
29	Otokoç	31	1081.7	47	74	50
30	Ser Grup Eryaman	7	184.8	9	11	14
31	Maraş Göksun	17	512.9	17	3	12
32	Mutlu Koru	10	330.7	12	19	17
33	Petlas Kırşehir-2	13	587	30	45	25
34	Efesel Yapı	7	302.9	25	14	14
35	Gimat Gros	8	262.7	15	12	14
36	Konya Meram	10	157.7	19	9	17
37	Ekol Balgat	5	133	7	13	12
38	Fidanlar	8	287.9	12	3	6
39	Pasifik Mamak	27	605.6	24	24	33
40	Fırat Dema	20	610.0	40	28	34
41	Roketsan Elmadağ	6	99.1	8	7	12
42	Pasifik Ego	31	1641.0	105	73	79

Çizelge 3.1. Çalışma kapsamında kullanılan proje sahaları ile ilgili bilgiler

3.1. İstatistiksel Değerlendirme

İnceleme konusu korelasyonlar kök ortalama kare hata (RMSE), sapma faktörü (K), sıralama indisi (RI), sıralama mesafesi (RD), Theil eşitsizlik katsayısı (TIC) olmak üzere beş farklı istatistiksel ölçüt kullanılarak kıyaslanmıştır. Yapılan bu kıyaslamalar sonucunda korelasyonların yerel veriler için göreceli bicimde başarılı ve başarısız olanları belirlenmiştir. Her bir istatistiksel değişken aşağıda tanımlanmıştır.

3.1.1. Kök ortalama kare hata (RMSE)

Kök ortalama kare hata (RMSE) standart istatistiksel bir yöntem olarak model performansını ölçmek için özellikle meteoroloji, hava kalitesi ve iklim araştırma çalışmalarında kullanılmaktadır (Chai ve Draxler, 2014). Model başarısını ölçmede kullanılan yöntem esas itibari ile tahmin hatalarının standart sapmasıdır. Kök ortalama kare hata aşağıdaki eşitlik yardımıyla belirlenebilecektir:

$$RMSE = \sqrt{\frac{\sum_{1}^{n} (x_{tahmin} - x_{\ddot{o}lc\ddot{u}m})^2}{n}}$$
(3.1)

Burada;

n: Veri Sayısı

 x_{tahmin} : Bağıntılar yardımı ile belirlenen değer

xölçüm: Deneyler yardımı ile belirlenen değer

xtahmin değerleri xölçüm değerlerine ne kadar yakın ise hata oranı o kadar azalmakta ve hataların standart sapması olan RMSE değeri sıfıra yaklaşmaktadır. RMSE sıfıra ne kadar yakınsa bağıntının ilgili değeri tahmin etme başarısı o kadar fazladır.

3.1.2. Sapma faktörü (K)

Hesaplanan ve ölçülen değerler Cherubini ve Greco (1997) tarafından önerilen sapma faktörü (K) değeri kullanılarak karşılaştırılabilecektir. Sapma değeri aşağıdaki eşitlik yardımıyla belirlenebilecektir:

K<1 olması durumunda kullanılan bağıntı ölçülen veriyi olduğundan düşük olarak tahmin etmekte, K>1 olması durumunda ise daha fazla tahmin etmektedir (Abu-Farsakh ve Titi, 2004).

Cherubini ve Orr (2003), Cherubini ve Vessia (2009), Vinop ve Bindu (2010), Onyejekwe vd. (2015), Güllü vd. (2016) tarafından taşıma gücü, oturma ve sıkışma indisi için önerilen bağıntıların başarısını ölçmek amacı ile kullanılmıştır.

K değeri sıfır ile sonsuz arasında değişebilecek olup, optimum değeri 1'dir (Güllü vd. 2016). Bu durum K'nın ortalama etrafında simetrik olmayan bir şekilde dağılımına ve fazla veya az tahminlere eşit ağırlık verilmemesine neden olabilmektedir. (Briaud ve Tucker, 1988). Cherubini ve Orr (2003) tarafından K<1 değerlerinin yüzdesine bağlı olarak belirtilen bağıntının ölçülen değeri tahminindeki emniyet derecesi Çizelge 3.2'de sunulmaktadır.

K değeri	K değeri Kullanılan Yöntemin Emniyet Derecesi									
<1.0 (%)	Sıkışn	na İndisi (C _c) için	Drenajsız Kayma Dayanımı (c _u) için							
80,100	5	Çok Emniyetsiz		Çok Emniyetli						
80-100	5	(Güvensiz Tarafta)	1	(Güvenli Tarafta)						
60-80	4	Emniyetsiz	2	Emniyetli						
40-60	3	Nötr	3	Nötr						
20-40	2	Emniyetli	4	Emniyetsiz						
0.20	1	Çok Emniyetli	_	Çok Emniyetsiz						
0-20	1	(Güvenli Tarafta)	5	(Güvensiz Tarafta)						

Cizelge 3.2. K<1 değerlerinin yüzdesine bağlı emniyet derecesi (Cherubini ve Orr, 2003)

3.1.3. Sıralama indisi (RI)

Sıralama indisi (RI), Briaud ve Tucker (1988) tarafından literatürde farklı araştırmacılar tarafından önerilen ve c_u, SPT, PMT ve CPT deneyi verilerine bağlı olarak kazıkların nihai kapasitelerinin belirlenmesinde kullanılan 13 adet bağıntının 98 adet çakma ve delme kazığın nihai kapasite tahminindeki başarısını ölçmekte kullanılmak üzere geliştirilmiştir. RI değeri aşağıdaki eşitlik yardımıyla hesaplanabilir:

Burada μ ve s, sırasıyla ortalama ve standart sapma değerleridir. Elde edilen RI değeri ne kadar düşük ise kullanılan yöntem o kadar başarılıdır.

3.1.4. Sıralama mesafesi (RD)

Sıralama indisi' ne (RI) alternatif olarak Cherubini ve Orr (2000) tarafından önerilen sıralama mesafesi (RD), aşağıdaki eşitlik yardımıyla hesaplanabilir:

$$RD = \sqrt{[1 - \mu(K)]^2 + [s(K)]^2}$$
(3.4)

Düşük RD değerleri, kullanılan yöntemin yüksek oranda doğruluk ve hassasiyete sahip olduğunu, yüksek RD değerleri ise yöntemin doğru sonuçlara ulaşmadığını ve hassas olmadığını göstermektedir (Orr ve Cherubini, 2000).

RD doğruluk ve hassasiyete eşit ağırlık vermektedir. RI değeri ise doğrusal ölçekte olmayıp logaritmik ölçektedir ve eşit oranda doğru ve hassas olan yöntemlere RD metoduna göre daha az uygun bir derecelendirme sağlamaktadır. Çok doğru (ortalama K=1) olan yöntemler için, RD ile karşılaştırıldığında doğruluğa hassasiyetten daha çok ağırlık vermekte ve çok hassas olan yöntemler için ise (standart sapma=0.0) hassasiyete doğruluktan daha çok ağırlık vermektedir (Orr ve Cherubini, 2000).

3.1.5. Theil eşitsizlik katsayısı (TIC)

Theil eşitsizlik katsayısı (TIC), endüstri ve telekomünikasyon uygulamalarında simulasyon modelini doğrulamak için 1977'den beri yaygın olarak kullanılmaktadır. Metot, hesaplanan ve ölçülen değerler üzerinde herhangi bir kısıtlamaya sahip değildir, prensibi basittir ve uygulaması kolaydır (Daoud v.d., 2016). TIC aşağıdaki formülasyon yardımıyla hesaplanabilir:

$$TIC = \frac{\sqrt{\sum_{i=1}^{n} (x_0(i) - x_c(i))^2}}{\sqrt{\sum_{i=1}^{n} (x_0(i))^2} + \sqrt{\sum_{i=1}^{n} (x_c(i))^2}}$$
(3.5)

Burada;

n: Veri sayısı x_o(i): Deneyler yardımı ile belirlenen değer x_c(i): Bağıntılar yardımı ile belirlenen değer

TIC değeri 0 ve 1 arasında değişmektedir. Değerin sıfıra yakın olması, hesaplanan ve ölçülen parametreler arasında daha iyi bir tutarlılık derecesi olduğunu ve korelasyonun daha güvenilir olduğunu gösterir.

4. ANALİZLER

Çalışmada Toker Sondaj ve İnşaat Mühendislik Müşavirlik firması tarafından Türkiye'nin çeşitli illerinde yapılan etütler kapsamında gerçekleştirilen saha ve laboratuvar deneylerinden yararlanarak, Stroud (1974) tarafından önerilen ve ülkemizde de yaygın bir şekilde kullanılan SPT N - PI - m_v ve SPT N - PI - c_u korelasyonlarının, Türkiye zemin koşulları için uygunluğu üzerinde incelemeler yapılmıştır. Ayrıca, C_c ile ilgili korelasyonlar ile c_u - SPT N değeri arasındaki ilişkilerin lokal veriler için geçerliliği incelenmiştir.

4.1. Sıkışma indisi (Cc)

Çalışmada kullanılan 42 adet sahaya ait verilerin %62'si (26 adedi) Ankara'da yer alan proje sahalarından elde edilmiştir. Literatürde C_c için önerilen korelasyonların yerel zemin koşulları için başarısının tespiti amacı ile yalnızca Ankara'da yer alan proje sahalarına ait verilerin kullanılmasına karar verilmiştir. Kapsamlı bir tarama yapılarak, bu sahalardan Ankara Kili birimi içerisinde bulunan, CH ve CL sınıflarına dahil olan verilerin bulunduğu 15 adet saha belirlenmiştir. Bunun sonucunda C_c ile ilgili yapılan analizlerde yalnızca Ankara Kili verileri kullanılmıştır. Ankara Kili birimin genel özellikleri aşağıda belirtilmiştir.

Pliyosen yaşlı olan Etimesgut Formasyonu, Orta Pliyosende son bulan göl formasyonlarının üzerine diskordansla gelen akarsu, akarsu-göl çökellerinin kil ağırlıklı olan üyesidir. Siltli kil ve çakıllı kumlu kilden oluşmaktadır. Bu formasyon aynı zamanda "Ankara Kili" diye adlandırılır. Etimesgut Formasyonu, MTA tarafından yayınlanan 1/100 000 ölçekli jeoloji haritalarında, Gölbaşı Formasyonu (Tg) olarak geçmektedir.

