

FOTOVOLTAİK GÜÇ TAHMİNİ İÇİN METASEZGİSEL OPTİMİZASYON TABANLI HİBRİT MODEL TASARIMI VE ANALİZİ

Medine ÇOLAK

DOKTORA TEZİ ELEKTRİK ELEKTRONİK MÜHENDİSLİĞİ ANA BİLİM DALI

GAZİ ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ

HAZİRAN 2020

Medine ÇOLAK tarafından hazırlanan "FOTOVOLTAİK GÜÇ TAHMİNİ İÇİN METASEZGİSEL OPTİMİZASYON TABANLI HİBRİT MODEL TASARIMI VE ANALİZİ" adlı tez çalışması aşağıdaki jüri tarafından OY BİRLİĞİ ile Gazi Üniversitesi Elektrik Elektronik Mühendisliği Ana Bilim Dalında DOKTORA TEZİ olarak kabul edilmiştir.

Danışman: Prof. Dr. Ramazan BAYINDIR Elektrik Elektronik Müh. Ana Bilim Dalı, Gazi Üniversitesi Bu tezin, kapsam ve kalite olarak Doktora Tezi olduğunu onaylıyorum. İkinci Danışman: Doç. Dr. Mehmet YEŞİLBUDAK Elektrik Elektronik Müh. Ana Bilim Dalı, Nevşehir Hacı Bektaş Veli Üniversitesi Bu tezin, kapsam ve kalite olarak Doktora Tezi olduğunu onaylıyorum. Başkan: Prof. Dr. Erdal BEKİROĞLU Elektrik Elektronik Müh. Ana Bilim Dalı, Abant İzzet Baysal Üniversitesi Bu tezin, kapsam ve kalite olarak Doktora Tezi olduğunu onaylıyorum. Üye: Prof. Dr. Halil İbrahim BÜLBÜL Bilgisayar ve Öğretim Teknolojisi Eğitimi Ana Bilim Dalı, Gazi Üniversitesi Bu tezin, kapsam ve kalite olarak Doktora Tezi olduğunu onaylıyorum. Üye: Prof. Dr. Erdal IRMAK Elektrik Elektronik Müh. Ana Bilim Dalı, Gazi Üniversitesi Bu tezin, kapsam ve kalite olarak Doktora Tezi olduğunu onaylıyorum. Üve: Prof. Dr. Şevki DEMİRBAŞ Elektrik Elektronik Müh. Ana Bilim Dalı, Gazi Üniversitesi Bu tezin, kapsam ve kalite olarak Doktora Tezi olduğunu onaylıyorum. Üye: Prof. Dr. Nihat ÖZTÜRK Elektrik Elektronik Müh. Ana Bilim Dalı, Gazi Üniversitesi Bu tezin, kapsam ve kalite olarak Doktora Tezi olduğunu onaylıyorum.

Tez Savunma Tarihi: 24/06/2020

Jüri tarafından kabul edilen bu tezin Doktora Tezi olması için gerekli şartları yerine getirdiğini onaylıyorum.

Prof. Dr. Sena YAŞYERLİ Fen Bilimleri Enstitüsü Müdürü

.....

ETİK BEYAN

Gazi Üniversitesi Fen Bilimleri Enstitüsü Tez Yazım Kurallarına uygun olarak hazırladığım bu tez çalışmasında;

- Tez içinde sunduğum verileri, bilgileri ve dokümanları akademik ve etik kurallar çerçevesinde elde ettiğimi,
- Tüm bilgi, belge, değerlendirme ve sonuçları bilimsel etik ve ahlak kurallarına uygun olarak sunduğumu,
- Tez çalışmasında yararlandığım eserlerin tümüne uygun atıfta bulunarak kaynak gösterdiğimi,
- Kullanılan verilerde herhangi bir değişiklik yapmadığımı,
- Bu tezde sunduğum çalışmanın özgün olduğunu,

bildirir, aksi bir durumda aleyhime doğabilecek tüm hak kayıplarını kabullendiğimi beyan ederim.

Medine ÇOLAK 24/06/2020

.

FOTOVOLTAİK GÜÇ TAHMİNİ İÇİN METASEZGİSEL OPTİMİZASYON TABANLI HİBRİT MODEL TASARIMI VE ANALİZİ

(Doktora Tezi)

Medine ÇOLAK

GAZİ ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ Haziran 2020

ÖZET

Fotovoltaik enerji sistemleri için güneş ışınım şiddeti ve fotovoltaik güç üretimi verileri vazgeçilmez girdiler olduğundan, yüksek doğrulukta ve tutarlı güneş ışınımı ve fotovoltaik güç tahmini, uygulamadaki temel gereksinimlerdendir. Bu tez çalışmasında, güneş parametrelerinin deneysel metotlarla modellenmesi yapılmış ve global optimumu bulma veteneği yüksek olan metasezgisel optimizasyon algoritmaları yapay sinir ağlarına hibritlenmiştir. Hibrit tahmin modellerinin oluşturulması sürecinde, gri kurt (bozkurt), karınca aslanı ve balina optimizasyon algoritmaları çok katmanlı algılayıcı algoritmasına entegre edilmiştir. Günlük toplam yatay güneş ışınımı tahmin etmek için hava sıcaklığı, bağıl nem ve difüz yatay güneş ışınımı parametreleri 3 girişli ve 2 girişli vapıda kullanılmıştır. Günlük fotovoltaik güç üretimini tahmin etmek için ise hava sıcaklığı, bağıl nem, toplam yatay güneş ışınımı ve difüz yatay güneş ışınımı parametreleri 4 girişli, 3 girişli ve 2 girişli olarak kullanılmıştır. Ayrıca, geliştirilen hibrit tahmin modellerinin performansları, çok katmanlı algılayıcı algoritmasında kullanılan hiperbolik tanjant, sinüs ve sigmoid aktivasyonu fonksiyonları açısından da test edilmiştir. Geliştirilen tahmin modellerinin ortalama mutlak hata, ortalama mutlak yüzdesel hata ve karekök ortalama hata performansları karşılaştırıldığında, gri kurt optimizasyon algoritması tabanlı çok katmanlı algılayıcı modeli günlük toplam yatay güneş ışınımı ve günlük fotovoltaik güç üretimi tahminlerinde en iyi sonuçları sağlamıştır. Ayrıca, geliştirilen hibrit tahmin modellerinin, gelecekte kullanılacak farklı zaman aralıklarındaki veri setleri üzerinde de başarıyla uygulanabileceği değerlendirilmektedir.

:	90542
:	Fotovoltaik güç, güneş ışınımı, metasezgisel optimizasyon, çok
	katmanlı algılayıcı, tahmin
:	120
:	Prof. Dr. Ramazan BAYINDIR
:	Doç. Dr. Mehmet YEŞİLBUDAK
	::

DESIGN AND ANALYSIS OF METAHEURISTIC OPTIMIZATION-BASED HYBRID MODEL FOR PHOTOVOLTAIC POWER ESTIMATION

(Ph.D. Thesis)

Medine ÇOLAK

GAZİ UNIVERSITY

GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

June 2020

ABSTRACT

Since solar radiation intensity and photovoltaic power generation data are indispensable inputs for photovoltaic energy systems, high accuracy and consistent solar radiation and photovoltaic power prediction are essential requirements in practice. In this thesis study, solar parameters have been modeled by experimental methods and metaheuristic optimization algorithms with high ability to find global optimum have been hybridized to artificial neural networks. In the process of creating hybrid estimation models, the grey wolf, the ant lion and the whale optimization algorithms were integrated into the multilayer perceptron algorithm. Air temperature, relative humidity and diffuse horizontal solar radiation parameters were used in the structure with 3 inputs and 2 inputs to estimate the daily total horizontal solar radiation. In order to estimate the daily photovoltaic power generation, air temperature, relative humidity, total horizontal solar radiation and diffuse horizontal solar radiation parameters were used in the structure with 4 inputs, 3 inputs and 2 inputs. In addition, the performances of the developed hybrid estimation models were tested in terms of the hyperbolic tangent, sinus and sigmoid activation functions used in the multilayer perceptron algorithm. The comparison of mean absolute error, mean absolute percentage error and root mean squared error performances of the developed estimation models shows that the grey wolf optimization algorithm-based multilayer perceptron model provides the best results for estimating the daily total solar radiation and the daily photovoltaic power generation. In addition, it is considered that the developed hybrid estimation models can successfully be applied on the datasets containing different time intervals to be used in the future.

Science Code	:	90542
Key words	:	Photovoltaic power, solar radiation, metaheuristic optimization,
		multilayer perceptron, estimation
Number of pages	:	120
Supervisor	:	Prof. Dr. Ramazan BAYINDIR
Second supervisor	:	Assoc. Prof. Dr. Mehmet YEŞİLBUDAK

TEŞEKKÜR

Çalışmalarım boyunca değerli yardım ve katkılarıyla beni yönlendiren danışmanlarım Sayın Prof. Dr. Ramazan BAYINDIR ve Sayın Doç. Dr. Mehmet YEŞİLBUDAK, Tez İzleme Komitesi üyeleri Sayın Prof. Dr. Halil İbrahim BÜLBÜL ve Sayın Prof. Dr. Erdal IRMAK hocalarıma şükranlarımı sunarım.

Beni maddi ve manevi destekleriyle hiçbir zaman yalnız bırakmayan babam İlhami ÇOLAK'a, annem Necla ÇOLAK'a, kardeşlerim Alperen Mustafa ÇOLAK'a ve Ayşe ÇOLAK'a teşekkürü bir borç bilirim.

İÇİNDEKİLER

ÖZET	iv
ABSTRACT	v
TEŞEKKÜR	vi
İÇİNDEKİLER	vii
ÇİZELGELERİN LİSTESİ	x
ŞEKİLLERİN LİSTESİ	xii
SİMGELER VE KISALTMALAR	xv
1. GİRİŞ	1
2. LİTERATÜRDE GÜNEŞ IŞINIMI VE FOTOVOLTAİK GÜÇ TAHMİNİ İÇİN KULLANILAN YÖNTEMLER	9
2.1. Güneş İşınımı Tahmini	10
2.2. Fotovoltaik Güç Tahmini	18
3. KULLANILAN METOTLAR	27
3.1. Eğri Uydurma Yöntemleri	27
3.1.1. Polinom modellemesi	27
3.1.2. Gauss modellemesi	27
3.1.3. Fourier modellemesi	28
3.2. Yapay Sinir Ağları	28
3.2.1. Yapay sinir ağının eğitimi	29
3.2.2. Yapay sinir ağı aktivasyon fonksiyonları	30
3.2.3. Çok katmanlı algılayıcı (ÇKA) yapısı	33
3.2.4. Yapay sinir ağı eğitim algoritmaları	35
3.3. Metasezgisel Optimizasyon Algoritmaları	38
3.3.1. Gri kurt optimizasyon algoritması	40
3.3.2. Karınca aslanı optimizasyon algoritması	45

3.3.3. Balina optimizasyon algoritması	50
3.4. Geliştirilen Hibrit Modeller	54
3.4.1. Gri kurt optimizasyon algoritması tabanlı çok katmanlı algılayıcı (GKO-ÇKA) hibrit modeli	54
3.4.2. Karınca aslanı optimizasyon algoritması tabanlı çok katmanlı algılayıcı (KAO-ÇKA) hibrit modeli	57
3.4.3. Balina optimizasyon algoritması tabanlı çok katmanlı algılayıcı (BO- ÇKA) hibrit modeli	60
4. EĞRİ UYDURMA YÖNTEMLERİNİN VE GELİŞTİRİLEN HİBRİT TAHMİN MODELLERİNİN UYGULAMALARI	63
4.1. Kullanılan Veri Seti Özellikleri ve Analizi	63
4.1.1. Eğri uydurma yöntemleri için kullanılan veri seti özellikleri	63
4.1.2. Güneş ışınım şiddeti ve fotovoltaik güç tahmininde kullanılan veri seti özellikleri	67
4.2. Eğri Uydurma Yöntemleri Aracılığıyla Hava Sıcaklığı, Güneşlenme Süresi ve Global Güneş Işınım Şiddeti Verilerinin Modellenmesi	69
4.2.1. Hava sıcaklığı verilerinin modellemesi	70
4.2.2. Güneşlenme süresi verilerinin modellemesi	71
4.2.3. Global güneş ışınım şiddeti verilerinin modellemesi	73
4.3. Metasezgisel Optimizasyon Tabanlı Çok Katmanlı Algılayıcı Kullanılarak Günlük Toplam Yatay Güneş Işınımı Tahmini	74
4.3.1. Gri kurt optimizasyon algoritması tabanlı çok katmanlı algılayıcı kullanılarak günlük toplam yatay güneş ışınımı tahmini	76
4.3.2. Karınca aslanı optimizasyon algoritması tabanlı çok katmanlı algılayıcı kullanılarak günlük toplam yatay güneş ışınımı tahmini	79
4.3.3. Balina optimizasyon algoritması tabanlı çok katmanlı algılayıcı kullanılarak günlük toplam yatay güneş ışınımı tahmini	82
4.4. Metasezgisel Optimizasyon Tabanlı Çok Katmanlı Algılayıcı Kullanılarak Günlük Fotovoltaik Güç Tahmini	86
4.4.1. Gri kurt optimizasyon algoritması tabanlı çok katmanlı algılayıcı kullanılarak günlük fotovoltaik güç tahmini	87