Yapılan zemin etütleri kapsamında bazı sahalarda Ankara Kili biriminin yanı sıra alüvyonal kökenli kil birimlere de rastlanılmış olup, bu zeminlere ait veriler titizlikle ayrılarak tüm verilerin Ankara Kili birimi içerisinde kalmasına dikkat edilmiştir.

4.1.1. Analizler

Çalışma kapsamında 283 adet örselenmemiş numune üzerinde gerçekleştirilen laboratuvar deneyleri sonucunda belirlenen sıkışma indisi (C_c), doğal su içeriği (w_n), likit limit (LL), plastik limit (PL), plastisite indisi (PI), başlangıç boşluk oranı (e₀), özgül ağırlık (G_s) değerleri istatistiksel değişkenler olarak kullanılmış olup, her bir değişkene ait minimum, maksimum ve ortalama değerler ile standart sapma değeri Çizelge 4.1'de sunulmuştur.

Parametre	Minimum Değer	Maksimum Değer	Ortalama	Standard Sapma	Veri Adeti
w _n (%)	8,3	49,5	26,8	7,12	283
LL (%)	28,7	124,3	65,4	14,05	283
PL (%)	14,5	55	26,2	4,77	283
PI (%)	10,6	88,6	39,2	11,80	283
e ₀	0,404	1,368	0,748	0,18	283
Cc	0,06	0,387	0,136	0,04	283
Gs	2,22	2,89	2,54	0,11	283

Çizelge 4.1. Çalışma kapsamında kullanılan belirleyici istatistiksel değişkenler

Sıkışma indisinin (C_c) tayini için literatürde zeminin indeks parametreleri ve başlangıç boşluk oranına bağlı olarak önerilen korelasyonların Ankara Kili için geçerliliğinin araştırılması ve gerçeğe en yakın tahminleri veren korelasyonların belirlenmesi amaçlanmıştır. Bu kapsamda literatürde değişik araştırmacılar tarafından önerilmiş olan ve yaygın olarak kullanılan 20 adet korelasyon seçilmiş olup, söz konusu bağıntılar Çizelge 4.2' de sunulmuştur.

No	Korelasyon	Kullanılabileceği Zemin Türü	Kaynak
1	$C_c = 0.01 w_n$	Tüm Killer	Koppula (1981)
2	$C_c = 0.01(w_n - 7.549)$	Killer	Rendon-Herrero (1983)
3	$C_c = 0.0115 w_n$	Tüm Killer	Koppula (1981)
4	$C_c = 0.01(w_n-5)$	Tüm Killer	Azzouz vd. (1976)
5	$C_{\rm c} = 0.006(LL-9)$	LL<%100 olan Tüm Killer	Azzouz vd. (1976)
6	$C_c = 0.008(LL-12)$	Tüm Killer	Sridharan ve Nagaraj (2000)
7	$C_c = 0.009(LL-10)$	Tüm Killer	Terzaghi ve Peck (1967)
8	$C_c = 0.014(PI+3.6)$	Tüm Killer	Sridharan ve Nagaraj (2000)
9	$C_c = PI/74$	Tüm Killer	Wroth ve Wood (1978)
10	$C_c = 0.29(e_0 - 0.27)$	İnorganik Zeminler	Hough (1957)
11	$C_c = 0.35(e_0 - 0.5)$	Organik Zeminler	Hough (1957)
12	$C_c = 0.156e_0 + 0.0107$	Tüm Killer	Bowles (1979)
13	$C_c = 0.009 w_n + 0.005 LL$	Tüm Killer	Koppula (1981)
14	$C_{c} = 0.037(e_{0}+0.003LL-0.34)$	Killer: Yunanistan ve ABD	Azzouz vd. (1976)
15	$C_{c} = -0.156 + 0.411 e_{0} + 0.00058 LL$	Tüm Killer	Al-Khafaji ve Andersland (1992)
16	$C_c = 0.048(e_0 + 0.001 w_n - 0.25)$	Killer: Yunanistan ve ABD	Azzouz vd. (1976)
17	$C_{c} = 0.37(e_{0}+0.003LL+0.0004w_{n}-0.34)$	Killer: Yunanistan ve ABD	Azzouz vd. (1976)
18	$C_c = 0.2343(LL/100)G_s$	Tüm Killer	Nagaraj ve Murty (1985)
19	$C_c = 0.2926(LL/100)G_s$	Tüm Killer	Nagaraj ve Murty (1985)
20	$C_{\rm c} = 0.5 \ G_{\rm s} \ ({\rm PI}/100)$	Tüm Killer	Wroth ve Wood (1978)

Çizelge 4.2. Çalışma kapsamında incelenen korelasyonlar

Çalışma kapsamında incelenen toplam 20 adet korelasyon için konsolidasyon deneyinden hesaplanan gerçek sıkışma indisi değerleri ($C_{c\"olçulen}$) ile ilgili korelasyonlar kullanılarak hesaplanan tahmini sıkışma indisi değerlerini ($C_{chesaplanan}$) karşılaştırmalı gösteren grafikler Şekil 4.1. ve Şekil 4.2.' de sunulmuştur.

Şekil 4.1. Korelasyonlardan hesaplanan Cc - laboratuvarda ölçülen Cc (korelasyon 1-10)

Şekil 4.2. Korelasyonlardan hesaplanan Cc - laboratuvarda ölçülen Cc (korelasyon 11-20)

Bu çalışmada sıkışma indisinin tahmininde kullanılan yirmi adet korelasyon incelenmiş ve bu eşitliklerin Ankara Kili için sıkışma indisini tahmin etme performansları dört farklı istatistiksel ölçüm yardımı ile kıyaslanmıştır. Yapılan analizlere ait sonuçlar ve K<1 olan değerlerin yüzdesine bağlı olarak belirlenen yöntemin emniyet derecesi (Cherubini ve Orr, 2003) Çizelge 4.3' de sunulmuştur.

No	Korelasvon	DMSE	I	K	DI	חק	K <1	Emniyet
INO	Korelasyon	RNISE	Ort.	SD	NI	ΚD	(%)	Derecesi
1	$C_c = 0.01 w_n$	0.148	2.07	0.621	0.988	1.237	1.8	1
2	$C_c = 0.01(w_n - 7.549)$	0.087	1.47	0.546	0.739	0.721	18.4	1
3	$C_{c} = 0.0115 w_{n}$	0.188	2.38	0.714	1.127	1.555	1.1	1
4	$C_c = 0.01(w_n-5)$	0.105	1.67	0.568	0.815	0.881	9.5	1
5	$C_{c} = 0.006(LL-9)$	0.218	2.63	0.820	1.238	1.826	0.4	1
6	$C_c = 0.008(LL-12)$	0.310	3.32	0.329	1.476	2.551	0.0	1
7	$C_c = 0.009(LL-10)$	0.382	3.88	1.218	1.627	3.124	0.0	1
8	$C_c = 0.014(PI+3.6)$	0.490	4.67	1.561	1.829	3.986	0.0	1
9	$C_c = PI/74$	0.423	4.12	1.451	1.719	3.441	0.0	1
10	$C_c = 0.29(e_0 - 0.27)$	0.044	1.04	0.326	0.331	0.328	48.1	3
11	$C_c = 0.35(e_0 - 0.5)$	0.067	0.66	0357	1.343	0.492	81.2	5
12	$C_c = 0.156e_0 + 0.0107$	0.036	0.98	0.229	0.283	0.230	58.0	3
13	$C_c = 0.009 w_n + 0.005 LL$	0.444	4.41	1.131	1.716	3.596	0.0	1
14	$C_{c} = 0.037(e_{0}+0.003LL-0.34)$	0.105	1.69	0.286	0.770	0.831	6.0	1
15	$C_{c} = -0.156 + 0.411 e_{0} + 0.00058 LL$	0.081	1.41	0.470	0.640	0.625	18.4	1
16	$C_c = 0.048(e_0+0.001w_n-0.25)$	0.136	1.90	0.570	0.899	1.062	3.2	1
17	$C_{c} = 0.37 (e_{0}+0.003LL +0.0004w_{n}-0.34)$	0.109	1.72	0.476	0.787	0.861	5.6	1
18	$C_c = 0.2343(LL/100)G_s$	0.251	3.03	0.857	1.360	2.204	0.0	1
19	$C_c = 0.2926(LL/100)G_s$	0.344	3.79	1.071	1.582	2.984	0.0	1
20	$C_{c} = 0.5 G_{s} (PI/100)$	0.369	3.87	1.330	1.654	3.160	0.0	1

Çizelge 4.3. K<1 RMSE, K,RI ve RD analiz sonuçları

4.2. Drenajsız kayma dayanımı (c_u)

Drenajsız kayma dayanımı (c_u) değerleri genelikle laboratuvarda serbest basınç deneyi (SB) ve konsolidasyonsuz drenajsız üç eksenli basınç deneyleri (UU), sahada ise veyn deneyi ile doğrudan belirlenebilmektedir. Bu çalışmada ülkemizde de yaygın olarak gerçekleştirilen q_u (864 veri) ve UU (512 veri) deneyleri sonucunda elde edilen c_u değerleri kullanılmıştır.

Çalışma kapsamında UU deney sonuçlarından yalnızca içsel sürtünme açısı (ϕ) $\leq 10^{\circ}$ olan veriler kullanılmış olup, c_u değeri iki farklı yöntem ile belirlenmiştir. Birinci yöntemde (UU Yöntem 1) doğrudan Mohr-Coulomb zarfının y eksenini (kesme gerilmesi eksenini) kestiği değer c_{u,1} olarak alınmıştır. İkinci yöntemde (UU Yöntem 2) ise her bir UU deneyinden elde edilen son iki Mohr dairesine ait yarıçapların (deviatorik gerilmenin yarısı) ortalaması alınarak hesaplanan c_{u,2} değeri kullanılmıştır (Şekil 4.3).