4.4.2. Karınca aslanı optimizasyon algoritması tabanlı çok katmanlı algılayıcı kullanılarak günlük fotovoltaik güç tahmini	90
4.4.3. Balina optimizasyon algoritması tabanlı çok katmanlı algılayıcı kullanılarak günlük fotovoltaik güç tahmini	94
5. SONUÇLAR VE DEĞERLENDİRMELER	99
KAYNAKLAR	103
ÖZGEÇMİŞ	119

ÇİZELGELERİN LİSTESİ

Çizelge	Sayfa
Çizelge 2.1. Çok kısa dönem güneş ışınımı tahmininde kullanılan modeller	12
Çizelge 2.2. Kısa dönem güneş ışınımı tahmininde kullanılan modeller	13
Çizelge 2.3. Orta dönem güneş ışınımı tahmininde kullanılan modeller	16
Çizelge 2.4. Uzun dönem güneş ışınımı tahmininde kullanılan modeller	18
Çizelge 2.5. Çok kısa dönem fotovoltaik güç tahmininde kullanılan modeller	20
Çizelge 2.6. Kısa dönem fotovoltaik güç tahmininde kullanılan modeller	21
Çizelge 2.7. Orta dönem fotovoltaik güç tahmininde kullanılan modeller	22
Çizelge 2.8. Uzun dönem fotovoltaik güç tahmininde kullanılan modeller	23
Çizelge 4.1. Toplam veri setine ait istatistiki değerler	68
Çizelge 4.2. Sigmoid aktivasyon fonksiyonunu kullanan GKO-ÇKA metoduna ait günlük toplam yatay güneş ışınımı tahmini sonuçları	76
Çizelge 4.3. Sinüs aktivasyon fonksiyonunu kullanan GKO-ÇKA metoduna ait günlük toplam yatay güneş ışınımı tahmini sonuçları	78
Çizelge 4.4. Sigmoid aktivasyon fonksiyonunu kullanan KAO-ÇKA metoduna ait günlük toplam yatay güneş ışınımı tahmini sonuçları	80
Çizelge 4.5. Hiperbolik tanjant aktivasyon fonksiyonunu kullanan KAO-ÇKA metoduna ait günlük toplam yatay güneş ışınımı tahmini sonuçları	81
Çizelge 4.6. Sigmoid aktivasyon fonksiyonunu kullanan BO-ÇKA metoduna ait günlük toplam yatay güneş ışınımı tahmini sonuçları	82
Çizelge 4.7. Sinüs aktivasyon fonksiyonunu kullanan BO-ÇKA metoduna ait günlük toplam yatay güneş ışınımı tahmini sonuçları	84
Çizelge 4.8. Toplam yatay güneş ışınımı tahmini için geliştirilen tüm modellerin performansları	84
Çizelge 4.9. Sigmoid aktivasyon fonksiyonunu kullanan GKO-ÇKA metoduna ait günlük fotovoltaik güç tahmini sonuçları	87
Çizelge 4.10. Hiperbolik tanjant aktivasyon fonksiyonunu kullanan GKO-ÇKA metoduna ait günlük fotovoltaik güç tahmini sonuçları	89
Çizelge 4.11. Sigmoid aktivasyon fonksiyonunu kullanan KAO-ÇKA metoduna ait günlük fotovoltaik güç tahmini sonuçları	91

Çizelge

Çizelge 4.12. Hiperbolik tanjant aktivasyon fonksiyonunu kullanan KAO-ÇKA metoduna ait günlük fotovoltaik güç tahmini sonuçları	92
Çizelge 4.13. Sigmoid aktivasyon fonksiyonunu kullanan BO-ÇKA metoduna ait günlük fotovoltaik güç tahmini sonuçları	94
Çizelge 4.14. Sinüs aktivasyon fonksiyonunu kullanan BO-ÇKA metoduna ait günlük fotovoltaik güç tahmini sonuçları	96
Çizelge 4.15. Fotovoltaik güç tahmini için geliştirilen tüm modellerin performansları	97

ŞEKİLLERİN LİSTESİ

Şekil	ayfa
Şekil 3.1. Doğrusal aktivasyon fonksiyonu	30
Şekil 3.2. Basamak aktivasyon fonksiyonu	31
Şekil 3.3. Sigmoid aktivasyon fonksiyonu	32
Şekil 3.4. Hiperbolik tanjant aktivasyon fonksiyonu	32
Şekil 3.5. Sinüs aktivasyon fonksiyonu	33
Şekil 3.6. Çok katmanlı algılayıcının genel yapısı	34
Şekil 3.7. Gri kurt hiyerarşisi	41
Şekil 3.8. Gri kurtların avlanma davranışları: (A) av peşinde koşmak, yaklaşmak ve takip etmek (B-D) rahatsız etmek ve kuşatmak (E) durağan durum ve saldırı	42
Şekil 3.9. 2B ve 3B konum vektörleri ve olası sonraki konumlar	43
Şekil 3.10. GKO'da pozisyon güncellemesi	44
Şekil 3.11. GKO algoritmasının sözde kodu	45
Şekil 3.12. Koni şeklindeki tuzaklar ve karınca aslanlarının avlanma davranışı	46
Şekil 3.13. Karınca aslanı optimizasyon algoritmasının rastlantısal üç yürüyüşü	47
Şekil 3.14. Karınca aslanı tuzağının içindeki karıncanın rastgele yürüyüşü	48
Şekil 3.15. KAO algoritmasının sözde kodu	50
Şekil 3.16. Kambur balinaların kabarcık-ağ besleme davranışı	51
Şekil 3.17. 2B ve 3B konum vektörleri ve olası sonraki konumları	52
Şekil 3.18. Balina optimizasyon algoritmasının kabarcık-ağ arama yöntemi a) daralan çevreleme mekanizması b) spiral konum güncellemesi	53
Şekil 3.19. BO algoritmasının sözde kodu	54
Şekil 3.20. GKO-ÇKA'nın eğitim süreci	55
Şekil 3.21. GKO-ÇKA hibrit modelinin özetlenmiş iş akış diyagramı	55
Şekil 3.22. KAO-ÇKA'nın eğitim süreci	57
Şekil 3.23. KAO-ÇKA hibrit modelinin özetlenmiş iş akış diyagramı	59

xiii

Şekil	Sayfa
Şekil 3.24. BO-ÇKA'nın eğitim süreci	. 60
Şekil 3.25. BO-ÇKA hibrit modelinin özetlenmiş iş akış diyagramı	. 62
Şekil 4.1. Ankara ilinin 2007 ve 2016 yılları arasındaki aylık ortalama hava sıcaklıkları	. 64
Şekil 4.2. Ankara ilinin 2007 ve 2016 yılları arasındaki aylık toplam güneşlenme süreleri	. 65
Şekil 4.3. Ankara ilinin 2007 ve 2016 yılları arasındaki aylık toplam global güneş ışınım şiddetleri	. 66
Şekil 4.4. Güneş ışınım şiddeti ve fotovoltaik güç tahmini için kullanılan gerçek veriler	. 69
Şekil 4.5. Ankara ilinin uzun yıllar aylık ortalama hava sıcaklığı verilerinin modellemesi (2007-2016)	. 71
Şekil 4.6. Ankara ilinin uzun yıllar aylık toplam güneşlenme süresi verilerinin modellemesi (2007-2016)	. 72
Şekil 4.7. Ankara ilinin uzun yıllar aylık toplam global güneş ışınım şiddeti verilerinin modellemesi (2007-2016)	. 74
Şekil 4.8. S _H , N _B ve GI _{DY} girişlerini kullanan GKO-ÇKA metoduna ait tahmini toplam yatay güneş ışınımı değerleri	. 77
Şekil 4.9. S _H , N _B ve GI _{DY} girişlerini kullanan GKO-ÇKA metoduna ait tahmini toplam yatay güneş ışınımı değerleri	. 78
Şekil 4.10. GKO-ÇKA metoduna ait en düşük mutlak yüzdesel hata değerleri	. 79
Şekil 4.11. S _H ve GI _{DY} girişlerini kullanan KAO-ÇKA metoduna ait tahmini toplam yatay güneş ışınımı değerleri	ι . 80
Şekil 4.12. S _H ve N _B girişlerini kullanan KAO-ÇKA metoduna ait tahmini toplam yatay güneş ışınımı değerleri	ι . 81
Şekil 4.13. KAO-ÇKA metoduna ait en düşük mutlak yüzdesel hata değerleri	. 82
Şekil 4.14. S _H , N _B ve GI _{DY} girişlerini kullanan BO-ÇKA metoduna ait tahmini toplam yatay güneş ışınımı değerleri	i . 83
Şekil 4.15. S _H ve N _B girişlerini kullanan BO-ÇKA metoduna ait tahmini toplam yatay güneş ışınımı değerleri	ι . 84
Şekil 4.16. BO-ÇKA metoduna ait en düşük mutlak yüzdesel hata değerleri	. 85

Şekil 4.17.	S _H , N _B , GI _{TY} ve GI _{DY} girişlerini kullanan GKO-ÇKA metoduna ait tahmini fotovoltaik güç değerleri	88
Şekil 4.18.	S _H ve GI _{TY} girişlerini kullanan GKO-ÇKA metoduna ait tahmini fotovoltaik güç değerleri	89
Şekil 4.19.	GKO-ÇKA metoduna ait en düşük mutlak yüzdesel hata değerleri	90
Şekil 4.20.	NB, GITY ve GIDY girişlerini kullanan KAO-ÇKA metoduna ait tahmini fotovoltaik güç değerleri	91
Şekil 4.21.	SH, GITY ve GIDY girişlerini kullanan KAO-ÇKA metoduna ait tahmini fotovoltaik güç değerleri	93
Şekil 4.22.	KAO-ÇKA metoduna ait en düşük mutlak yüzdesel hata değerleri	93
Şekil 4.23.	GITY ve GIDY girişlerini kullanan BO-ÇKA metoduna ait tahmini fotovoltaik güç değerleri	95
Şekil 4.24.	S _H , GI _{TY} , ve GI _{DY} girişlerini kullanan BO-ÇKA metoduna ait tahmini fotovoltaik güç değerleri	96
Şekil 4.25.	BO-ÇKA metoduna ait en düşük mutlak yüzdesel hata değerleri	97

SİMGELER VE KISALTMALAR

Bu çalışmada kullanılmış bazı simgeler ve kısaltmalar, açıklamaları ile birlikte aşağıda sunulmuştur.