Şekil 4.3. Üç eksenli deneylerinden hesaplanan drenajsız kayma dayanımları

UU Yöntem 1 için 512 adet UU Yöntem 2 için 393 adet sonuç kullanılmıştır. Yöntem 2 için Yöntem 1'den daha az sonuç kullanılmasının nedeni eski tarihli bazı projeler için

yalnızca c ve ϕ değerlerinin kaydedildiği deney sonuçları özet tablosunun mevcut olmasıdır.

4.2.1. Analizler

Literatürde bir çok araştırmacı tarafından SPT N darbe sayısı ve drenajsız kayma dayanımı arasında ilişki kuran korelasyonlar önerilmektedir. Bu çalışma kapsamında incelenen korelasyonlar Çizelge 4.4'te sunulmuştur.

No	Korelasyon c _u (kPa)	Kullanılabileceği Zemin Türü	Kaynak		
1a	12.5N	Killer	Sanglarat (1072)		
1b	10N	Siltli Killer	Sangierat (1972)		
2	1.39N+74.2	İnce Daneli Zeminler	Ajayi - Balogun (1988)		
3	6.25N	İnce Daneli Zeminler	Terzaghi ve Peck (1967)		
4a	12.5N		Decourt (1000)		
4b	15 N ₆₀	Killer	Decourt (1990)		
5	12N	Killer	Nixon (1982)		
6	29N ^{0.72}	İnce Daneli Zeminler	Hara ve Diğerleri (1974)		
7a	4.85 N	Vüksek Diestisiteli Viller (CH)			
7b	6.82 N ₆₀	i uksek Flastisiteli Killel (CH)			
7c	3.35 N	Dügük Dlagtigitali Villar (CL)	Sivrikova vo Tožrol (2002)		
7d	4.93 N ₆₀	Duşuk Flastisticli Killer (CL)	Sivilkaya ve Togrof (2002)		
7e	4.32 N	İnaa Danali Zaminlar			
7f	6.18 N ₆₀				
8	4.1N ₆₀	İnce Daneli Zeminler	Hettiarachchi ve Brown (2009)		
9a	1.6N + 15,4	İn an Danali Zaminlar (Takran)	Nassaii Kalantari (2011)		
9b	$2.1N_{60} + 17,6$	ince Danen Zeminier (Tanran)	Nassaji ve Kalantari (2011)		

Çizelge 4.4. Drenajsız kayma dayanımı ve SPT darbe sayısı arasındaki korelasyonlar

c_u ile SPT N₆₀ arasında Çizelge 4.4'de verilen korelasyonlar serbest basınç ve üç eksenli basınç deneylerinden elde edilen veriler kullanılarak irdelenmiş ve beş farklı istatistiksel parametre kullanılarak değerlendirilmiştir. Analizlere ait sonuçlar Çizelge 4.5, 4.6, ve 4.7'de sunulmuştur.

	Korelasvon c.		K					K<1	Emnivet	Veri
No	(kPa)	RMSE	Ort	SD	RI	RD	TIC	(%)	Derecesi	Sayısı
1a	12.5N	422,21	6,10	6,39	2,204	8,180	0,634	2,0	1	669
1b	10N	319,37	4,88	5,11	1,981	6,421	0,569	2,5	1	669
2	1.39N+74,2	77,57	1,83	1,73	1,036	1,920	0,289	33,2	2	669
3	6.25N	171,18	3,05	3,20	1,511	3,798	0,425	12,7	1	669
4a	12.5N	422,21	6,10	6,39	2,204	8,180	0,634	2,0	1	669
4b	15 N ₆₀	440,54	6,29	6,27	2,239	8,201	0,643	1,5	1	669
5	12N	401,54	5,86	6,14	2,163	7,828	0,622	1,9	1	669
6	29N ^{0.72}	304,31	5,16	4,98	2,034	6,493	0,554	1,6	1	669
7a	4.85N	131,31	2,43	2,49	1,316	2,873	0,363	18,1	1	420
7b	6.82 N ₆₀	170,48	2,96	2,93	1,513	3,530	0,416	12,1	1	420
7c	3.35 N	78,15	1,57	1,70	0,886	1,791	0,306	45,2	3	249
7d	4.93N ₆₀	90,48	1,94	1,95	1,117	2,165	0,315	32,9	2	249
7e	4.32N	106,76	2,11	2,21	1,141	2,472	0,332	27,7	2	669
7f	6.18N ₆₀	138,13	2,59	2,58	1,352	3,033	0,379	18,1	1	669
8	4.1N ₆₀	88,72	1,72	1,71	0,942	1,858	0,308	38,1	2	669
9a	1.6N + 15,4	85,28	1,02	0,99	0,906	0,992	0,387	65,0	4	669
9b	$2.1N_{60} + 17,6$	81,44	1,15	1,08	0,781	1,092	0,352	58,8	3	669

Çizelge 4.5. Serbest basınç (SB) deneyi verileri kullanılarak yapılan çalışmalar

Çizelge	4.6.	Üç	eksenli	basınç	(UU	Yöntem	1)	deneyi	verileri	kullanılarak	yapılan
		çalı	şmalar								

	Korelasvon c ₁₁		K		DI		TIC	K<1	Emnivet	Veri
No	(kPa)	RMSE	Ort	SD	RI	RD	TIC	(%)	Derecesi	Sayısı
la	12.5N	379,06	3,87	3,07	1,754	4,202	0,523	1,8	1	442
1b	10N	277,62	3,10	2,45	1,531	3,228	0,449	3,6	1	442
2	1.39N+74,2	101,82	1,20	0,98	0,627	1,000	0,316	56,8	3	442
3	6.25N	139,69	1,93	1,53	1,058	1,794	0,305	22,9	2	442
4a	12.5N	379,06	3,87	3,07	1,754	4,202	0,523	1,8	1	442
4b	15 N ₆₀	404,55	4,02	3,18	1,783	4,385	0,536	0,7	1	442
5	12N	358,55	3,72	2,95	1,713	4,006	0,510	2,3	1	442
6	$29N_{0.72}$	262,30	3,34	2,58	1,580	3,481	0,433	2,5	1	442
7a	4.85 N	112,85	1,46	0,96	0,779	1,062	0,270	37,2	2	320
7b	6.82 N ₆₀	135,53	1,79	1,12	0,973	1,371	0,287	23,4	2	320
7c	3.35 N	80,63	1,11	1,14	0,781	1,148	0,280	60,0	3	122
7d	4.93 N ₆₀	75,51	1,38	1,50	0,712	1,551	0,236	50,8	3	122
7e	4.32 N	99,36	1,34	1,06	0,691	1,113	0,264	45,2	3	442
7f	6.18 N ₆₀	112,09	1,65	1,31	0,896	1,466	0,264	30,5	2	442
8	4.1N ₆₀	93,83	1,10	0,87	0,660	0,875	0,271	58,6	3	442
9a	1.6N + 15,4	127,41	0,65	0,50	1,167	0,609	0,464	85,3	5	442
9b	$2.1N_{60} + 17,6$	117,37	0,74	0,57	1,016	0,624	0,409	78,7	4	442

N	Korelasyon c _u	DMCE	ŀ	K	DI		TIC	K<1	Emniyet	Veri
NO	(kPa)	KMSE	Ort	SD	KI	KD	пс	(%)	Derecesi	Sayısı
1a	12.5N	297,40	2,32	1,41	1,216	1,933	0,385	6,9	1	349
1b	10N	209,56	1,86	1,13	0,992	1,417	0,312	17,8	1	349
2	1.39N+74,2	160,47	0,70	0,39	1,003	0,495	0,408	83,7	5	349
3	6.25N	124,67	1,16	0,71	0,522	0,724	0,240	53,8	3	349
4a	12.5N	297,40	2,32	1,41	1,216	1,933	0,385	6,9	1	349
4b	15 N ₆₀	324,98	2,43	1,40	1,254	2,002	0,402	3,7	1	349
5	12N	349,00	2,23	1,36	1,175	1,828	0,371	8,9	1	349
6	29N0.72	196,98	1,99	1,07	1,046	1,455	0,296	12,0	1	349
7a	4.85 N	144,89	0,82	0,51	0,868	0,541	0,319	73,4	4	248
7b	6.82 N ₆₀	103,63	1,04	0,61	0,598	0,606	0,242	62,0	4	248
7c	3.35 N	138,60	0,58	0,33	1,166	0,532	0,376	90,1	5	101
7d	4.93 N ₆₀	115,75	0,73	0,40	0,924	0,481	0,288	82,2	5	101
7e	4.32 N	137,50	0,80	0,49	0,880	0,527	0,312	75,1	4	349
7f	6.18 N ₆₀	116,82	1,00	0,58	0,630	0,578	0,239	64,5	4	349
8	4.1N ₆₀	147,21	0,66	0,38	1,040	0,510	0,355	84,0	5	349
9a	1.6N + 15,4	198,06	0,39	0,21	1,550	0,648	0,574	98,6	5	349
9b	$2.1N_{60} + 17,6$	185,95	0,44	0,23	1,385	0,602	0,519	96,6	5	349

Çizelge 4.7. Üç eksenli basınç (UU Yöntem 2) deneyi verileri kullanılarak yapılan çalışmalar

Bu çalışmaların yanı sıra yaygın bir şekilde kullanılan korelasyonlardan biri de Stroud (1974) tarafından önerilendir. Stroud (1974) tarafından önerilen korelasyonda zeminin plastisite indeksine bağlı olarak bir f₁ değeri tanımlanmış olup, bu değerin SPT N değeri ile çarpılması suretiyle de drenajsız kayma dayanımı değeri elde edilmektedir (Şekil 4.4).

Stroud (1974) tarafından yapılan çalışmada SPT değeri ile ilgili herhangi bir düzeltme yapılıp yapılmadığına dair bir bilgi verilmemiş olup, yalnızca Pilcon Mühendislik tarafından geliştirilen otomatik şahmerdan kullanıldığından söz edilmektedir. Erol ve Çekinmez (2014:34) tarafından ise ilgili korelasyonda %60 enerji seviyesine göre düzeltme yapılan SPT darbe sayılarının (SPT N₆₀) kullanılması önerilmektedir.

Verileri kullanılan jeolojik-jeoteknik raporlar kapsamında gerçekleştirilen SPT deneyleri farklı şahmerdan verimine sahip makineler tarafından yapılmıştır. Bu durumda arazide elde edilen darbe sayılarına tij, numune alıcı, kuyu çapı ve enerji düzeltmesi uygulanarak elde edilen SPT N₆₀ değerlerinin kullanılmasının daha uygun olacağı düşünülmüştür.

Şekil 4.4. SPT N₆₀ - c_u - PI ilişkisi (Stroud 1974)

SPT N₆₀, PI ve SB ile UU deneylerinden elde edilen c_u değerleri kullanılarak f₁ değeri her bir c_u verisi için hesaplanmıştır. Hesaplanan f₁ değerleri Stroud (1974) tarafından önerilen değerler ile birlikte karşılaştırmalı olarak düşey eksen f₁, yatay eksen PI olacak şekilde çizilen grafikler üzerinde sunulmuştur. Ayrıca Stroud (1974) tarafından önerilen f_{1stroud} değerlerinin, çalışma kapsamında bulunan f₁ değerlerine oranının (f_{1stroud} / f₁) dağılımını gösteren histogramlar da hazırlanmıştır.

Aynı zamanda her bir proje sahası için ortalama PI ve fı değeri belirlenmiş olup yukarıda bahsi geçen çalışmalar ortalama saha verileri kullanılarak tekrarlanmıştır. Tüm verilere ait sonuçlar kullanılarak elde edilen grafikler Şekil 4.5-4.10'da, saha ortalamalarına ait değerler kullanılarak elde edilen grafikler ise Şekil 4.11- 4.16'da sunulmaktadır.

Şekil 4.5. c_u - PI ilişkisi (SB deneyi)

Şekil 4.6. $f_{1stroud} / f_1$ dağılımı (SB deneyi)

Şekil 4.7. c_u - PI ilişkisi (UU Yöntem 1)

Şekil 4.8. f_{1stroud} / f₁ dağılımı (UU Yöntem 1)

Şekil 4.9. c_u - PI ilişkisi (UU Yöntem 2)

Şekil 4.10. f1stroud / f1 dağılımı (UU Yöntem 2)

Şekil 4.11. cu - PI ilişkisi (SB deneyi, saha ortalamaları)

Şekil 4.12. $f_{1stroud} / f_1$ dağılımı (SB deneyi, saha ortalamaları)

Şekil 4.13. cu - PI ilişkisi (UU Yöntem 1, saha ortalamaları)

Şekil 4.14. f_{1stroud} / f₁ dağılımı (UU Yöntem 1, saha ortalamaları)

Şekil 4.15. cu - PI ilişkisi (UU Yöntem 2, saha ortalamaları)

Şekil 4.16. f_{1stroud} / f₁ dağılımı (UU Yöntem 2, saha ortalamaları)

Elde edilen $f_{1stroud}$ / f_1 oranları K <1 (%) değerine bağlı olarak Cherubini ve Orr (2003) tarafından önerilen emniyet dereceleri de dikkate alınarak değerlendirilmiş ve sonuçlar Çizelge 4.8'de sunulmuştur.

Voraloguon	Donou	Kullanılan	K değeri	Emniyet	Aaiklama	Veri	
Korelasyon	Deney	veri türü	<1 (%)	Derecesi	Açıklama	Sayısı	
		Tüm veriler	26,7	4	Emniyetsiz	864	
	q _u	Saha ortalamaları	20	4	Emniyetsiz	40	
	UIU denevi	Tüm veriler	45,7	3	Nötr	512	
$c_u = f_1 N_{60}$	– Yöntem 1	Saha ortalamaları	45	3	Nötr	40	
	III denevi	Tüm veriler	76	2	Emniyetli	393	
	– Yöntem 2	Saha ortalamaları	97	1	Çok Emniyetli (Güvenli Tarafta)	32	

Çizelge 4.8. Stroud (1974) tarafından önerilen korelasyon ile ilgili değerlendirmeler $(f_{1stroud} / f_1)$

4.3. Hacimsel sıkışma indisi (m_v)

Literatürde m_v değerinin belirlenmesi için kullanılan yaygın bir yöntem Stroud (1974) tarafından önerilen SPT N ve PI'ya bağlı korelasyondur (Eş. 4.1):

$$m_v (m^2 / kN) = 1 / (f_2.N)$$
 (4.1)

Stroud (1974) tarafından önerilen f2 değerleri Şekil 4.17'de sunulmaktadır.

Şekil 4.17. SPT N₆₀ - m_v- PI ilişkisi (Stroud 1974)

Stroud (1974) tarafından yapılan çalışmada SPT değeri ile ilgili herhangi bir düzeltme yapılıp yapılmadığına dair bir bilgi verilmemiş olup, yalnızca Pilcon Mühendislik tarafından geliştirilen otomatik şahmerdan kullanıldığından söz edilmektedir. Erol ve Çekinmez (2014:34) tarafından ise ilgili korelasyonda %60 enerji seviyesine göre düzeltme yapılan SPT darbe sayılarının (SPT N₆₀) kullanılması önerilmektedir.

Verileri kullanılan jeolojik-jeoteknik raporlar kapsamında gerçekleştirilen SPT deneyleri farklı şahmerdan verimine sahip makineler tarafından yapılmıştır. Bu durumda arazide elde edilen darbe sayılarına tij, numune alıcı, kuyu çapı ve enerji düzeltmesi uygulanarak elde edilen SPT N₆₀ değerlerinin kullanılmasının daha uygun olacağı düşünülmüştür.

Çalışma kapsamında 992 adet laboratuvar verisi kullanılmıştır. Numunelerin birleştirilmiş zemin sınıflandırma sistemine (USCS) göre dağılımı Şekil 4.18'de sunulmaktadır.

Şekil 4.18. Kullanılan laboratuvar verilerinin USCS göre dağılımı

4.3.1. Analizler

Laboratuvar deneyleri sonucunda elde edilen PI, birim hacim ağırlık ve m_v değerleri ile yeraltı su seviyeleri de göz önünde bulundurularak ilgili deney sonuçları seviyelerindeki hesaplanan efektif gerilmeler (σ_v ') kullanılmıştır. Laboratuvar deney verilerinin bulunduğu seviyelerde yapılmış olan SPT deney sonuçlarından elde edilen darbe sayıları, makine türleri de göz önüne alınarak gerekli düzeltmelerin yapılmasının ardından N₆₀ değerlerine dönüştürülmüştür. Daha sonra her bir deney için söz konusu seviyedeki efektif gerilmeye karşılık gelen m_v değerleri belirlenmiştir.

Yapılan hesaplamalar sonucunda elde edilen f_2 değerleri ve Stroud (1974) tarafından önerilen f_2 değerleri karşılaştırma amacı ile aynı grafikte gösterilmiştir. Ayrıca Stroud (1974) tarafından önerilen $f_{2stroud}$ değerlerinin, çalışma kapsamında bulunan f_2 değerlerine oranının ($f_{2stroud}/f_2$) dağılımını gösteren histogramlar hazırlanmıştır. Toplu veri sunumunun yanı sıra veriler zemin tipleri, SPT N₆₀ değerlerine göre belirlenmiş kıvam durumları, plastisite dereceleri ve σ_v ' değerleri dikkate alınarak Çizelge 4.9'da sunulan gruplara ayrılmıştır.

Kriter	Grup
	Kum ve Çakıl (SC, GC)
Zemin Tini	Kil (CL, CH)
	Silt (ML, MH)
	Organik Malzeme (OL-OH)
	0 -4 (Çok Yumuşak – Yumuşak)
SDT N	5 -15 (Orta Katı- Katı)
SF 1 1\60	16 -30 (Çok Katı)
	> 30 (Sert)
	< 20 (Düşük Plastisiteli)
PI	20 < PI < 30 (Orta Plastisiteli)
	> 30 (Yüksek Plastisiteli)
	≤ 200 kPa
$\sigma'(t_{\rm RD})$	$200 < \sigma_v' \le 400 \text{ kPa}$
O_V (KF a)	$400 < \sigma_v' \le 600 \text{kPa}$
	> 600kPa

Çizelge 4.9. Zemin Sınıfı, N₆₀, PI ve σ_v ' değerlerine bağlı veri grupları

Yapılan bu çalışmalar sonucunda elde edilen tüm sonuçlar Şekil 4.19 ve Şekil 4.20'de, saha ortalamaları alınarak elde edilen sonuçlar ise Şekil 4.21 ve Şekil 4.22 'de sunulmaktadır.

Şekil 4.19. m_v - PI ilişkisi (tüm veriler)

Şekil 4.20. f_{2stroud} / f₂ dağılımı (tüm veriler)

Şekil 4.21. m_v - PI ilişkisi (saha ortalamaları)

Şekil 4.22. f2stroud / f2 dağılımı (saha ortalamaları)

Verilerin, zemin sınıflarına göre gruplara ayrılmış durumları için sonuçlar Şekil 4.23-4.30'da sunulmaktadır. Ayrıca en yüksek oranda veri setini içeren CH-CL zemin sınıfları için saha ortalamaları verileri kullanılarak hazırlanan grafikler Şekil 4.31 ve Şekil 4.32'de verilmektedir.

Şekil 4.23. mv - PI ilişkisi (SC, SM, GC, GM, SC-SM)

Şekil 4.24. f2stroud / f2 dağılımı (SC, SM, GC, GM, SC-SM)

Şekil 4.25. m_v - PI ilişkisi (OH, OL)

Şekil 4.26. f2stroud / f2 dağılımı (OH, OL)

Şekil 4.27. mv - PI ilişkisi (MH, ML)

Şekil 4.28. f2stroud / f2 dağılımı (MH, ML)

Şekil 4.29. mv & PI ilişkisi (CH, CL)

Şekil 4.30. f2stroud / f2 dağılımı (CH, CL)

Şekil 4.31. m_v - PI ilişkisi (CH, CL, saha ortalamaları)

Şekil 4.32. f2stroud / f2 dağılımı (CH, CL, saha ortalamaları)

İncelenen verilerin çoğunluğu birleştirilmiş zemin sınıflandırmasına (USCS) göre CL, CH zemin grubuna dahil olan zeminler üzerinde yapılan laboratuvar deneylerinden elde

edilmiştir. Bu durum dikkate alındığında SPT N₆₀, PI ve σ_v ' değerlerine bağlı gruplamalar CL ve CH zemin sınıfına ait veri seti için yapılmıştır. SPT N₆₀ değerlerine göre gruplara ayrılan veriler Şekil 4.33- 4.38'de sunulmaktadır.