Simgeler	Açıklamalar
GI _{DY}	Difüz yatay güneş ışınımı
GI _{TY}	Toplam yatay güneş ışınımı
NB	Bağıl nem
S _H	Hava sıcaklığı
Kısaltmalar	Açıklamalar
AB-DVM	Ateş Böceği Algoritması Tabanlı Destek Vektör Makineleri
AB-RO	Ateş Böceği Algoritması Tabanlı Rastgele Ormanlar
ABSO-ENMBSO	Ateş Böceği Sürüsü Optimizasyonu Tabanlı En Düşük Mutlak Büzülme ve Seçim Operatörü
AB-YSA	Ateş Böceği Algoritması Tabanlı Yapay Sinir Ağı
AMA-DODOSA	Ampirik Mod Ayrışma Tabanlı Doğrusal Otoregresif ve Doğrusal Olmayan Sinir Ağı
BEK	Biyo-Etkileşimli Kümeleme Algoritması
ВКОН	Bağıl Karekök Ortalama Hata
BLM	Basit Liner Model
BM	Bulanık Mantık
BMH	Bağıl Mutlak Hata
BM-YSA	Bulanık Mantık Tabanlı Yinelemeli Sinir Ağları
BO	Balina Optimizasyonu
ВО-ÇКА	Balina Optimizasyon Algoritması Tabanlı Çok Katmanlı Algılayıcı
BO-DS	Birleştirilmiş Otoregresif Tabanlı Dinamik Sistem Modeli
вртен	Beyin Proje Tabanlı Evrimsel Hesaplama
BSA	Bulanık Sinir Ağ Modeli
ÇDDR	Çok Değişkenli Doğrusal Regresyon

Kısaltmalar	Açıklamalar
ÇDR	Çoklu Doğrusal Regresyon
ÇDURE	Çok Değişkenli Uyarlanabilir Regresyon Eğrileri
ÇKA	Çok Katmanlı Algılayıcı
DA-DODOSA	Dalgacık Ayrışmasına Dayalı Doğrusal Otoregresif ve Doğrusal Olmayan Sinir Ağı
DD-OM	Dışsal Değişken Kaynaklı Otoregresif Model
DDO-YSA	Dışsal Değişken Kaynaklı Otoregresif-Yapay Sinir Ağı
DKA	Desert Knowledge Australia
DOOSA	Doğrusal Olmayan Otoregresif Sinir Ağı
DTF	Doğrsusal Tahmin Filtreleri
DVM	Destek Vektör Makineleri
DVM-DVR	Destek Vektör Makineleri ve Destek Vektör Regresyonu
DVM-YSA	Destek Vektör Makineleri Tabanlı Yapay Sinir Ağı
DVR	Destek Vektör Regresyonu
DYSA	Dinamik Yinelemeli Sinir Ağı
EGYAYSA	Esnek Geri Yayılma Algoritması Tabanlı Yapay Sinir Ağı
EKK-DVM	En Küçük Kareler Destek Vektör Makinesi
EKKDVR	En Küçük Kareler Destek Vektör Regresyonu
EMA- EKKDVR	Evrimsel Mevsimsel Ayrışma En Küçük Kareler Destek Vektör Regresyonu
ENMBSO	En Düşük Mutlak Büzülme ve Seçme Operatörü
FD	Fourier Dönüşümü
GA-AÖM	Genetik Algoritma Gruplanmasına Dayalı Aşırı Öğrenme Makinesi
Gİ-YSA	Gradyan İniş Algoritması Tabanlı Yapay Sinir Ağı
GKM	Genelleştirilmiş Katkı Modeli
GKO	Gri Kurt Optimizasyonu
GKO-ÇKA	Gri Kurt Optimizasyon Algoritması Tabanlı Çok Katmanlı Algılayıcı
GRSA	Genelleştirilmiş Regresyon Sinir Ağı
GRTF	Genelleştirilmiş Radyal Temelli Fonksiyonlar
GSR	Gauss Süreç Regresyonu
GYM	Gradyan Yükseltme Makinesi

Kısaltmalar	Açıklamalar			
GYSA	Geriye Yayılımlı Sinir Ağı			
İY _{кон}	Karekök Ortalama Hatayı İyileştirme Yüzdesi			
İY _{омн}	Ortalama Mutlak Hatayı İyileştirme Yüzdesi			
KA-DVR	Karar Ağaçları ve Destek Vektör Regresyonu			
KAMA- DODOSA	Kolektif Ampirik Mod Ayrışımı Tabanlı Doğrusal Otoregresif ve Doğrusal Olmayan Sinir Ağı			
KAO	Karınca Aslanı Optimizasyonu			
KAO-ÇKA	Karınca Aslanı Optimizasyon Algoritması Tabanlı Çok Katmanlı Algılayıcı			
К-АӦМ	Klasik Aşırı Öğrenme Makinesi			
KA-YSA	Karar Ağaçları ve Yapay Sinir Ağları			
KF	Kalman Filtreleri			
КНЅ	Kümeleme, Zaman Serileri ve Çok Katmanlı Algılayıcı Kullanan Kolay Hesaplama Sistemi			
KKDH	Kendi Kendini Düzenleyen Haritalar			
KKDH-AÖM	Kendi Kendini Düzenleyen Haritalar Tabanlı Aşırı Öğrenme Makinesi			
KKOOH-BSA	Kendi Kendine Organize Olan Haritalar Tabanlı Bayes Sinir Ağları			
k-ortalamalar-ÇKA	K-Ortalamalar Algoritması Tabanlı Çok Katmanlı Algılayıcı			
k-ortalamalar - DOOSA	K-Ortalamalar Tabanlı Doğrusal Olmayan Otoregresif Sinir Ağı			
k-ortalamalar-RTF	K-Ortalamalar Tabanlı Radyal Temelli Fonksiyonlar			
k-NNE	K-En Yakın Komşu Kolektif Modeli			
КОН	Karekök Ortalama Hata			
KP	Kuantil Puani			
LM-YSA	Levenberg-Marquardt Algoritması Tabanlı Yapay Sinir Ağı			
Mevsimsel OBHO	Mevsimsel Otoregresif Bütünleşik Hareketli Ortalama			
Mevsimsel OBHO-DVM	Mevsimsel Otoregresif Bütünleşik Hareketli Ortalama Tabanlı Destek Vektör Makineleri			
MHSS	Mutlak Hatanın Standart Sapması			
МКО-АӦМ	Mercan Kayalıkları Optimizasyonu Tabanlı Aşırı Öğrenme Makinesi			
MMYH	Medyan Mutlak Yüzdesel Hatası			

Kısaltmalar	Açıklamalar			
MYHSS	Mutlak Yüzdesel Hatanın Standart Sapması			
NKOH	Normalize Karekök Ortalama Hata			
NOMH	Normalize Ortalama Mutlak Hata			
ОВС-ÇКА	Optimal Beyin Cerrahı Algoritması Tabanlı Çok Katmanlı Algılayıcı			
OBH	Ortalama Bağıl Hata			
ОВНО	Otoregresif Bütünleşik Hareketli Ortalama			
OBHO-ZGSA	Otoregresif Bütünleşik Hareketli Ortalama Tabanlı Zama Gecikmeli Sinir Ağı			
OBTH	Ortalama Bağıl Tahmin Hatası			
ОКН	Ortalama Karesel Hata			
ОМ	Otoregresif Modelleme			
ОМН	Ortalama Mutlak Hata			
OMS	Ortalama Mutlak Sapma			
ОМҮН	Ortalama Mutlak Yüzdesel Hata			
Opt. k-NN	Optimize Edilmiş K-En Yakın Komşu Modeli			
OS	Ortalama Sapma			
OSH	Ortalama Sapma Hatası			
OTKKDH-BSA	Oyun Teorik Kendi Kendini Düzenleyen Haritalar Tabanlı Bayesian Sinir Ağları			
ÖEG-YSA	Ölçekli Eşlenik Gradyan Algoritması Tabanlı Yapay Sinir Ağı			
ÖVK	Öğrenmeli Vektör Kuantalama			
PÇ-DVR	Polinom Çekirdekleri Tabanlı Destek Vektör Regresyonu			
POÖ	Parametrik Olmayan Önyükleme Yöntemi			
PSO	Parçacık Sürü Optimizasyonu			
PSO-GYSS	Parçacık Sürü Optimizasyonu Tabanlı Geriye Yayılımlı Sinir Ağı			
PV	Fotovoltaik			
R	Korelasyon Katsayısı			
R ²	Belirlilik Katsayısı			
RO	Rastgele Orman			
RTF	Radyal Temelli Fonksiyonlar			

Kısaltmalar	Açıklamalar
RTF-DVR	Radyal Temelli Fonksiyonlara Dayalı Destek Vektör Regresyonu
SAKM	Sinir Ağı Kolektif Modeli
S _H	Hava Sıcaklığı
SM	Süreklilik Modeli
SVRA	Sınıflandırma ve Regresyon Ağaçları
Trans. K-ortalama	Transformasyona Dayalı K-Ortalamalar Algoritması
TSBM	Takagi-Sugeno Bulanık Modeli
UIBSA	Uyarlanabilir İleri Beslemeli Sinir Ağı
USBÇS	Uyarlanabilir Sinirsel-Bulanık Çıkarım Sistemi
ÜÜD	Üçlü Üstel Düzleştirme Modeli
YAK-ÇKA	Yapay Arı Kolonisi Tabanlı Çok Katmanlı Algılayıcı
YHTV-YSA	Yer ve Hava Tahmini Verilerine Sahip Yapay Sinir Ağı
YSA	Yapay Sinir Ağları
YSA-kNN	Yapay Sinir Ağı Tabanlı K-En Yakın Komşu Algoritması
YSA- OHO	Yapay Sinir Ağı Tabanlı Otoregresif Hareketli Ortalama
YSYB	Yunuslarda Sesle Yer Belirleme Algoritması
YUHTV-YSA	Yer, Uydu ve Hava Tahmini Verilerine Sahip Yapay Sinir Ağı
YUV-YSA	Yer ve Uydu Verilerine Sahip Yapay Sinir Ağı
YV-YSA	Yer Verisine Sahip Yapay Sinir Ağı

1. GİRİŞ

Yenilenebilir Enerji Kaynakları, Küresel Durum Raporu'na göre [1]; 2018 yılı sonunda küresel yenilenebilir enerji kapasitesi 2,378 GW'a ulaşmıştır ve dünyanın toplam enerji üretiminin %33'ünden fazlası yenilenebilir enerji kaynakları tarafından karşılanmıştır. 2018 yılındaki yeni kapasite ilaveleri fotovoltaik enerji sistemlerinden %55, rüzgâr enerji sistemlerinden %28 ve hidroelektrik enerjiden %11 olarak gerçekleşmiştir. Özellikle fotovoltaik güç, yaklaşık 100 GW ilavesiyle yüksek penetrasyon seviyesine ulaşmıştır. Dolayısıyla, fotovoltaik güç üretimi 2018 yılında dünyanın en hızlı büyüyen yenilenebilir enerjisi haline gelmiştir. Bu gelişmelere paralel olarak, enerji ticareti için fotovoltaik güç üretiminin tahmin edilmesi önemli bir gereksinim halini almıştır.

Fotovoltaik güç sistemlerinin kurulumlarında önemli güneş parametreleri olan global güneş ışınımı, güneşlenme süresi ve hava sıcaklığı verilerinin modellenmesi amacıyla literatürde farklı deneysel metotlar kullanılmıştır.

Despotovic ve ark. aylık ortalama günlük difüz güneş ışınımı modellemesi için doğrusal regresyon modelini kullanmış ve ortalama mutlak bağıl hata 0,060 olarak elde edilmiştir [2]. *Jamil ve ark.* aylık ortalama günlük difüz güneş ışınımı modellemesi için doğrusal, logaritmik ve üstel regresyon modellerinden faydalanmış ve karekök ortalama hatalar sırasıyla 0,8967 MJ/m², 1,1360 MJ/m² ve 1,7705 MJ/m² olarak bulunmuştur [3]. *Filhove ve ark.* günlük difüz güneş ışınımı modellemesinde sigmoid lojistik fonksiyonunu kullanarak karekök ortalama hatayı 0,2718 MJ/m² olarak hesaplamışlardır [4].

Liao ve. ark. yıllık ortalama güneşlenme süresi modellemesi için doğrusal regresyon modelini kullanmış ve belirlilik katsayısı 0,80 olarak elde edilmiştir [5]. *Chelbi ve ark.* aylık ortalama günlük güneşlenme süresi modellemesi için doğrusal regresyon modelinden faydalanmış ve belirlilik katsayısı 0,7976 olarak bulunmuştur [6].

Zhu ve ark. günlük hava sıcaklığı modellemesi için doğrusal regresyon modelinden faydalanmış ve karekök ortalama hata 3,17 $^{\circ}$ C olarak bulunmuştur [7]. *Ho ve ark.* günlük maksimum hava sıcaklığı modellemesi için rastgele orman regresyon modelini kullanmış ve ortalama mutlak hata 1,67 $^{\circ}$ C olarak elde edilmiştir [8]. *Wenbin ve ark.* günlük

maksimum ve minimum hava sıcaklığı modellemesinde sinüzoidal eğri uydurma metodunu kullanarak korelasyon katsayılarını sırasıyla 0,83 ve 0,84 olarak hesaplamışlardır [9].

Literatürde güneş ışınımını tahmin etmek için çeşitli makine öğrenimi, uzaktan algılama ve deneysel modeller önerilmiştir.

Chang ve Zhang saatlik / günlük ışınım oranını kullanarak saatlik global güneş ışınımı tahmininin doğruluğunu iyileştirmişlerdir [10]. *Jiang ve ark*. evrişimsel sinir ağlarını kullanarak uydu görüntülerinden mekansal kalıpları çıkarmışlar ve bunları çok katmanlı algılayıcıda kullanarak saatlik global güneş ışınımıyla ilişkilendirmişlerdir. Doğru ve güvenilir tahmin elde etmişlerdir [11].

Li ve ark. çok değişkenli uyarlanabilir regresyon eğri yöntemi kullanarak meteorolojik verilerdeki en önemli değişkenleri seçmiş ve yatay bir yüzeyde saatlik global güneş ışınımının tahmini için iyi bir performans elde etmiştir [12]. *Cornejo-Bueno ve ark.* makine öğrenimi regresörleri olarak farklı Gauss süreçleri, destek vektör regresyonu ve sinir ağlarını kullanmışlar ve saatlik global güneş ışınımı tahmininde aşırı öğrenme makinelerinin etkin performansını göstermişlerdir [13].

Manju ve ark. günlük yatay global güneş ışınımı tahmininde yüzey ölçüm verilerini uydu ölçüm verilerinden daha uygun bulmuşlardır [14]. *Gouda ve ark*. günlük global güneş ışınımının yatay bir yüzeyde tahmin edilmesi için yılın günü bazlı hibrit sinüs ve kosinüs dalga modelini önerdiler ve herhangi bir meteorolojik veriye ihtiyaç duymadan iyi bir tahmin elde etmişlerdir [15].

Guermoui ve ark. ağırlıklandırılmış Gauss süreç regresyonuna dayalı paralel ve basamaklı tahmin mimarileri önermişler ve günlük global yatay güneş ışınımı tahminindeki hassasiyeti arttırmışlardır [16]. *Feng ve ark.* günlük yatay global güneş ışınımını tahmin etmek için sıcaklığa dayalı ampirik ve makine öğrenme modellerini karşılaştırmışlar ve hibrit zihin evrimine dayalı yapay sinir ağı modelini uygun model olarak tavsiye etmişlerdir [17].

Bir deney kuramı yaklaşımı ile *Makade ve ark*. rakım, bağıl nem ve güneşlenme süresi değişkenlerini aylık ortalama yatay global güneş ışınımı tahmininde baskın parametreler

olarak belirlemiştir [18]. *Kisi ve ark*. dinamik evrilen sinirsel-bulanık çıkarım sisteminin aylık ortalama global güneş ışınımı tahminindeki verimini göstermişlerdir [19].

A.G. Kaplan ve *Y.A. Kaplan* hareketli en küçük kareler yaklaşımına dayanan kübik, kuadratik ve doğrusal modeller geliştirmişler ve gerçek verilerle iyi bir uyum içinde olan aylık ortalama global güneş ışınımı değerlerini elde etmişlerdir [20]. *Anis ve ark.* aylık ortalama global güneş ışınımı tahmini için güneşlenme süresine dayalı genelleştirilmiş modeller tasarlamışlar ve küresel performans göstergesi açısından kuartik fonksiyonu en üst sıradaki model olarak tanımlamışlardır [21].

Gürel ve ark.,aylık ortalama günlük global güneş ışınımı değerlerini tahmin etmek için ileri beslemeli sinir ağı, ampirik modeller (üç Angstrom tipi model), zaman serisi (Holt-Winters) ve matematiksel modeller kullanmışlardır. Basınç, bağıl nem, rüzgar hızı, ortam sıcaklığı ve güneş ışığı süresi verileri kullanılmış olup; ileri beslemeli sinir ağı 0,9911'lik R², 0,78'lik KOH ve % 4,9263'lük OMYH değerleriyle en başarılı yöntem olmuştur [22].

Literatürde fotovoltaik güç tahmini için pek çok yapay zekâ, metasezgisel optimizasyon ve veri madenciliği modelleri önerilmiştir.

Li ve ark. fotovoltaik güç tahmini için çok-evrenli optimizasyon algoritması ve destek vektör makinesi içeren hibrit bir model önermişlerdir. Geçmiş güç üretimi ve hava durumu verileri kullanılarak OKH değeri en az 0,0012 azaltılmıştır [23]. *Behera ve ark.* fotovoltaik gücü tahmin etmek için hızlandırılmış parçacık sürü optimizasyonu tabanlı aşırı öğrenme makinesi kullanmışlar ve OMYH % 1,4440 olarak elde edilmiştir [24].

Eseye ve ark. SCADA verilerine ve meteorolojik bilgilere dayanarak dalgacık dönüşümü, parçacık sürü optimizasyonu ve destek vektör makinesi içeren hibrit bir model geliştirmişler ve NOMH değeri 0,4 olarak bulunmuştur [25]. *Koster ve ark.* bölgesel fotovoltaik güç tahmini için fotovoltaik referans sistemlerini karakterize etmişler ve OS değerini nominal gücün %1,1'ine düşürmüşlerdir [26].

Douiri fotovoltaik karakteristikleri temsil etmek için parçacık sürü optimizasyon algoritması ile bir Takagi-Sugeno sinirsel-bulanık çıkarım sistemini ayarlamışlar ve ortalama hatalar, genetik algoritma tabanlı modele göre dörtte bir azalmıştır [27].

Larson ve ark. sayısal hava tahmininin en küçük kareler optimizasyonuna dayanan bir tahmin yöntemi önermişlerdir. BKOH'ın değeri, global yatay ışınım ve fotovoltaik güç çıkışı verileri kullanılarak %10,3 - %14 aralığında bulunmuştur [28].

El-Baz ve ark. olasılık tahminlerinin, enerji yönetim sistemi algoritmaları ve talep tarafı yönetim algoritmalarına entegrasyonunu kolaylaştırmıştır. Tahmin yeteneği, süreklilik modeline göre %48,6'ya yükselmiştir [29]. *Hu ve ark.* ultra kısa dönem fotovoltaik güç tahmini için yere dayalı bulut görüntülerini kullanmışlardır. Radyal temelli fonksiyonlar aracılığıyla OMH ve OMYH değerleri sırasıyla 83,4 W ve %7,4 azalmıştır [30].

VanDeventer ve ark. bir konut fotovoltaik sisteminin kısa dönem güç tahmini için genetik algoritmaya dayalı destek vektör makinesi modelini önermişlerdir. Hava sıcaklığı, güneş ışınımı ve fotovoltaik güç verileri giriş değişkenleri olarak kullanılmış ve KOH ve OMYH değerleri sırasıyla %11,226 W ve %1,7052'ye ulaşmıştır [31].

Dong ve ark. fotovoltaik sistemlerin sistem parametrelerini ve durum değişkenlerini tahmin etmek için filtre tabanlı beklenti maksimizasyonu ve Kalman filtreleme mekanizması geliştirmişlerdir. Geliştirilen model, kısa dönem fotovoltaik güç tahmininde NKOH doğruluğu açısından iyi bir performans göstermiştir [32].

Gao ve ark. fotovoltaik güç tahmini için uzun-kısa süreli bellek ağlarını önermişlerdir. Sayısal hava tahmini ile bulunan günlük ortalama meteorolojik veriler giriş olarak kullanılmış ve ideal hava koşulları için KOH değeri % 4,62'ye ulaşmıştır [33]. *Gulin ve ark.* bir gün sonraki fotovoltaik güç üretimini tahmin etmek için sinir ağı statik/ dinamik çevrimiçi düzeltici geliştirmişler ve güç üretimi tahminindeki standart sapma %50 azalmıştır [34].

Wang ve ark. bir gün sonraki fotovoltaik güç üretimini tahmin etmek için evrişimsel sinir ağı ve uzun-kısa süreli sinir ağı modelleri ile hibrit bir model oluşturmuşlar ve bu model, çoğunlukla fotovoltaik zaman serisi verileri kullanan tekli modellerden daha iyi çalışmıştır [35]. *Wang ve ark.* fotovoltaik sistemlerin günlük güç çıktılarını tahmin etmek için kısmi fonksiyonel doğrusal regresyon modeli önermişlerdir. Global yatay ışınım ve fotovoltaik güç çıkışı verileri kullanılarak OMS değeri 40,6277'ye düşürülmüştür [36].

Han ve ark. fotovoltaik enerji üretiminin orta ila uzun dönem tahmini için kopula fonksiyonunu ve uzun-kısa süreli bellek ağını birleştirmişlerdir. Ölçülen güç ve meteorolojik veriler kullanılarak NKOH değeri % 10,01'e kadar azalmıştır [37]. *Yang ve ark.* geçmiş fotovoltaik güç üretim verilerini ve meteorolojik verileri kullanarak veri madenciliğine dayalı tahmin yapmışlardır. Güneşli günlerde en düşük KOH değeri 0,1028 ile benzer bulutlu modifikasyona sahip Markov zinciri modelinde görülürken, en düşük BMH değeri ise %0,88 ile benzer bulutlu modifikasyona sahip uzay füzyonu modelinde görülmüştür [38].

Wang ve ark. mevsimsel fotovoltaik güç tahmini için dalgacık dönüşümü, derin evrişimsel sinir ağı ve kantil modellerini hibritlemişler ve KOH değeri 14,3381 olarak hesaplanmıştır [39]. *He ve ark.* destek vektör kantil regresyonu ve bulanık bilgi granülasyonu yöntemlerini birleştirerek fotovoltaik güç üretiminin olasılık yoğunluk tahminini yapmışlardır. En düşük hata değerleri OMYH için %3,28, OBTH için %23,37, KOH için 4,15 ve OMH için %134,362 olarak bulunmuştur [40].

Ogawa ve ark. fotovoltaik güç üretimini tahmin etmek için Gauss-Gauss-Kısıtlı-Boltzmann-Makinesi tabanlı derin sinir ağı tekniğini önermişlerdir. Çok katmanlı algılayıcı modelinin standart sapması %10,6, Gauss-Gauss-Kısıtlı-Boltzmann-Makinesi ve çok katmanlı algılayıcı içeren derin inanç ağı modelinin standart sapması %4,1 ve beyin firtınası optimizasyonu, Gauss-Gauss-Kısıtlı-Boltzmann-Makinesi ve çok katmanlı algılayıcı içeren evrimsel derin inanç ağı modelinin standart sapması %1,8 olarak gözlenmiştir [41]. *Sharifzadeh ve ark.* fotovoltaik güç, sıcaklık, saatlik değişken, mevsimsel değişken, doğrudan güneş ışınımı ve difüz güneş ışınımı verilerini yapay sinir ağları ve destek vektör regresyonunda kullanarak fotovoltaik güç üretimini tahmin etmişlerdir. Yapay sinir ağlarının ortalama kare hatası 1 saatlik ve 5 saatlik zaman dilimlerinde $3,26x10^{-4}$ ve $6,5x10^{-3}$ olarak bulunurken, destek vektör regresyonunun ortalama kare hataları $2,03x10^{-6}$ ve $5,51x10^{-2}$ olarak elde edilmiştir [42].

Wood çeşitli hava, çevre ve pazar değişkenlerini şeffaf açık kutu öğrenme ağında değerlendirerek güneş enerjisi üretimini tahmin etmişlerdir. İki farklı veri seti hazırlanmış olup, birinci ve ikinci veri setinin karekök ortalama hataları sırasıyla 1044,4 MW ve 936,1 MW; belirlilik katsayıları ise sırasıyla 0,975 ve 0,980 olarak bulunmuştur. [43]. *Heydari ve ark.* mikroşebekelerde güneş enerjisi tahmini için dalgacık dönüşümü, hibrit özellik seçimi,

grup veri işleme yöntemi tabanlı sinir ağı ve modifiye çok amaçlı meyve sineği optimizasyon algoritmasını hibritlemişlerdir. Önerilen modelin karekök ortalama hatası 0,017868, ortalama mutlak yüzdesel hatası 1,7275, ortalama mutlak hatası 0,015095 ve belirlilik katsayısı 0,99649 olarak gözlenmiştir [44].

Dewangan ve ark. danışmanlı makine öğrenme algoritmaları ve ortalama, medyan, doğrusal regresyon ve doğrusal olmayan regresyon gibi farklı birleşik tahmin yöntemleri kullanarak fotovoltaik güç tahmini yapmışlardır [45]. Behera ve Niranjan, kısa dönem güneş gücü tahmini için ampirik mod ayrışma ve sinüs kosinüs optimizasyonu tabanlı aşırı öğrenme makinesi kullanmışlardır. Geliştirilen bu modelin, OMYH değeri %1,8852 olarak hesaplanmıştır [46].

Bu tez kapsamında, fotovoltaik güç santrallerinin güç kalitesi, yedek kapasite planlaması, temel yük planlaması ve yük takibi açılarından verimli olmalarına ve santralle ilgili geleceğe yönelik yatırım, bakım, üretim ve satış gibi konularda politikalar ve planlar oluşturulmasına katkı sağlamak, amacıyla güneş ışınım şiddetini ve fotovoltaik güç üretimi tahminleri yapılmıştır., İlk olarak Polinom, Gauss ve Fourier eğri uydurma yöntemleri kullanılarak Ankara ilinin 2007-2016 yılları arasındaki hava sıcaklığı, güneşlenme süresi ve global güneş ışınım şiddeti verilerinin analizi yapılmıştır. Sonrasında, gri kurt karınca aslanı ve balina optimizasyon algoritmaları kullanılarak metasezgisel optimizasyon tabanlı çok katmanlı algılayıcı modelleri oluşturulmuş ve n demetli meteorolojik giriş verileri aracılığıyla günlük toplam yatay güneş ışınımı tahmini ve günlük fotovoltaik güç tahmini yapılmıştır. Günlük toplam yatay güneş ışınımı tahmininde hava sıcaklığı, bağıl nem ve difüz yatay güneş ışınımı meteorolojik verileri giriş olarak kullanılırken; günlük fotovoltaik güç tahmininde hava sıcaklığı, bağıl nem, günlük toplam yatay güneş ışınımı ve difüz yatay güneş ışınımı meteorolojik verileri giriş olarak kullanılmıştır. Geliştirilen modellerde, kullanılan giriş veri setlerinin türlerinin ve sayısının tahminler üzerindeki etkileri değerlendirilmiştir.