Şekil 4.33. mv - PI ilişkisi (4<SPTN₆₀≤15)

Şekil 4.34. f2stroud / f2 dağılımı (4<SPTN60≤15)

Şekil 4.35. m_v - PI ilişkisi (15<SPTN₆₀≤30)

Şekil 4.36. f2stroud / f2 dağılımı (15<SPTN60≤30)

Şekil 4.37. m_v - PI ilişkisi (SPTN₆₀>30)

Şekil 4.38. f2stroud / f2 dağılımı (SPTN60>30)

CL, CH zemin sınıflarına ait veri setinin farklı PI değerlerine bağlı olarak düzenlenmiş halleri Şekil 4.39- 4.44'de sunulmaktadır.

Şekil 4.39. m_v - PI ilişkisi (PI < 20 – düşük plastisiteli zeminler)

Şekil 4.40. $f_{2stroud}$ / f_{2} dağılımı (PI < 20 – düşük plastisiteli zeminler)

Şekil 4.41. m_v - PI ilişkisi ($20 \le PI \le 30$ - orta plastisiteli zeminler)

Şekil 4.42. $f_{2stroud} / f_2$ dağılımı ($20 \le PI \le 30$ - orta plastisiteli zeminler)

Şekil 4.43. m_v - PI ilişkisi (PI > 30 - yüksek plastisiteli zeminler)

Şekil 4.44. f_{2stroud} / f₂ dağılımı (PI > 30 - yüksek plastisiteli zeminler)

CL, CH zemin sınıflarına ait veri setinin farklı mertebedeki efektif gerilme değerlerine göre düzenlenmiş durumları Şekil 4.45- 4.50'de sunulmaktadır.

Şekil 4.45. m_v - PI ilişkisi ($\sigma_v' \leq 200 \text{ kPa}$)

Şekil 4.46. f_{2stroud} / f₂ dağılımı ($\sigma_v' \leq 200 \text{ kPa}$)

Şekil 4.47. m_v - PI ilişkisi ($200 < \sigma_v' \le 400$ kPa)

Şekil 4.48. f_{2stroud} / f₂ dağılımı (200 < σ_v ' \leq 400 kPa)

Şekil 4.49. m_v - PI ilişkisi (400 < $\sigma_v' \le 600$ kPa)

Şekil 4.50. f_{2stroud} / f₂ dağılımı (400 < σ_v ' \leq 600 kPa)

Şekil 4.51. m_v - PI ilişkisi (σ_v ' >600 kPa)

Şekil 4.52. f_{2stroud} / f₂ dağılımı (σ_v ' >600 kPa)

Elde edilen f_{2troud} / f_2 değerleri K <1 (%) değerine bağlı olarak Cherubini ve Orr (2003) tarafından önerilen emniyet dereceleri de dikkate alınarak değerlendirilmiş ve sonuçlar Çizelge 4.10'da sunulmuştur.

Korelasyon	Grup	Kullanılan veri türü	K değeri <1 (%)	Emniyet Derecesi	Açıklama	Veri Sayısı
	Genel	Tüm veriler	20.8	4	Emniyetsiz	992
		Saha ortalamaları	9.5	5	Çok Emniyetsiz (Güvensiz Tarafta)	42
	Zemin Sınıfi	OH, OL	6,3	5	Çok Emniyetsiz (Güvensiz Tarafta)	16
		SC, SM, GC, GM	8,0	5	Çok Emniyetsiz (Güvensiz Tarafta)	88
		MH, ML	18,9	5	Çok Emniyetsiz (Güvensiz Tarafta)	127
		CH, CL	23	4	Emniyetsiz	761
		CH, CL Saha ortalamaları	11.9	5	Çok Emniyetsiz (Güvensiz Tarafta)	42
	SPT N ₆₀ (CH, CL)	4 <sptn<sub>60≤15</sptn<sub>	41,7	3	Nötr	108
$m_v = 1/f_2 N_{60}$		15 <sptn<sub>60≤30</sptn<sub>	27,9	4	Emniyetsiz	240
		SPTN ₆₀ >30	14,3	5	Çok Emniyetsiz (Güvensiz Tarafta)	405
	PI (CH, CL)	PI<20	14,6	5	Çok Emniyetsiz (Güvensiz Tarafta)	96
		20≤PI≤30	24,7	4	Emniyetsiz	182
		PI>30	23,9	4	Emniyetsiz	477
	σ'ν (CH, CL)	σ' _v ≤200 kPa	17,0	5	Çok Emniyetsiz (Güvensiz Tarafta)	264
		$\begin{array}{c} 200 < \sigma'_v \leq 400 \\ kPa \end{array}$	18.8	5	Çok Emniyetsiz (Güvensiz Tarafta)	293
		$\begin{array}{c} 400 < \sigma'_v \leq 600 \\ kPa \end{array}$	34,3	4	Emniyetsiz	143
		$\sigma'_v > 600 \text{ kPa}$	39,4	4	Emniyetsiz	71
	Zemin Sınıfı, SPT N _{60,} σ' _v	CH, CL Zemin Sınıfı, 4 <sptn<sub>60<30 σ'_v> 200 kPa</sptn<sub>	41.7	3	Nötr	180

Çizelge 4.10. Stroud (1974) tarafından önerilen korelasyon ile ilgili değerlendirmeler $(f_{\rm 2stroud}\,/\,f_{2})$

5. SONUÇ VE ÖNERİLER

Bu çalışmada literatürde yer alan çok sayıda korelasyonun yerel (Ankara ve Türkiye) zemin koşullarındaki geçerlilikleri, C_c için 283, m_v için 962, c_u için ise 864 adet yüksek kalitede laboratuvar verisi kullanılarak incelenmiştir. Çalışma kapsamında kullanılan veriler, TOKER Sondaj ve İnşaat Mühendislik ve Müşavirlik A.Ş. tarafından 42 ayrı sahada hazırlanan jeolojik-jeoteknik raporlar kapsamında yapılan çalışmalardan temin edilmiştir. Bu çalışmaların 26 adedi Ankara, 3 adedi Konya, 2 adedi Manisa, 1'er adedi ise Kırıkkale, İstanbul, İzmir, Eskişehir, Afyon, Ordu, Kırşehir, Yozgat, Kayseri ve Kahramanmaraş'ta gerçekleştirilmiştir.

Söz konusu korelasyonlar kök ortalama kare hata (RMSE), sapma faktörü (K), sıralama indisi (RI), sıralama mesafesi (RD) ve Theil eşitsizlik katsayısı (TIC) olmak üzere beş farklı istatistiksel ölçüt kullanılarak kıyaslanmış ve aşağıdaki bulgular elde edilmiştir.

- 1) Sıkışma indisi (Cc) ile ilgili yapılan analizler neticesinde;
- Tek değişkene bağlı eşitlikler içerisinde, Ankara Kili için sıkışma indisini tahmin etme performansı yüksek eşitlikler başlangıç boşluk oranına (e₀) bağlı olanlardır.
- Çok değişkenli eşitlikler içinde Ankara Kili için sıkışma indisini tahmin etme performansı yüksek olanlar başlangıç boşluk oranına (e0) ve Likit Limite (LL) bağlı eşitliklerdir.
- Orr ve Cherubini (2003) tarafından önerilen emniyet dereceleri dikkate alındığında, Hough (1957) ve Bowles (1979) tarafından önerilenler dışında kalan tüm yöntemlerin sıkışma indisi değerini gerçekte olduğundan oldukça büyük tahmin ettiği ve çok emniyetli tarafta kaldığı, Hough (1957) tarafından inorganik zeminler için önerilen korelasyonun (korelasyon 10) ve Bowles (1979) tarafından önerilen korelasyonun (korelasyon 12) ise en iyi tahminleri yaptığı görülmektedir. Hough (1957) tarafından organik zeminler için önerilen korelasyonun (korelasyon 11) ise sıkışma indisini düşük olarak tahmin ettiği ve çok emniyetsiz tarafta kaldığı belirlenmiştir.
- Ankara Kili için sıkışma indisini tahmin etme performansı en yüksek olan eşitliğin Cc
 = 0.156e₀+0.0107 (Bowles 1979) olduğu görülmüştür.
- Literatürde bulunan ve bu çalışma kapsamında da incelenen korelasyonların, alışkanlıklar çerçevesinde bölgesel zemin koşulları ve ampirik denklemin

oluşturulduğu veri setine ait geoteknik özelliklerin uygulama sahasına benzerliği dikkate alınmadan parametre tayininde kullanılmasının ve tasarımların da bu sonuçlara göre yapılmasının oldukça sakıncalı olduğu gözlenmiştir. Önerilen korelasyonların %85'i sıkışma indisi değerini olduğundan daha büyük tahmin etmektedir. Bu değerlerin tasarımda kullanılması durumunda oturmalar gerçekte olduğundan daha yüksek hesaplanacak ve fazladan maliyetlere sebep olacak zemin iyileştirme metotlarına ihtiyaç duyulabilecektir.

 Ankara Kili'ne ait veri tabanı üzerinde yapılan analizlerde en güçlü ilişkinin e0'a bağlı korelayonlar için elde edildiği belirlenmiştir. Bu durumda yapılan çalışma kapsamında kullanılan Cc ve e0 değerleri dikkate alındığında, Ankara Kili için yapılacak ön tasarımlarda Bowles (1979) (korelasyon 12) ve Hough (1957) (korelasyon 10) ile tarafımızca önerilen aşağıdaki korelasyonun kullanılması önerilmektedir:

$$c_c = 0.1455e_0 + 0.0215 \tag{4.1}$$

 Tarafimizca önerilen korelasyon için RMSE=0.035, K=1.0, RI=0.252, RD=0.230 değerleri elde edilmektedir. Bu korelasyonlar ve laboratuvarda ölçülen C_c ile e_o değerleri toplu olarak Şekil 5.1'de verilmiştir.

Şekil 5.1. Sıkışma indisi (Cc) - başlangıç boşluk oranı (eo) ilişkisi

- 2) Drenajsız kayma dayanımı (c_u) ile ilgili yapılan analizler neticesinde;
- SB deney verileri kullanılarak yapılan değerlendirmelerde, Sivrikaya ve Toğrol (2002) tarafından önerilen 7c ve Nassaji ve Kalantari (2011) tarafından önerilen 9b no.lu korelasyonların cu değerini tahmin etme performanslarının diğerlerine göre daha yüksek olduğu görülmüştür.
- UU Yöntem 1 ile elde edilen veriler kullanılarak gerçekleştirilen değerlendirmelerde; Ajayi ve Balogun (1988) tarafından önerilen 2, Sivrikaya ve Toğrol (2002) tarafından önerilen 7c, 7d, 7e ve Hettiarachchi ve Brown (2009) tarafından önerilen 8 no.lu korelasyonların cu değerini tahmin etme performanslarının diğerlerine göre daha yüksek olduğu görülmüştür.
- UU Yöntem 2 ile belirlenen veriler kullanılarak gerçekleştirilen değerlendirmelerde, Terzaghi ve Peck (1967) trafından önerilen 3 no.lu korelasyonun cu değerini tahmin etme performansının diğerlerine göre daha yüksek olduğu görülmüştür.
- Stroud (1974) tarafından önerilen ilişkinin Cherubini ve Orr (2003) tarafından önerilen emniyet dereceleri de dikkate alınarak;
- SB deneyi ile bulunan cu değerleri kullanılarak yapılan değerlendirmelere göre emniyetsiz tarafta kaldığı,
- UU Yöntem 1 ile belirlenen cu değeri kullanılarak yapılan değerlendirmelere göre nötr ve SB deneyi ile UU Yöntem 2' ye göre daha güvenli olduğu,
- UU Yöntem 2 ile elde edilen cu değerleri kullanılarak yapılan değerlendirmelere göre emniyetli tarafta kaldığı gözlenmiştir.
- 3) Hacimsel sıkışma indisi (m_v) ile ilgili yapılan analizler neticesinde;
- Stroud (1974) tarafından önerilen ilişki yardımı ile bulunan f2 değerlerinin yaklaşık olarak % 80'nin Türkiye zemin koşulları için saha ve laboratuvar deneyleri yardımı ile hesaplanan gerçek f2 değerlerinden büyük olduğu görülmüştür.
- Tasarımlarda Stroud (1974) tarafından önerilen ilişki yardımı belirlenen f2 değerlerinin kullanılması sonucunda, gerçekte olduğundan daha az bir oturma değeri hesaplanarak güvensiz tarafta kalınacağı açıktır.
- Cherubini ve Orr (2003) tarafından önerilen emniyet dereceleri dikkate alındığında da ilgili korelasyonun emniyetsiz ve çok emniyetsiz (güvensiz tarafta) kaldığı gözlenmiştir.

- Yapılan bu çalışma neticesinde, bölgesel zemin koşulları dikkate alındığında Stroud (1974) tarafından önerilen ilişki yardımı ile bulunan değerlerin güvensiz tarafta kaldığı görülmüştür. Bu durum tasarımların güvenilir saha ve laboratuvar deney verileri kullanılarak yapılması gerekliliğinin açık bir göstergesidir.
- Çalışma kapsamında kullanılan veriler içerisinden; CH, CL zemin sınıfı, SPT N₆₀ değeri 4<SPT N₆₀ <30 ve σ'_v > 200 kPa, kriterlerinin üçünü birden sağlayan verilerin değerlendirmelerde kullanılması neticesinde hesaplanan f₂ değerlerinin Stroud (1974) tarafından önerilen değerler ile daha tutarlı olduğu tespit edilmiştir. İlgili veriler kullanılarak hesaplanan f₂ değerleri Şekil 5.2' de, Stroud (1974) tarafından önerilen f_{2stroud} değerlerinin, çalışma kapsamında bulunan f₂ değerlerine oranının (f_{2stroud} / f₂) dağılımını gösteren histogram ise Şekil 5.3'te sunulmaktadır.

Şekil 5.2. m_v - PI ilişkisi (CH,CL, 4<SPT N₆₀ ve $\sigma'_v > 200$ kPa)

Şekil 5.3. f_{2stroud} / f₂ dağılımı (CH - CL, 4<SPTN₆₀ ve $\sigma'_v > 200$ kPa)

Ayrıca 42 adet saha için ortalama verileri kullanılarak yapılan değerlendirmeler sonucu elde edilen f2 değerleri kullanılarak belirlenen eğilim çizgisi için ± bir standart hata (μ±1σ) limitleri belirlenmiştir. Şekil 5.4' te görüldüğü üzere Stroud (1974) tarafından önerilen ilişkinin yukarı hata limitine yakın olduğu gözlenmiştir. Bu nedenle yalnızca ön tasarımda kullanılmak koşulu ile Stroud (1974) tarafından önerilen f2 değerleri yerine bu çalışma kapsamında önerilen ve Stroud (1974) tarafından önerilen ilişkinin 100 birim aşağıya kaydırılması sonucu elde edilen f2 değerlerinin kullanılması daha güvenli olacaktır. Ayrıca PI değerleri 15 - 45 arasında (15 < PI < 45) kalan kohezyonlu zeminler için Şekil 5.5' de verilen denklem kullanılabilir.

Şekil 5.4. Bu çalışma kapsamında önerilen f2 - PI ilişkisi

Şekil 5.5. Bu çalışma kapsamında önerilen f2 - PI ilişkisi ile ilgili denklem

Yapılan tüm çalışma ve analizler; literatürde önerilen korelasyonların, ampirik denklemin oluşturulduğu veri setine ait geoteknik özelliklerin uygulama sahasına benzerliği dikkate alınmadan kullanımının tasarımda ne derece hatalara neden olabileceğini gözler önüne sermektedir. Bu tarz korelasyonlar yalnızca ön tasarımda ve çok dikkatli bir şekilde gerekirse tasarımda kullanılan güvenlik katsayılarının bir miktar arttırılması yolu ile kullanılmalıdır.

KAYNAKLAR

- Abu-Farsakh, M. Y. ve Titi, H.H. (2004). Assessment of direct cone penetration test methods for predicting the ultimate capacity of friction driven piles. *Journal of Geotechnical and Geoenvironmental Engineering*, 130(9), 935-944.
- Ajayi, L.A. ve Balogum, L.A. (1988). Penetration testing in tropical lateritic and residual soils - Nigerian experience.Proceeding of the International Symposium on *Penetration Testing*, ISOPT-1 Rotterdam, Balkema, , 315-328.
- Al-Khafaji, A.W. ve Andersland, O.B (1992). Equations for compression index approximation. *Journal of Geotechnical Engineering (ASCE)*, 118(1), 148–153.
- ASTM D1586-11. (2011). Standard Test Method for Standard Penetration Test (SPT) and Split-Barrel Sampling of Soils. West Conshohocken: ASTM International.
- ASTM D2166/D2166M-16. (2016). Standard Test Method for Unconfined Compressive Strength of Cohesive Soil. West Conshohocken: ASTM International.
- ASTM D2435/D2435M-11. (2011). Standard Test Methods for One-Dimensional Consolidation Properties of Soils Using Incremental Loading. West Conshohocken: ASTM International.
- ASTM D2850-15. (2015). Standard Test Method for Unconsolidated-Undrained Triaxial Compression Test on Cohesive Soils. West Conshohocken: ASTM International.
- ASTM D4719-07. (2007). Standard Test Methods for Prebored Pressuremeter Testing in Soils. West Conshohocken: ASTM International.
- Azzouz, A.S., Krizek, R.J. ve Corotis, R.B. (1976). Regression analysis of soil compressibility. *Soils and Foundation*, 16(2), 19–29.
- Bowles, J.E. (1979). *Physical and geotechnical properties of soils* (First edition). New York: McGraw-Hill Book Company.
- Briaud, J.L. ve Tucker, L.M. (1988). Measured and predicted axial load response of 98 piles. *Journal of Geotechnical Engineering (ASCE)*, 114(9), 984–1001.
- BS 1377-5. (1990). Methods of test for soils for civil engineering purposes, Part:5 Compressibility, permeability and durability tests. British Standard,1-8.
- BS 1377-7. (1990). Methods of test for soils for civil engineering purposes, Part 7: Shear strength tests (total stress). British Standard, 20-27.
- CEN ISO/TS 17892-5. (2017). Geotechnical investigation and testing Laboratory testing of soil -Part 5: Incremental loading oedometer test. Switzerland.
- CEN ISO/TS 17892-7. (2004). Geotechnical Investigation and Testing Laboratory Testing of Soil, Part 7: Unconfined Compressive Strength on Fine - Grained Soils. Switzerland.