Literatürdeki çalışmalarda, özellikle, kullanılan veri setlerinin özelliklerinin verilmemesi, tahmin modellerinde daha önce sıklıkla kullanılan optimizasyon algoritmalarının tercih edilmesi, tahmin sonuçlarının süreklilik referans modeline göre iyileştirme sonuçlarının verilmemesi bu alanda ortaya çıkan eksiklikler olarak görülmüştür. Bahsedilen bu eksiklikleri gidermek amacıyla, yeni hibrit tahmin modelleri geliştirilerek çözüm önerileri

sunulmuştur. Geliştirilen hibrit modellerin tahmin performansları, süreklilik referans modeli ile karşılaştırılarak çalışmanın başarısı gösterilmiştir. Ayrıca, tahmin performanslarının değerlendirilmesinde literatürde en çok tercih edilen hata ölçekleri kullanılmıştır.

Güneş parametrelerinin deneysel metotlarla modellemesi sonuçlarında; aylık toplam global güneş ışınım şiddeti verilerinin uzun yıllar modellemesinde 3 terimli Gauss modeli, aylık toplam güneşlenme süresi ve aylık ortalama hava sıcaklığı verilerinin uzun yıllar modellemesinde 4 terimli Fourier modelleri en iyi kararlılığı göstermiştir.

Güneş ışınımı tahmini ve fotovoltaik güç tahmini sonuçlarında; gri kurt optimizasyonu tabanlı çok katmanlı algılayıcı modeli, karınca aslanı optimizasyonu tabanlı çok katmanlı algılayıcı ve balina optimizasyonuabanlı çok katmanlı algılayıcı modellerine göre daha başarılı sonuçlar sergilemiştir. Ayrıca, güneş ışınımı tahmininde hava sıcaklığı ve bağıl nem parametrelerini içeren giriş kombinasyonları; fotovoltaik güç tahmininde ise toplam yatay güneş ışınımı ve difüz yatay güneş ışınımı parametrelerini içeren giriş kombinasyonları; fotovoltaik sağlamıştır. Genel olarak tahmin modellerinde, sigmoid aktivasyon fonksiyonu, hiperbolik tanjant ve sinüs aktivasyon fonksiyonlarına göre daha başarılı sonuçlar sergilemiştir.

Bu doktora tezi beş bölümden oluşmaktadır. Bu bölümde güneş parametrelerinin deneysel metotlarla modellenmesi, güneş ışınımı tahmini ve fotovoltaik güç tahmini alanlarındaki literatür taramaları sunulmuştur.

İkinci bölümde; literatürdeki güneş ışınımı tahmini ve fotovoltaik güç tahmini çalışmaları çok kısa, kısa, orta ve uzun dönem zaman periyotları özelinde değerlendirilmiştir. Ayrıca, her bir tahmin periyodunda giriş verileri, tahmin aralıkları, tahmin modelleri ve kararlılık performansları kapsamlı olarak incelenmiştir.

Üçüncü bölümde; tez çalışmasında kullanılan eğri uydurma metotları, yapay sinir ağı, metasezgisel optimizasyon algoritmaları ve geliştirilen hibrit tahmin modelleri açıklanmıştır. Ayrıca, kullanılan metasezgisel optimizasyon algoritmalarının sözde kodları ve geliştirilen hibrit tahmin modellerinin iş akış diyagramları kapsamlı olarak sunulmuştur. Dördüncü bölümde; tez kapsamında kullanılan veri setlerinin özellikleri detaylandırılmıştır. Eğri uydurma yöntemleri aracılığıyla hava sıcaklığı, güneşlenme süresi ve global güneş ışınımı verilerini modelleme sonuçları verilmiştir. Ayrıca, gri kurt, karınca aslanı ve balina optimizasyon algoritmaları tabanlı çok katmanlı algılayıcı modelleri ve çok demetli giriş verileri kullanılarak güneş ışınımı ve fotovoltaik güç tahminleri için elde edilen tahmin sonuçları sunulmuştur.

Beşinci bölümde ise; tez çalışmasında elde edilen sonuçlara, değerlendirmelere ve önerilere yer verilmiştir.

2. LİTERATÜRDE GÜNEŞ IŞINIMI VE FOTOVOLTAİK GÜÇ TAHMİNİ İÇİN KULLANILAN YÖNTEMLER

Toplam yatay güneş ışınım şiddeti, doğrudan normal güneş ışınım şiddeti ve difüz yatay güneş ışınım şiddeti bileşenlerinden oluşur. Doğrudan normal güneş ışınım şiddeti (DNGI), güneşten doğrudan gelen güneş ışınımını temsil ederken; difüz yatay güneş ışınım (DYGI) şiddeti ise güneşten gelen ışınımın toz ve bulutlar tarafından geçerek yeryüzüne ulaşan ışınım türüdür. Bu iki güneş ışınımından farklı olarak, yeryüzü şekillerine çarparak yansıyan; yansıyan güneş ışınımı (YGI) da bulunmaktadır [47].

Toplam yatay güneş ışınımı şiddetine ait bileşenler Şekil 2.1'de gösterilmiştir.

Şekil 2.1. Toplam yatay güneş ışınım şiddeti bileşenleri

Toplam yatay güneş ışınımı şiddetinin genel formülü Eşitlik 2.1'de gösterilmiştir.

Toplam Yatay Güneş Işınım Şiddeti (TYGI) = Doğrudan Normal Güneş Işınım Şiddeti (DNGI)X
$$cos(\theta)$$

+Difüz Yatay Güneş Işınım Şiddeti (DYGI) (2.1)

Fotovoltaik hücreler, ömürleri uzun, bakımları kolay, hareketli parçaları olmayan ve güneş ışınlarını doğrudan elektriğe dönüştüren sistemlerdir. Fotovoltaik modüller, PV sistemlerin temel yapı taşları olup, çevreyi koruyucu bir laminat içine kapatılmış PV hücre devrelerinden oluşur. Fotovoltaik paneller, önceden kablolanmış, sahada takılabilir bir ünite olarak monte edilmiş bir veya daha fazla PV modülü içerir. Bir fotovoltaik dizi, herhangi bir sayıda PV modülü ve PV panelden oluşan ; güç üreten birimdir [48]. Bu tez çalışmasında PV sistemler tarafından üretilen toplam gücün tahminine odaklanılmaktadır.

Güneş enerji sistemlerinde fotovoltaik ünitenin elektriksel verimliliğinin hesaplanması [49], çatı tipi fotovoltaik enerji miktarının belirlenmesi [50] güneş ışınımı ve fotovoltaik güç tahmini [51, 52], seviyelendirilmiş maliyet tahmini [53], referans voltaj tahmini [54], güç dönüştürücünün görev süresi tespiti [55], salınım karakteristik modellemesi [56], vb. birçok farklı veri madenciliği uygulamaları yapılmıştır. Bu uygulamalar arasında, çoğunlukla, güneş ışınımı ve fotovoltaik güç tahmini ön plana çıkmaktadır.

Literatürde güneş ışınımı ve fotovoltaik güç tahmini için 4 farklı zaman periyodu kullanılmaktadır. Bunlar çok kısa, kısa, orta ve uzun dönem periyotlarıdır [57, 58]. Çok kısa dönem periyodu, güç dengesi veya kalitesi, rezerv kapasite planlaması ve yük takibi için 15 dakikaya kadar olan tahminleri içerir. Kısa dönem periyodu, yedek kapasite planlaması, yük takibi ve piyasa teklifi için 15 dakikadan 1 saate kadar olan tahminleri kapsamaktadır. Orta dönem periyodu 1 saatten 1 güne kadar olan tahminleri içerirken, uzun dönem periyodu 1 gün ve daha uzun süreleri içeren tahminleri kapsamaktadır. Orta ve uzun dönem periyotlarının her ikisi de piyasa teklifi ve temel yük planlaması için kullanılmaktadır.

Aşağıdaki alt bölümlerde, literatürdeki güneş ışınımı tahmini ve fotovoltaik güç tahmini çalışmaları çok kısa, kısa, orta ve uzun dönem zaman periyotları dikkate alınarak değerlendirilmektedir.

2.1. Güneş Işınımı Tahmini

Literatürdeki güneş ışınımı tahmin yöntemleri incelenirken, her bir tahmin periyodu bazında, giriş verileri, tahmin aralığı, tahmin modelleri, tahmin doğrulukları ve tahmin sonuçları değerlendirilmiştir. Güneş ışınımı tahmini kapsamında incelenen tüm çalışmaların içerik analizleri Çizelge 2.1'den Çizelge 2.4'e kadar ayrıntılı bir şekilde sunulmuştur. Örneğin; [59]'da 1 saat aralıklarla güneş ışınımı parametresini tahmin etmek için bulanık mantık, yapay sinir ağı ve bulanık sinir ağı modelleri güneş ışınımı, gökyüzü

koşulları ve sıcaklık verilerini kullanmışlardır. Bu modellerin ortalama mutlak yüzdesel hataları sırasıyla % 13,87, % 10,85 ve % 6,03 olarak elde edilmiştir. Böylece, tahmin doğruluğu açısından bulanık sinir ağı modeli yapay sinir ağı modelinden daha iyi performans gösterirken, yapay sinir ağı modeli bulanık mantık modelini yenmiştir.

Literatürdeki güneş ışınımı tahmin çalışmalarının genel olarak değerlendirilmesi sonucunda, aşağıdaki anlamlı bulgular ve faydalı öneriler ortaya çıkarılmıştır:

- Güneş ışınımı, hava sıcaklığı ve güneşlenme süresi en çok kullanılan giriş parametreleridir. Bu giriş verilerini atmosfer basıncı, bağıl nem ve rüzgâr hızı parametreleri takip eder. Ayrıca, koordinatlar, gökyüzü görüntüsü, bulut örtüsü, yağış miktarı, rüzgâr yönü, zenit açısı, ay ve gün numaraları nadiren kullanılan giriş verileri arasında yer almıştır.
- Bu parametrelerin güneş ışınımı tahmini üzerindeki etkileri incelenmeli ve tahmin kararlılığını optimize etmek için en etkili olanlar kullanılmalıdır.
- Yapay sinir ağları güneş ışınımı tahmininde geniş bir uygulama alanına sahiptir. Yapay sinir ağlarını çok katmanlı algılayıcı, destek vektör makineleri, destek vektör regresyonu ve k-ortalamalar algoritması takip eder. Ayrıca, otoregresif modelleme, kendi kendini düzenleyen haritalar, aşırı öğrenme makinesi, k-en yakın komşu algoritması ve ateş böceği algoritması da aynı amaçla kullanılmaktadır.
- Bu yöntemlerin tahmin performansları ayrıntılı olarak karşılaştırılmalı ve elde edilecek sonuçlara göre yeni hibrit tahmin yöntemleri oluşturulmalıdır.
- Zaman aralıkları genellikle kısa dönem ve orta dönem periyotlarını içermektedir. Özellikle, kısa dönemde 1 saatlik zaman aralıkları ve orta dönemde 1 günlük zaman aralıkları tahmin yöntemlerinde dikkate alınmıştır.
- Güneş ışınımı tahminindeki diğer gereksinimleri karşılamak için çok kısa dönem ve uzun dönem periyotlarını içeren daha fazla çalışma yapılmalıdır.

- Güneş ışınımı tahmininin doğruluğunu ölçmek için karekök ortalama hata en çok tercih edilen hata ölçeğidir. Karekök ortalama hatadan sonra belirlilik katsayısı, ortalama mutlak yüzdesel hata ve ortalama mutlak hata kullanım önceliklerine sahiptir.
- Bu doğruluk ölçeklerinin tümü, literatür tutarlılığını sağlamak amacıyla gelecekteki tahmin çalışmalarında hesaplanmalıdır.
- Yapay sinir ağları genellikle otoregresif bütünleşik hareketli ortalama, otoregresif ve lineer regresyon modellerinden daha iyi tahmin sonuçları sağlamaktadır. Öte yandan, bu modeller genellikle destek vektör makinesi ve destek vektör regresyonu modelleri tarafından yenilirler.