- CEN ISO/TS 17892-8. (2004). Geotechnical Investigation and Testing Laboratory Testing of Soil, Part 8: Unconsolidated Undrained Triaxial Test. Switzerland.
- Chai, T. ve Draxler, R.R. (2014). Root mean square error (RMSE) or mean absolute error (MAE)? - arguments against avoiding RMSE in the literature. *Geoscintific Model Development*, 7, 1247-1250.
- Cherubini, C. ve Greco, V.R. (1997). A comparison between measured and calculated values in geotechnics: An application to settlements, NATO Advanced Research workshop, PROBAMAT - 21 st Century: Probabilities and Materials, Perm, Russia, 46, 481-498.
- Cherubini, C. ve Orr, T.L.L. (2000). A rational procedure for comparing measured and calculated values in geotechnics, Proceedings of the International Symposium on Coastal Geotechnical Engineering in Practice, Rotterdam, Balkema, 261-265.
- Cherubini, C. ve Orr, T.L.L. (2003). Use of the ranking distance as an index for assessing the accuracy and precision of equations for the bearing capacity of piles and at-rest earth pressure coefficient. *Canadian Geotechnical Journal*, 40, 1200–1207.
- Cherubini, C. ve Vessia, G. (2009). Probabilistic charts for shallow foundation settlements on granular soil, geotechnical risk and safety. *Taylor Francis Group*, Bari, Italy, 165-172.
- Clayton, C. R. I. (1990). SPT energy transmission theory, measurement and significance. *Ground Engineering*, 23(10), 35 43.
- Coduto, D.P. (2001). *Foundation design: principle and practices* (Second edition). Upper Saddle River: Prentice Hall, 117.
- Craig, R.F. (2004). Craig's soil mechanics (Seventh edition). London: Taylor Francis, 447.
- Daoud, W. A., Kasama, K., Saleh, N. M., ve Negm, A. M. (2016). Statistical evaluation of geotechnical correlations. *International Journal of GEOMATE*, 10(3), 1929-1935.
- Decourt, L. (1990). The Standard penetration test, state of the art report. Oslo, Norway: *Norwegian Geotechnical Institute Publication*, 179, 1-12.
- Erol, A. O. ve Çekinmez, Z. (2014). *Geoteknik mühendisliğinde saha deneyleri*. Ankara: Yüksel Proje Yayınları, 278.
- Güllü H., Çanakcı H. ve Alhashemy, A. (2016). Development of correlations for compression index. Afyon Kocatepe University Journal of Science and Engineering, 16 (2016) 025603, 344-355.
- Hara, A., Ohta, T., Niwa, M., Tanaka, S., ve Banno, T. (1974). Shear modulus and shear strength of cohesive soils. *Soils and Foundation*, 14(3), 1-12.
- Hettiarachchi, H. ve Brown, T. (2009). Use of SPT blow counts to estimate Shear Strength properties of soils: Energy Balance Approach. *Journal of Geotechnical and Geoenvironmental Engineering*, 135(6), 830-834.

Hough, B.K. (1957). Basic soils engineering. New York: The Ronald Press Company, 513.

- Koppula, S.D. (1981). Statistical estimation of compression index. *Geotechnical Testing Journal, ASTM*, 4(2), 68-73.
- Mair, R.J. ve Wood, D.M. (1987). *Pressuremer test methods and interpretation*. CIRIA Publications, 160.
- McGregor, J. ve Duncan, J.M. (1998). Performance and use of the standard penetration test in geotechnical engineering practice. *Report of CGPR, Virginia Polytechnic Institute*, Blacksburg.
- Nagaraj, T.S ve Murty, B.R.S. (1985). Prediction of the preconsolidation pressure and recompression index of soils. *Geotechnical Testing Journal, ASTM*, 8(4), 199–202.
- Nassaji, F. ve Kalantari, B. (2011). SPT capability to estimate undrained shear strength of fine grained soils of Tehran, Iran. *Electronic Journal of Geotechnical Engineering*, 16, 1229-1238.
- Nixon, I. K. (1982). *Standard penetration test: state of the art report*. Proceedings of the 2nd Europen Symposium on Penetration Testing, Amsterdam, Netherlands, 3-21.
- Onyejekwe, S., Kang, X. and Ge, L. (2015). Assessment of emprical equations for the compression index of fine-grained soils in Missouri. *Bulletin of Engineering Geology* and the Environment, 74, 705–716.
- Özocak, A. ve Altundağ, Y. (2016). *Farklı kil oranına sahip siltli zeminlerde ön konsolidasyon basıncının belirlenmesi*. Paper presented at the 4th International Symposium on Innovative Technologies in Engineering and Science, 2016, Antalya, Türkiye, 789-798.
- Özyurt, G. ve Toker, N. K. (2012). *Geoteknik Etüt raporlarındaki yaygın hataların belirlenmesi ve istatistiksel değerlendirilmesi*. Zemin Mekaniği ve Temel Mühendisliği Ondördüncü Ulusal Kongresi'nde sunulmuş bildiri, İsparta.
- Rendon-Herrero, O. (1983). Universal compression index equation. *Closure Journal of the Geotechnical Engineering Division ASCE*, 109(5), 755–761.
- Rowe, P.W. (1972). The Relevance of soil fabric to site investigation practice. 12th Rankine lecture. *Geotechnique Journal*, 22 (2), 195-300.
- Sanglerat, G. (1972). *The Penetration and soil exploration; interpretation of penetration diagrams theory and practice.* Amsterdam: Elsevier Publishing Co., 464.
- Sivrikaya, O. ve Toğrol, E. (2002). *Relations between SPT-N and* q_u , Paper presented at the 5th International Congress on Advances in Civil Engineering, Istanbul, Turkey, 943–952.
- Skempton A. W. (1986). Standard penetration test procedures and the effects in sands of overburden pressure, relative density, particle size, ageing and overconsolidation. *Geotechnique*, 36(3), 425 - 447.

- Sridharan, A. ve Nagaraj, H.B. (2000). Compressibility behaviour of remoulded fine grained soils and correlation with index properties. *Canadian Geotechnical Journal*, 37, 712-722.
- Stroud, M.A. (1974). The standard penetration test in insensitive clays and soft rock. Proceedings of European Symposium on Penetration Resistance, National Swedish Institute for Building Research, Stockholm, Sweden, 2.2, 367-375.
- Terzaghi, K. ve Peck, R.B. (1967). *Soil mechanics in engineering practice*. 2nd Edition, New York: John Wiley-Sons, 729.
- TS 1900-2. (2006). İnşaat mühendisliğinde zemin laboratuvar deneyleri Bölüm 2: Mekanik özelliklerin tayini.
- TS ENV 1997-3. (2004). Jeoteknik tasarım Bölüm 3: Arazi deneyleri yardımıyla tasarım (Eurocode 7).
- Vinop, P ve Bindu, J., (2010). Compression index of highly plastic clays an empirical correlation, *Indian Geotechnical Journal*, 40(3), 174-180.
- Wroth, C.P. ve Wood, D.M. (1978). The correlation of index properties with some basic engineering properties of soils, *Canadian Geotechnical Journal*, 15,137-145.

EKLER

Proje No	Proje Kodu	Proje Adı	İl	Mevkii	Proje Alanında Gözlenen Hakim Zemin
1	Eurostar	Eurostar- Kırklareli Doğalgaz Kombine Çevrim Santrali	Kırklareli	Babaeski İlçesi Erikleryurdu Köyü	Düşük Plastisitye sahip Kil / Kumlu Kil.
2	Afyon	Afyon İlci Termal Otel ve Konaklama Tesisi	Afyon	Merkez	Kuvaterner yaşlı alüvyon kökenli Siltli Kil / Kil. Birim yer yer organik malzeme içermektedir.
3	Boğazlıyan	Boğazlıyan Entegre Tesisi Dik Şeker Silosu	Yozgat	Boğazlıyan İlçesi	Orta Miyosen yaşlı Kızılırmak Formasyonuna dahil olan Kil /Siltli Kil / Killi Silt.
4	Gazi Üniversitesi	Gazi Üniversitesi Gölbaşı Yerleşkesi Rektörlük Binası	Ankara	Gölbaşı	Pliosen yaşlı Gölbaşı Formasyonuna ait olan Siltli Kil / Kil
5	Bayraktar Via Green	Ankara 28173 Ada 9 Parsel Via Green Plaza	Ankara	Çankaya İlçesi Söğütözü Mahallesi	Pliosen yaşlı Gölbaşı Formasyonuna ait olan Siltli Kil / Kil
6	Toki Fatsa	Ordu Fatsa 2025 Parsel 300 Yataklı Devlet Hastanesi	Ordu	Fatsa İlçesi Evkaf Köyü Mandıra Mevkii	Dolgu, Siltli Kil/Killi Silt Formundaki Turba Zemin ve Alüvyon Kökenli Siltli Kil/Killi Silt/Siltli Kum
7	Konya Sarıdağlar	Konya İli Selçuklu İlçesi 2466 Ada 34 Parsel Otel İnşaatı Projesi	Konya	Selçuklu İlçesi, Bedir Mahallesi	Pleistosen yaşlı Konya Formasyonuna dahil olan Siltli Kil / Kildir.
8	Oyak Eryaman	Eryaman Toplu Konut İnşaatı Projesi 46523 Ada 4 Parsel	Ankara	Etimesgut İlçesi Eryaman Mahallesi 5. Etap Bölgesi	Hançili Formasyonuna Ait Siltli Kil/Kil Birimler ve Bölgesel Olarak Siltli Kilden Oluşan Alüvyon
9	Nata Vega	Ankara Vega Park Evleri	Ankara	Ankara İli, Mamak İlçesinde, Üreğil Mahallesi	Pliosen yaşlı Gölbaşı Formasyonuna ait Kil
10	Başbakanlık	Başbakanlık Merkez Hizmet Binası	Ankara	Yenimahalle İlçesi, Beştepe	Pliosen yaşlı Gölbaşı Formasyonuna ait Kil
11	İskitler Mia	Mia Merkezi İş Alanları Kentsel Dönüşüm Ve Gelişim Projesi	Ankara	Altındağ İlçesi	Üst Seviyelerde Alüvyon Kökenli Siltli Kil / Kil Tabanda Pliosen Yaşlı Gölbaşı Formasyonuna ait Kil
12	İzmir Ulucamii	Ulucamii	İzmir	Konak İlçesi Çınarlı Mahallesi	Alüvyon kökenli Siltli Kil / Kil