Cizelge 2.1.	Cok kısa	dönem	günes	ısınımı	tahmininde	kullanılan	modeller
30	3		0				

Kaynak	Giriş Verileri	Tahmin Modelleri	Tahmin Aralıkları	Tahmin Doğrulukları	Tahmin Sonuçları	
[60]	Meteorolojik veriler	Yapay sinir ağı (YSA)	Kaynakta belirtilmemiştir.	R=0,886	YSA	
[61]	Gün ışığı saatleri, sıcaklık, açık gökyüzü ve	Polinom çekirdekleri tabanlı destek vektör regresyonu (PÇ-DVR)		R=0,889, KOH=3,3 MJ/m ²		
	dünya dışı güneş ışınım şiddeti, gerçek ve maksimum güneşlenme süresi	Radyal temelli fonksiyonlara dayalı destek vektör regresyonu (RTF-DVR)	Kaynakta belirtilmemiştir.	R=0,887, KOH=3,4 MJ/m ²	PÇ-DVR > RTF- DVR	
[62]	Hava durumu verileri	Çok katmanlı algılayıcı (ÇKA)	1-dk	Kaynakta belirtilmemiştir.	ÇKA	
	Global yatay, difüz yatay ve doğrudan normal ışınım	Destek vektör regresyonu (DVR)		bKOH =%6,70		
[63]		difuz yatay ve doğrudan	Otoregresif modelleme (OM)	1-dk	bKOH =%3,62	DVR
		Süreklilik modeli (SM)		bKOH =%5,32		
	Güneş ışınımı, gökyüzü görüntüsü	Destek vektör	5-dk	OMH=35,7 W/m ² , OSH=1,20 W/m ²		
[64]		makineleri tabanli yapay sinir ağı (DVM-VSA)	10-dk	OMH=44,2 W/m ² , OSH=2,11 W/m ²	DVM-YSA	
		(D V M-15A)	15-dk	OMH=51,8 W/m ² , OSH=4 W/m ²		
	Doğrudan		5-dk	OSH=-2,6 W/m ² , KOH =78,1 W/m ²		
[65]	ışınım, difüz ışınım, gökyüzü	k-en yakın komşu kolektif modeli (k-NNF)	10-dk	OSH=-2,5 W/m ² , KOH =98,40 W/m ²	k-NNE	
	görüntüleri	görüntüleri (k-NNE)		15-dk	OSH=-2,3 W/m2, KOH =109,3 W/m ²	

[66]	Güneş ışınımı	Çok katmanlı algılayıcı	10-dk	R=0,89	ÇKA
[67]	Global yatay ışınım	Optimize edilmiş k- en yakın komşu modeli Optimize edilmiş yapay şinir ağı	15-dk	OMH=18,70 W/m ² , İY _{KOH} =%10,7 OMH=17,60 W/m ² , İY _{KOH} =%12	Opt. YSA > Opt. k- NN

Çizelge 2.1. (devam) Çok kısa dönem güneş ışınımı tahmininde kullanılan modeller

Çizelge 2.2. Kısa dönem güneş ışınımı tahmininde kullanılan modeller

Kaynak	Giriş Verileri	Tahmin Modelleri	Tahmin Aralıkları	Tahmin Doğrulukları	Tahmin Sonuçları
[64]	Güneş ışınımı, gökyüzü görüntüsü	Destek vektör makineleri tabanlı yapay sinir ağı	20-dk	OMH=56,8 W/m ² , OSH=5,30 W/m ²	DVM-YSA
[65]	Doğrudan ışınım, difüz ışınım, gökyüzü görüntüleri	k-en yakın komşu kolektif modeli	20-dk	OSH=-2 W/m ² , KOH =134,5 W/m ²	k-NNE
[66]	Güneş ışınımı	Çok katmanlı algılayıcı	20-dk	R=0,81	ÇKA
[67]	Global yatay	Optimize edilmiş k-en yakın komşu modeli	45 dk	OMH=20,90 W/m ² , $IY_{KOH} = \% 11,4$	Opt. k-NN
[07]	ışınım	Optimize edilmiş yapay sinir ağı	4 J- UK	$\begin{array}{c} \text{OMH}{=}20,\!40 \text{ W/m}^2,\\ \text{I}\text{Y}_{\text{KOH}} = \!\% 10,\!5 \end{array}$	YSA
[68]	Global yatay ışınım	Parametrik olmayan önyükleme yöntemi (POÖ)	1-saat	Kaynakta belirtilmemiştir.	POÖ
[69]	Sistem yapılandırması, bulut örtüsü, mevsim	Uyarlanabilir sinirsel- bulanık çıkarım sistemi (USBÇS)	1-saat	Kaynakta belirtilmemiştir.	USBÇS
[70]	Güneş ışınımı	Otoregresif bütünleşik hareketli ortalama tabanlı zaman gecikmeli sinir ağı (OBHO-ZGSA)	1-saat	Kaynakta belirtilmemiştir.	OBHO- ZGSA
[71]	Güneş ışınımı, güneşlenme süresi, rüzgar hızı ve yönü, basınç, nem, sıcaklık, yağış miktarı	Genelleştirilmiş radyal temelli fonksiyonlar (GRTF)	1-saat	Kaynakta belirtilmemiştir.	GRTF
[72]	Global yatay, difüz ve demet güneş ışınımı	Yapay sinir ağı	1-saat	R ² =0,90, KOH=%21,54	YSA
[73]	Güneş ışınımı	Doğrusal tahmin filtreleri (DTF)	1-saat	OSH=17,44 W/m ² , KOH=68,41 W/m ²	DTF
[74]	Global yatay güneş ışınımı	k-ortalamalar tabanlı doğrusal olmayan otoregresif sinir ağı (DOOSA)	1-saat	KOH=60,24 W/m ² , NKOH=0,19	k- ortalamalar -DOOSA

[75]	Global güneş ışınımı	Birleştirilmiş otoregresif tabanlı dinamik sistem modeli (BODS)	1-saat	MMYH=%7,53, NKOH=0,16	BO-DS
[76]	Dünya dışı radyasyon, hava sıcaklığı, rüzgar hızı, rüzgar yönü	Kümeleme, zaman serileri ve çok katmanlı algılayıcı kullanan kolay hesaplama sistemi (KHS)	1-saat	OMH=23,61 W/m ² , NOMH=2,80	KHS
[77]	Global yatay ışınım	Yapay sinir ağı	1-saat	OSH=3,9 W/m ² , KOH =77,9 W/m ²	YSA
[78]	Sıcaklık, rüzgar hızı, bulut örtüsü, yağış miktarı	k-ortalamalar algoritması tabanlı çok katmanlı algılayıcı (k-ortalamalar - ÇKA)	1-saat	İY _{омн} =%5,90	k-ortalamalar- ÇKA
[79]	Sayısal hava durumu verileri	Genetik algoritma gruplanmasına tabanlı aşırı öğrenme makinesi (GA-AÖM)	1-saat	R ² =0,86, KOH=111,76 W/m ²	GA-AÖM
[00]	<u></u>	Mycielski model		R=0,88, R ² =0,81, KOH =13,90 W/m ²	Mycielski-
[80]	[80] Güneş ışınımı	Mycielski-Markov hibrit modeli	1-saat	R=0,84, R ² =0,83, KOH =13,49 W/m ²	Markov > Mycielski
[81]	Güneş ışınımı, sıcaklık, hava	Çok değişkenli doğrusal regresyon (ÇDDR)	1-saat	R ² =0,92	YSA > ÇDDR
	koşulları	Yapay sinir ağı		R ² =0,99	
	Güneş ışınımı, gökyüzü koşulları, sıcaklık verileri	Bulanık mantık (BM)		OMYH=%13,87	
[50]		Yapay sinir ağı	1 caat	OMYH=%10,85	BSA > YSA >
[37]		Bulanık sinir ağ modeli (BSA)	1-344	OMYH=%6,03	BM
		Otoregresif modelleme		NKOH=0,272	
[82]	Global yatay	Yapay sinir ağı	1-saat	NKOH =0,271	KF > YSA > OM
	guneş işinini	Kalman filtreleri (KF)		NKOH =0,181	
	Zenith açısı, azimut açısı, dünya dışı ışınım,	Kendi kendini düzenleyen haritalar tabanlı aşırı öğrenme makinesi (KKDH-AÖM)		OMH=9,98 W/m ² , OMYH=%4,60	
[83]	difüz güneş ışınımı, doğrudan	Geriye yayılımlı sinir ağı (GYSA)	1-saat	OMH=12,89 W/m ² , OMYH=%6,18	KKDH-AOM > GYSA > OBHO
	global güneş ışınımı	Otoregresif bütünleşik hareketli ortalama (OBHO)		OMH=14,90 W/m ² , OMYH=%7,70	
		En küçük kareler destek vektör makinesi (EKK- DVM)		OMH=33,70 W/m ²	
[0,4]	Rüzgar hızı, bağıl nem, gökyüzü	Radyal temelli fonksiyonlar		OMH=43 W/m ²	EKK-DVM >
[84]	nem, gokyuzu örtüsü, atmosferik geçirgenlik	Otoregresif modelleme	1-saat	OMH=62 W/m ²	RTF > OM

Çizelge 2.2. (devam) Kısa dönem güneş ışınımı tahmininde kullanılan modeller

	Ay numerosi gün	Yapay sinir ağı		OMYH=%17,15, KOH =95,91 W/m ²	
[85]	numarası, günlük saat sayısı, ortam sıcaklığı, nem,	Ateş böceği algoritması tabanlı yapay sinir ağı (AB-YSA)	1 .	OMYH=%13, KOH =85,12 W/m ²	AB-RO > RO >
	güneş oranı	Rastgele orman (RO)	1-saat	OMYH=%9,78, KOH =74,45 W/m ²	AB-YSA > YSA
		Ateş böceği algoritması tabanlı rastgele ormanlar (AB-RO)		OMYH=%6,38, KOH =68,83 W/m ²	
		k-ortalamalar algoritması		КОН= 58,65 W/m ² , İY _{КОН} =%1	
	Güneş zaman serisi verileri	k-ortalamalar++ algoritması		KOH =45,27 W/m ² , İY _{KOH} =%23	Trans. k- ortalamalar >
[86]		Kendi kendini düzenleyen haritalar (KKDH)	1-saat	КОН =37,21 W/m ² , İY _{КОН} =%37	KKDH >k- ortalamalar ++ >
		Transformasyona dayalı k- ortalamalar algoritması (Trans. k-ortalama)		KOH =20,56 W/m ² , İY _{KOH} =%65	k-ortalamalar
		Destek vektör makineleri		OMYH=%28,53, KOH =41,28 W/m ²	
[87] Sıcaklık, hav basıncı, bağıl ne güneş zenith aç rüzgar yönü, rüzgar hızı, yaş miktarı	Sıcaklık, hava basıncı, bağıl nem, güneş zenith açısı,	En düşük mutlak büzülme ve seçme operatörü (ENMBSO)	1-saat	OMYH=%20,39, KOH=44,87 W/m ²	ABSO- ENMBSO > ENMBSO > DVM
	rüzgar yönü, rüzgar hızı, yağış miktarı	Ateş böceği sürüsü optimizasyonu tabanlı en düşük mutlak büzülme ve seçim operatörü (ABSO- ENMBSO)		OMYH=%13,24, KOH=28,05W/m ²	
		Ampirik mod ayrışma tabanlı doğrusal otoregresif ve doğrusal olmayan sinir ağı (AMA-DODOSA)		bOMH =%8,82, bKOH =%11,16	
[88]	Küresel yatay güneş ışınımı	Kolektif ampirik mod ayrışımı tabanlı doğrusal otoregresif ve doğrusal olmayan sinir ağı (KAMA- DODOSA)	1-saat	bOMH =%5,18, bKOH =%6,19	DA-DODOSA > KAMA- DODOSA > AMA-DODOSA
		Dalgacık ayrışmasına dayalı doğrusal otoregresif ve doğrusal olmayan sinir ağı (DA-DODOSA)		bOMH =%2,76, bKOH =%3,80	
		Karar ağaçları ve yapay sinir ağları (KA-YSA)		bOMH =%21,10, KOH =161 W/m ²	
[89]	Global yatay güneş ışınımı, atmosfer	Karar ağaçları ve destek vektör regresyonu (KA- DVR)		bOMH =%19,30, KOH=163 W/m ²	DVM-DVR >
	basıncı, nem, hava sıcaklığı	Destek vektör makineleri ve yapay sinir ağları (DVM- YSA)	1-saat	bOMH =%18,50, KOH =150 W/m ²	DVM-YSA > KA- DVR > KA-YSA
		Destek vektör makineleri ve destek vektör regresyonu (DVM-DVR)		bOMH =%16,70, KOH =147 W/m ²	

Çizelge 2.2. (devam) Kısa dönem güneş ışınımı tahmininde kullanılan modeller

Yer veril uydudan tü veriler, h durumu ve		Yer verisine sahip yapay sinir ağı (YV-YSA)	1-saat	KOH =110,6 W/m ² , $\dot{I}Y_{KOH} = \%7,1$	
	Yer verileri,	Yer ve uydu verilerine sahip yapay sinir ağı (YUV-YSA)		KOH =105,3 W/m ² , $IY_{KOH} = \%11,4$	YUHTV-YSA> YUV-YSA> YHTV-YSA > YV-YSA
	uydudan türetilen veriler, hava durumu verileri	Yer ve hava tahmini verilerine sahip yapay sinir ağı (YHTV-YSA)		КОН =110,3 W/m ² , İY _{КОН} =%7,4	
		Yer, uydu ve hava tahmini verilerine sahip yapay sinir ağı (YUHTV-YSA)		$\begin{array}{c} \text{KOH} = \! 104,7 \ \text{W/m}^2, \\ \text{IY}_{\text{KOH}} = \! \% 11,9 \end{array}$	

Çizelge 2.2. (devam) Kısa dönem güneş ışınımı tahmininde kullanılan modeler

Çizelge 2.3. Orta dönem güneş ışınımı tahmininde kullanılan modeller

Kaynak	Giriș Verileri	Tahmin Modelleri	Tahmin Aralıkları	Tahmin Doğrulukları	Tahmin Sonuçları
[67]	Global yatay	Optimize edilmiş k-en yakın komşu modeli	90-dk	OMH=22,60 W/m ² , $IY_{KOH} = %15,8$	Opt. k-NN >
[07]	güneş ışınımı	Optimize edilmiş yapay sinir ağı	90-dk	OMH=22,80 W/m ² , $IY_{KOH} = %14,1$	Opt. YSA
[77]	Global yatay	Vanay sinir ağı	90-dk	OSH=8,6 W/m ² , KOH=93,5 W/m ²	VSA
[//]	güneş ışınımı	i apay siini agi	2-saat	OSH=14,5 W/m ² , KOH=107,4 W/m ²	ISA
		k-ortalamalar algoritması tabanlı Bayes sinir ağları (k-ortalamalar -BSA)		KOH=85,72 W/m ² , NKOH =0,533	
[91]	Güneş ışınımı, sıcaklık, rüzgar hızı, rüzgar yönü	Kendi kendine organize olan haritalar tabanlı Bayes sinir ağları (KKOOH-BSA)	2-saat	KOH=90,58 W/m ² , NKOH =0,586	OTKKDH- BSA > k- ortalamalar - BSA > KKOOH-BSA
		Oyun teorik kendi kendini düzenleyen haritalar tabanlı Bayesian sinir ağları (OTKKDH-BSA)		KOH=82,76W/m², NKOH =0,521	
	Sıcaklık, rüzgar	k-ortalamalar tabanlı cok	2-saat	İY _{омн} =%21,10	k-ortalamalar -
[78]	hızı, bulut örtüsü, yağış miktarı	katmanlı algılayıcı	3-saat	İY _{омн} =%29,30	ÇKA
50.03	Savısal hava	va Genetik algoritma tabanlı ileri aşırı öğrenme makinesi	2-saat	R ² =0,71, KOH=165,86 W/m ²	
[90]	durumu verileri		3-saat	R ² =0,59, KOH=200,36 W/m ²	GA-AOM
[92]	Meteorolojik veriler	Gauss süreç regresyonu (GSR)	1-gün	KOH=3,14 kJ/m ²	GSR
[93]	Küresel yatay güneş ışınımı	Yapay sinir ağı	1-gün	OKH=16,45 W/m ²	YSA
[94]	Sıcaklık, basınç, rüzgar hızı, güneş ışığı, radyasyon	Yapay sinir ağı	1-gün	R ² =0,98	YSA
		Yer verisine sahip yapay sinir ağı		КОН=162,8 W/m ² , İY _{КОН} =%28	
-------	---	--	--------	---	---------------------------------
	Ver verileri	Yer ve uydu verisine sahip yapay sinir ağı		KOH=157,03 W/m ² , İY _{KOH} =%31	YUHV-YSA>
[79]	uydudan türetilen veriler, hava durumu verileri	Yer ve hava tahmini verisine sahip yapay sinir ağı	6-saat	КОН=148,3 W/m ² , İY _{КОН} =%34	YHTV-YSA> YUV-YSA> YV-YSA
		Yer, uydu ve hava durumu verisine sahip yapay sinir ağı		КОН=147,8 W/m ² , İY _{КОН} =%35	
[95]	Yükseklik, enlem, boylam, açıklık indeksi, sıcaklık, nem, basınç	Yapay sinir ağı	1-gün	R ² =0,99, OMYH=%2,56	YSA
[96]	Yükseklik, enlem, yağış miktarı, yağmurlu gün sayısı, gün uzunluğu, güneş ışınımı	Yapay sinir ağı	1-gün	R ² =0,99, OMYH=%1,67	YSA
[97]	Partikül maddeler, rüzgar hızı, sıcaklık, nem	Çok katmanlı algılayıcı	1-gün	R ² =0,95, OMYH=%0,05, KOH=0,14 J/cm ²	ÇKA
[98]	Dünya dışı radyasyon, sıcaklık, nem, rüzgar hızı, yağış miktarı	Yapay sinir ağı	1-gün	OSH=357 W/m ² , OMYH=% 1,36, KOH=1589 W/m ²	YSA
[99]	Zaman, sıcaklık, nem, güneş ışınımı	Üçlü üstel düzleştirme modeli (ÜÜD)	1-gün	OMH=46,08 W/m ² , OMYH=%12,22	ÜÜD
	Yağış miktarı, radyasyon akısı,	En küçük kareler regresyonu		Kaynakta belirtilmemiştir.	
[100]	hava basıncı, nem, bulut örtüsü, sıcaklık, radyasyon	İleri beslemeli sinir ağı	1-gün	Kaynakta belirtilmemiştir.	-
[101]	Günes eneriisi	Çok katmanlı algılayıcı	1-oiin	OMYH=%6,56	_
[101]	Suncy energies	Özbilgi tabanlı sinir ağı	i gun	belirtilmemiştir.	
[102]	Ortalama günlük	Gradyan iniş algoritması tabanlı yapay sinir ağı (Gİ-YSA)	1 giin	OMYH=%86,30	LM-YSA >
[102]	güneş ışınımı	Levenberg-Marquardt algoritması tabanlı yapay sinir ağı (LM-YSA)	1-guii	OMYH=%85,60	Gİ-YSA
		Klasik aşırı öğrenme makinesi (K-AÖM)		KOH =0,00136 W/m ²	
[103]	i oplam ozon miktarı, toplam yağış suyu, bulut miktarı, güneş ışınımı	Mercan kayalıkları optimizasyonu tabanlı aşırı öğrenme makinesi (MKO-AÖM)	1-gün	KOH =0,00125 W/m ²	MKO-AÖM > K-AÖM

Çizelge 2.3. (devam) Orta dönem güneş ışınımı tahmininde kullanılan modeller

[104]	Sıcaklık, bağıl nem, rüzgar hızı, güneşlenme süresi	Çok katmanlı algılayıcı	1-gün	R ² =0,82, OMSH=360,77 W/m ²	OBC-ÇKA > ÇKA
		Optimal beyin cerrahı algoritması tabanlı çok katmanlı algılayıcı (OBC-ÇKA)		R ² =0,83, OMSH =356,81 W/m ²	
	Maksimum ve minimum hava sıcaklığı, güneşlenme süresi, global güneş radyasyonu	Genetik programlama (GP)		R ² =0,76, OMYH=%6,46	AB-DVM > GP > YSA
		Yapay sinir ağı		R ² =0,74, OMYH=%6,98	
[105]		Ateş böceği algoritması tabanlı destek vektör makineleri (AB-DVM)	1-gün	R ² =0,79, OMYH=%6,22	

Çizelge 2.3. (devam) Orta dönem güneş ışınımı tahmininde kullanılan modeller

Çizelge 2.4. Uzun dönem güneş ışınımı tahmininde kullanılan modeller

Kaynak	Giriş Verileri	Tahmin Modelleri	Tahmin Aralıkları	Tahmin Doğrulukları	Tahmin Sonuçları
[106]	Yükseklik, güneşlenme süresi, maksimum ve minimum sıcaklık	Yapay sinir ağı	1-ay	KOH =4,12 W/m ²	YSA
	TT 1 1	Otoregresif bütünleşik hareketli ortalama		bOMH =%7,36, bKOH =%9,60	
[1072]	Uydudan türetilen kara yüzeyi sıcaklığı	Çoklu doğrusal regresyon (ÇDR)	1-ay	bOMH =%9,04, bKOH =%10,23	YSA > ÇDR > OBHO
		Yapay sinir ağı		bOMH =%4,17, bKOH =%5,85	
[108]	Ortalama bağıl nem, ortalama rüzgår hızı, ortalama istasyon seviyesi basıncı, ortalama hava sıcaklığı, yıl, ay, enlem, boylam, yükseklik	Gradyan iniş algoritması tabanlı yapay sinir ağı	1-ay	R=0,45, OMH=6,15 W/m ² , KOH =7,79 W/m ²	LM-YSA > ÖEG-YSA > EGYAYSA > Gİ-YSA
		Levenberg-Marquardt algoritması tabanlı yapay sinir ağı		R=0,95, OMH=0,78 W/m ² , KOH =1,04 W/m ²	
		Ölçekli eşlenik gradyan algoritması tabanlı yapay sinir ağı (ÖEG-YSA)		R=0,89, OMH=1,30 W/m ² , KOH =1,71 W/m ²	
		Esnek geri yayılma algoritması tabanlı yapay sinir ağı (EGYAYSA)		R=0,71, OMH=2,45 W/m ² , KOH =3,10 W/m ²	

2.2. Fotovoltaik Güç Tahmini

Güneş ışınımı tahminine benzer şekilde, literatürdeki fotovoltaik güç tahmin yöntemleri incelenirken, her bir tahmin periyodu bazında, giriş verileri, tahmin aralığı, tahmin modelleri, tahmin doğrulukları ve tahmin sonuçları değerlendirilmiştir. Fotovoltaik güç

tahmini kapsamında incelenen tüm çalışmaların içerik analizleri Çizelge 2.5'den Çizelge 2.8'e kadar ayrıntılı olarak sunulmuştur. Örneğin; [109]'da fotovoltaik güç parametresini 1 saatlik aralıklarla tahmin etmek amacıyla uyarlanabilir ileri beslemeli sinir ağı, dinamik yinelemeli sinir ağı ve radyal temelli fonksiyonlar modellerinde güneş ışınımı, fotovoltaik hücre sıcaklığı ve güç çıkışı verileri kullanılmıştır. Bu modellerin korelasyon katsayıları sırasıyla 0,998, 0,981 ve 0,991 olarak elde edilmiştir. Dolayısıyla, tahmin performansı açısından uyarlanabilir ileri beslemeli sinir ağı modeli radyal temelli fonksiyon modelinden daha iyi bir performans gösterirken, radyal temelli fonksiyon modeli dinamik yinelemeli sinir ağı modelinden daha iyi performans göstermiştir.

Literatürdeki fotovoltaik güç tahmin çalışmalarının genel olarak değerlendirilmesi sonucunda, aşağıdaki faydalı örüntüler ve etkin öneriler elde edilmiştir:

- Fotovoltaik güç, güneş ışınımı ve hava sıcaklığı en çok kullanılan giriş parametreleridir. Bağıl nem ve rüzgâr hızı parametreleri bu giriş verilerini takip etmektedir. Bu parametrelere ek olarak, gökyüzü görüntüsü, bulut örtüsü, yağış miktarı, güneşlenme süresi ve hava basıncı parametreleri nadiren kullanılan giriş parametreleridir.
- Bu parametrelerin fotovoltaik güç tahmini üzerindeki etkileri analiz edilmeli ve tahmin kararlılığının iyileştirilmesi için en güçlü olanlar giriş verisi olarak kullanılmalıdır.
- Yapay sinir ağları, fotovoltaik güç tahmininde yaygın bir uygulama alanına sahiptir. Otoregresif bütünleşik hareketli ortalama, destek vektör regresyonu ve destek vektör makineleri yapay sinir ağlarının ardından gelmektedir. Buna ek olarak, kolektif öğrenme, dışsal değişken kaynaklı otoregresif modelleme, radyal temelli fonksiyonlar, yinelemeli sinir ağları ve çok katmanlı algılayıcı da benzer amaçlar için kullanılmaktadır.
- Bu yöntemlerin tahmin başarıları derinlemesine karşılaştırılmalı ve bu bağlamda yeni hibrit tahmin sistemleri oluşturulmalıdır.
- Zaman aralıkları genellikle çok kısa dönem, kısa dönem ve orta dönem periyotlarına yoğunlaşmaktadır. Özellikle çok kısa dönemde 15 dakikalık zaman aralıkları, kısa

dönemde 1 saatlik zaman aralıkları ve orta dönemde 1 günlük zaman aralıkları tahmin yöntemlerinde dikkate alınmaktadır.