EK-1. Çalışma kapsamında kullanılan proje sahalarına ait bilgiler

Proje No	Proje Kodu	Proje Adı	İl	Mevkii	Proje Alanında Gözlenen Hakim Zemin
13	Petlas Kırşehir-1	Hammadde ve Mamul Depoları	Kırşehir	Merkez İlçesi Gölhisar Mevkii	Üst Seviyelerde Alüvyon kökenli Kil / Siltli Kil / Çakıllı Kil / Kumlu Kil, Tabanda Üst Miyosen yaşlı Karasal Kırıntılara dahil olan Kil / Siltli Kil / Kumlu Kil
14	Cumhurbaşkanlığı	Cumhurbaşkanlığı Külliyesi Hizmet Binaları	Ankara	Yenimahalle İlçesi, Beştepe	Pliosen yaşlı Gölbaşı Formasyonuna ait Kil
15	TCDD Gar	TCDD Hızlı Tren Bakım – Onarım Merkezi	Ankara	Etimesgut	Üst Seviyelerde Kuvaterner Yaşlı Alüvyonal Malzeme, Tabanda Pliyosen Yaşlı Gölbaşı Formasyonuna ait Kil
16	Soma-1	2X255 MW Kömür Santrali	Manisa	Soma İli Yılca Köyü	Pleistosen Yaşlı Kumlu Killi Çakıl / Çakıllı Killi Kum /Çakıllı Kumlu Kil / Kumlu Kil / Kil / Siltli Kil
17	Ulaştırma Bakanlığı	Ulaştırma, Denizcilik Ve Haberleşme Bakanlığı Prestij Binası	Ankara	Çankaya	Pliosen yaşlı Gölbaşı Formasyonuna ait Kil
18	Kayseri Harikalar Diyarı	Anadolu Harikalar Diyarı	Kayseri	Kocasinan İlçesi Cırgalan Mevki	Üst Seviyelerde Alüvyon Kökenli Siltli Kil / Kil ve Siltli Kum, Tabanda Ayrışmış Tüfit / Tüfit
19	Hızlı Tren Garı	Hızlı Tren Garı	Ankara	Çankaya	Üst Seviyelerde Pliyosen Yaşlı Gölbaşı Formasyonuna ait Siltli Kil / Kil
20	Yaşamkent 61061	Ankara 61061 Ada 1 Parsel Konut Projesi	Ankara	Çankaya İlçesi Yaşamkent Mahallesi	Pliyosen Yaşlı Gölbaşı Formasyonu'na ait Siltli Kil / Killi Silt / Kil Birimleri ve Jura Yaşlı Akbayır Formasyonu'na Ait Tamamen Ayrışmış, Rezidüel Zemin Halinde Killi Silt / Siltli Kil
21	Oyak Sincan	Ankara 100797 Ada 1 Parsel Konut Projesi	Ankara	Sincan	Pliyosen Yaşlı Gölbaşı Formasyonu'na ait Siltli Kil / Killi Silt

EK-1. (devam) Çalışma kapsamında kullanılan proje sahalarına ait bilgiler

Proje No	Proje Kodu	Proje Adı	İl	Mevkii	Proje Alanında Gözlenen Hakim Zemin
22	Eti Maden Kırka	Kırka V. Boraks Pentahidrat Tesisi	Eskişehir	Seyitgazi İlçesi, Kırka Beldesi	Dolgu Malzeme, Alüvyon Kökenli Siltli Kil / Kil, Taban Kayası
23	Konya Selçuklu	Konya 29146 Ada 1 Parsel Kule Binası	Konya	Selçuklu	Siltli Kil / Kil
24	İSG Havaalanı	Sabiha Gökçen Uluslararası Havaalanı Yeni İskele Bloğu	İstanbul	Pendik ilçesi Kurtköy mevkiinde	Siltli Kil / Siltli Kumlu Kil formundaki Dolgu birim, Tabanda Pliyosen yaşlı Karasal Kırıntılara dahil olan Kil / Siltli Kil / Siltli Kumlu Kil
25	Next Level	Ankara Karakusunlar Karma Kullanım – Next Level Projesi	Ankara	Çankaya İlçesi Karakusunlar Semti	Pliyosen Yaşlı Gölbaşı Formasyonu'na ait Kil
26	Soma-2	2x255 MW Kömür Santrali	Manisa	Soma İlçesi Türkpiyala Köyü	Alüvyon , Kolüvyon kökenli Siltli Kil / Killi Silt, Rezidüel Zemin (Kil, Silt, Siltli Kil, Killi Silt)
27	Aytaş Aykule	Ankara İli 63859 Ada 2 Parsel Konut Projesi	Ankara	Çankaya İlçesi	Üst Seviyelerde Kolüvyon kökenli Kil / Silti Kil, Tabanda Pliyosen Yaşlı Gölbaşı Formasyonu'na ait olan Kil /Siltli Kil /Kumlu Kil
28	Ege Grup	Ankara İli 25389 Ada 3 Parsel Maidan Tower Projesi	Ankara	Çankaya İlçesi Mustafa Kemal Mahallesi sınırları	Üst SeviyelerdeKuvaterner yaşlı Alüvyon kökenli Kil, Tabanda ise Pliyosen yaşlı Gölbaşı Formasyonuna ait olan Kil
29	Otokoç	Ankara 7838 Ada 1 Parsel İş Merkezi	Ankara	Yenimahalle İlçesi Beştepeler Mahallesi	Üst seviyelerde Alüvyon Kökenli Siltli Kil / Kil Tabanda Pliyosen yaşlı Gölbaşı Formasyonuna Ait Kil
30	Ser Grup Eryaman	Ankara 46395 Ada 1 Parsel Konut Projesi	Ankara	Etimesgut	Üst Seviyelerde Kuvaterner Yaşlı Alüvyon kökenli Kil / Siltli Kil, Tabanda Pliyosen yaşlı Gölbaşı formasyonuna ait Kil / Siltli Kil / Killi Silt
31	Maraş Göksun	Kahramanmaraş- Göksun Devlet Yolu	Kahramanmaraş	Kahramanmaraş- Kayseri Devlet Yolu Üzerinde	Saraycık Formasyonuna Ait Kil / Siltli Kil

EK-1. (devam) Çalışma kapsamında kullanılan proje sahalarına ait bilgiler

Proje No	Proje Kodu	Proje Adı	İl	Mevkii	Proje Alanında Gözlenen Hakim Zemin
32	Mutlu Koru	Ankara 44430 Ada 1 Parsel Konut Projesi	Ankara	Çankaya İlçesi	Üst Seviyelerde Kuvaterner yaşlı Alüvyon ve Kolüvyon kökenli Kil / Siltli Kil, Tabanda Pliyosen yaşlı Gölbaşı Formasyonuna ait olan Siltli Kil / Kil / Killi Silt /
33	Petlas Kırşehir-2	Raflı Stok Alanı ve Depo Projesi	Kırşehir	Merkez İlçesi Gölhisar Mevkii	Ust Miyosen yaşlı Kızılırmak Formasyonuna ait Kil/ Siltli Kil
34	Efesel Yapı	28427 Ada 4 Parsel Ofis ve Mağaza	Ankara	Çankaya İlçesi Çukurambar Mevkii	Pliyosen yaşlı Gölbaşı Formasyonuna ait Kil
35	Gimat Gros	Ankara 62924 Ada 1 Parsel Gimat Gros Market Bölümü	Ankara	Yenimahalle İlçesi	Üst Seviyelerde Alüvyon kökenli Çakıllı Kumlu Kil / Kil Tabanda Pliyosen yaşlı Gölbaşı formasyonuna ait Siltli Kil / Killi Silt
36	Konya Meram	Konya Tarım Ve Gıda Üniversitesi Projesi	Konya	Meram İlçesi Dedekorkut Mahallesi	Konya Formasyonuna ait Kil / Kumlu Kil
37	Ekol Balgat	Ankara 9896 Ada 33 Parsel Plaza	Ankara	Çankaya İlçesi Balgat Semti	Üst Seviyelerde Kuvaterner Yaşlı Alüvyon Kökenli Killi Kumlu Çakıllı Malzeme Tabanda Pliyosen yaşlı Gölbaşı formasyonuna ait Kil
38	Fidanlar	Ankara 29343 Ada 1 Parsel Konut Projesi	Ankara	Alacaatlı Mahallesi	Kuvaterner yaşlı Kolüvyon'a ait Kil / Siltli Kil, Triyas yaşlı Elmadağ Formasyonu'na ait Rezidüel Zeminler (Kil/Siltli Kil/Killi Silt), Taban Kayası
39	Pasifik Mamak	Ankara 51954 Ada 1 Parsel Konut Projesi	Ankara	Mamak	Kuvaterner yaşlı Kolüvyon kökenli Killi Kum / Kumlu Kil / Siltli Kil, Miyosen yaşlı Mamak Formasyonu'na ait Killi Kum / Kumlu Kil, Taban Kayası
40	Fırat Dema	Ankara 46622 Ada 1 Parsel Konut Projesi	Ankara	Etimesgut İlçesi	Pliyosen yaşlı Gölbaşı Formasyonuna ait Kil / Siltli Kil
41	Roketsan Elmadağ	Roketsan OES Sevk Sistemleri Yanma Laboratuvarı ve Mühimmat Deposu	Ankara	Elmadağ	Kavaklı Formasyonuna ait Killi Zeminler ve
42	Pasifik Ego	Ankara 63865 Ada 2 Parsel Ego Projesi (A, M,G,H,P,P,R Blok)	Ankara	Yenimahalle	Pliyosen yaşlı Gölbaşı Formasyonuna ait Siltli Kil / Killi Silt

EK-1. (devam) Çalışma kapsamında kullanılan proje sahalarına ait bilgiler

ÖZGEÇMİŞ

Kişisel Bilgiler

Soyadı, adı	: TUÇ, Ertaç
Uyruğu	: T.C.
Doğum tarihi ve yeri	: 06.01.1986, Bulanık
Medeni hali	: Bekar
Telefon	: 0 (537) 342 78 80
e-mail	: ertactuc@gmail.com

Eğitim

Derece	Eğitim Birimi	Mezuniyet Tarihi
Yüksek lisans	Gazi Üniversitesi / İnşaat Mühendisliği	Devam ediyor
Lisans	Anadolu Üniversitesi / İnşaat Mühendisliği	2009
Lise	Bulanık Lisesi	2003

İş Deneyimi

Yıl	Yer	Görev
2010-Halen	Toker Sondaj A.Ş.	Laboratuvar Müdürü

Yabancı Dil

İngilizce

Yayınlar

Tuç, E. ve Akbaş, S.O. (2018). Sıkışma İndisi için Mevcut Korelasyonların Yerel Geçerliliğinin İncelenmesi: Ankara Kili. Zemin Mekaniği ve Temel Mühendisliği Onyedinci Ulusal Kongresi, İstanbul, 309-320

Hobiler

Yüzme, Kitap Okumak, Ata Binmek

GAZİ GELECEKTİR...