- Fotovoltaik güç tahminindeki diğer gereksinimleri yerine getirmek için uzun dönem zaman aralıklarını içeren daha fazla çalışma yapılmalıdır.
- Ortalama mutlak hata, fotovoltaik güç tahmin performansını değerlendirmek için en çok kullanılan hata ölçeğidir. Ortalama mutlak yüzdesel hata, karekök ortalama hata ve normalleştirilmiş karekök ortalama hata da ortalama mutlak hata ölçeğinden sonra kullanım önceliğine sahip hata ölçekleridir.
- Bu performans ölçeklerinin tümü, literatür tutarlılığına katkıda bulunmak amacıyla daha sonraki tahmin çalışmalarında hesaplanmalıdır.
- Otoregresif bütünleşik hareketli ortalama modeline göre yapay sinir ağları ve mevsimsel otoregresif bütünleşik hareketli ortalama modeline göre destek vektör makineleri daha iyi tahmin sonuçları sağlamaktadır. Buna karşın, yapay sinir ağları genellikle destek vektör regresyonu modelleri tarafından yenilmektedir.

Kaynak	Giriș Verileri	Tahmin Modelleri	Tahmin Aralıkları	Tahmin Doğrulukları	Tahmin Sonuçları
		Mevsimsel otoregresif bütünleşik hareketli ortalama		NKOH =0,095	Mevsimsel OBHO-
[110]	Fotovoltaik	Destek vektör makineleri	Kaynakta belirtilmem	NKOH =0,096	DVM >
[110]	guç çıkışı	Mevsimsel otoregresif bütünleşik hareketli ortalama tabanlı destek vektör makineleri	iştir.	NKOH =0,094	Mevsimsel OBHO > DVM
[111]	Güç çıkışı, sıcaklık, güneş ışınımı, bağıl nem	Yapay arı kolonisi tabanlı çok katmanlı algılayıcı (YAK-ÇKA)	5-dk	R ² =0,947, OMYH=%3,70	ҮАК-ÇКА
[112]	Güneş enerjisi üretimi	Yapay sinir ağı	5-dk	KOH =35,43 W	YSA
[113]		Fotovoltaik güç, gökyüzü Yapay sinir ağı	5-dk	КОН =35,50 kW, İY _{кон} =%15,10	TAC A
	Fotovoltaik güç, gökyüzü görüntüsü		10-dk	КОН =41,20 kW, İY _{кон} =%21,80	YSA > YSA- OHO >YSA-kNN
	goruntusu		15-dk	КОН =42,50 kW, İY _{кон} =%26,20	> 1 5/1-KI (I

Çizelge 2.5. Çok kısa dönem fotovoltaik güç tahmininde kullanılan modeller

_ . _ . _				KOH -36 40 kW	
			5-dk	$IY_{KOH} = \% 12,90$	
		Yapay sinir ağı tabanlı otoregresif hareketli ortalama	10-dk	КОН =44,10 kW, İY _{кон} =%16,30	
[112]	Fotovoltaik güç,	ortalalla	15-dk	КОН =46,40 kW, İY _{KOH} =%19,40	
[115]	gökyüzü görüntüsü		5-dk	КОН =37,10 kW, İY _{кон} =%11,20	
		Yapay sınır ağı tabanlı k- en yakın komşu algoritması	10-dk	КОН =45,30 kW, İY _{кон} =%14	
			15-dk	KOH =46,40 kW, İY _{KOH} =%19,40	
51.1.43	Fotovoltaik güç, güneş ışınımı, sıcaklık, nem,	Sinir ağı kolektif modeli (SAKM)	10 11	OMH =57,56 kW, OBH=%5	SAVM > DVD
[114]	rüzgår hızı	Destek vektör regresyonu	10-uk	OMH =64,47 kW, OBH=%5,60	SAKIVI $> D$ V K
[115]	Fotovoltaik güç, rüzgar hızı, basınç, güneş ışınımı, sıcaklık, nem	Beyin proje tabanlı evrimsel hesaplama (BPTEH)	15-dk	OSH=-0,0020, KOH =0,068 kW, NKOH =0,18	BPTEH
[116]	Fotovoltaik güç, güneş ışınımı, ortam sıcaklığı	Dışsal değişken kaynaklı otoregresif yapay sinir ağı (DDO-YSA)	15-dk	NKOH =0,09	DDO-YSA

Çizelge 2.5. (devam) Çok kısa dönem fotovoltaik güç tahmininde kullanılan modeller

Çizelge 2.6. Kısa dönem fotovoltaik güç tahmininde kullanılan modeller

Kaynak	Giriş Verileri	Tahmin Modelleri	Tahmin Aralıkları	Tahmin Doğrulukları	Tahmin Sonuçları
		Sinir ağı kolektif	20-dk	OMH=75,56 kW, OBH=6,57%	SAKM>
[114]	Fotovoltaik güç, güneş	modeli	30-dk	OMH=86,42 kW, OBH=7,51%	
[114]	rüzgar hızı	Destek vektör	20-dk	OMH=82,05 kW, OBH=7,13%	DVR
		regresyonu	30-dk	OMH=94,13 kW, OBH=8,18%	
[112]	Fotovoltaik güç üretimi	Yapay sinir ağı	35-dk	KOH =54,11 W	YSA
[115]	Fotovoltaik güç, rüzgår hızı, basınç, ışınım, sıcaklık, nem	Beyin proje tabanlı evrimsel hesaplama	45-dk	OSH=-0,0023, KOH =0,098 kW, NKOH =0,27	BPTEH
[117]	PV güç örüntüleri, güneş ışınımı, ortam sıcaklığı	Biyo-etkileşimli	30-dk	R=0,988, OMH=9,03 kW	DEV
[11/]		(BEK)	1-saat	R=0,984, OMH=11,31 kW	BEK
[118]	Yağış tipi, gökyüzü tipi,	AdaBoost			RO > k-NN >
	rüzgar yönü ve hızı, nem,sıcaklık, yükselti,	Doğrusal regresyon (DR)	1-saat	R ² =0,004, OKH=4 (%-0,7)	YSA > DVR > SVRA >
	yüzey sıcaklığı, atmosfer basıncı	SVRA, DVR,YSA, k- NN, RO			DR > AdaBoost

[119]	Fotovoltaik güç, aerosol indeks verileri, sıcaklık, nem, rüzgår hızı	Geriye yayılımlı sinir ağı	1-saat	OMYH =%7,04	GYSA
		Otoregresif model		İY _{KOH} =%27	
[120]	Fotovoltaik güç	Dışsal değişken kaynaklı otoregresif model (DD-OM)	1-saat	İY _{кон} =%35	DD-OM > OM
	Güneş ışınımı, fotovoltaik hücre sıcaklığı, güç çıkışı	Uyarlanabilir ileri beslemeli sinir ağı (UIBSA)	1-saat	R=0,998, OMYH=%2,30	UIBSA > RTF > DYSA
[109]		Dinamik yinelemeli sinir ağı (DYSA)		R=0,981, OMYH=%5,98	
		Radyal temelli fonksiyonlar		R=0,991, OMYH=%4,67	
[121]	Fotovoltaik güç çıkışı	Otoregresif bütünleşik hareketli ortalama	1-saat	$R^2=0.92$, OMH=72 kW, $IY_{KOH}=\%1$	GA-YSA > YSA > OBHO

Çizelge 2.6. (devam) Kısa dönem fotovoltaik güç tahmininde kullanılan modeller

Çizelge 2.7. Orta dönem fotovoltaik güç tahmininde kullanılan modeller

Kaynak	Giriş Verileri	Tahmin Modelleri	Tahmin Aralıkları	Tahmin Doğrulukları	Tahmin Sonuçları
[117]	PV güç örüntüleri, güneş ışınımı, ortam sıcaklığı	Biyo-etkileşimli kümeleme algoritması	2-saat	R=0,978, OMH=14,67 kW	BEK
		Otoregresif bütünleşik hareketli ortalama		R ² =0,86, OMH=102 kW, İY _{KOH} =%10	
[121]	Fotovoltaik güç çıkışı	Yapay sinir ağı	2-saat	R ² =0.86, OMH=89 kW, İY _{KOH} =%11	GA-YSA> YSA > OBHO
		Genetik algoritma tabanlı yapay sinir ağı		R ² =0,93, OMH=62 kW, İY _{KOH} =%35	
[100]	Yatay güneş ışınımı, sıcaklık, toplam bulut örtüsü, azimut açısı, güneş yükseklik açısı	Kolektif varyans açığı modeli	2t	Kaynakta belirtilmemiştir.	
[122]		Kolektif çıktı istatistikleri	o-saat	Kaynakta belirtilmemiştir.	-
		Basit liner model (BLM)		OMH=0,47 kW, KOH =0,64 kW	
[123]	Güneş ışınımı, hava sıcaklığı, bulut miktarı	Takagi-Sugeno bulanık modeli (TSBM)	3-saat	OMH=0,44 kW, KOH =0,62 kW	TSBM > BLM > GKM
		Genelleştirilmiş katkı modeli (GKM)		OMH=0,64 kW, KOH =0,64 kW	
[116]	Fotovoltaik güç, güneş ışınımı, ortam sıcaklığı	Dışsal değişken kaynaklı otoregresif yapay sinir ağı	1-gün	NKOH =0,19	DDO-YSA

[124]	Geçmiş güç üretimi, sıcaklık, güneş ışınımı yoğunluğu	Parçacık sürü optimizasyonu tabanlı geriye yayılımlı sinir ağı (PSO-GYSS)	1-gün	OMH=57,30 kW, OMYH=%12,48	PSO-GYSS
[125]	Hava basıncı, güneşlenme süresi, bulut, rüzgar hızı, rüzgar yönü, bağıl nem, hava sıcaklığı, güneş ışınımı, fotovoltaik güç	k-ortalamalar tabanlı radyal temelli fonksiyonlar	1-gün	OMYH=%10,80	k-ortalamalar- RTF
[126]	Hava durumu verisi	Bulanık mantık tabanlı yinelemeli sinir ağları (BM-YSA)	1-gün	OMH=0,22 kW	BM-YSA
[127]	Üretilen güç, ışınım, yağış miktarı, rüzgar hızı, güneşlenme süresi, nem, çiy sıcaklığı	Yapay sinir ağı	1-gün	MHSS =37,24 kW, MYHSS=%10,24	ÇDDR > YSA > DVM > k-NN
	Fotovoltaik güç çıkışı	Çok değişkenli uyarlanabilir regresyon eğrileri (ÇDURE)	1-gün	OMS=78,70 W, OMYH=%28,80	ÇDURE > DVR > YSA > SVRA > k-
		Yapay sinir ağı		OMS=87,80 W, OMYH=%30	
[128]		k-en yakın komşu algoritması		OMS=82,20 W, OMYH=%34,60	
		Sınıflandırma ve regresyon ağaçları (SVRA)		OMS=95,70 W, OMYH=%32,60	NN
		Destek vektör regresyonu		OMS=77,30 W, OMYH=%29,50	
[129]	Fotovoltaik güç çıkışı, sıcaklık, yağış olasılığı, rüzgar yönü, rüzgâr hızı, ultravivole	Öğrenmeli vektör kuantalama, destek vektör regresyonu ve kendi kendini düzenleyen haritalar hibrit modeli (KKDH- ÖVK-DVR)	1-gün	OBH=%3,29, KOH =350 W	KKDH-ÖVK- DVR > DVR > YSA
	radyasyon indeksi	Destek vektör regresyonu		OBH=%4,01, KOH =402,5 W	
		Yapay sinir ağı		OBH=%5,41, KOH =529,2 W	

Çizelge 2.7. (devam) Orta dönem fotovoltaik güç tahmininde kullanılan modeler

Çizelge 2.8. Uzun dönem fotovoltaik güç tahmininde kullanılan modeller

Kaynak	Giriş Verileri	Tahmin Modelleri	Tahmin Aralıkları	Tahmin Doğrulukları	Tahmin Sonuçları
[130]	Güneş ışınımı, hava sıcaklığı	Destek vektör makinesi	5-gün 10-gün	OMYH =%7,60, NKOH=0,18 (her iki periyodun ortalaması)	DVM

[131]	Sayısal hava durumu verileri	Gradyan yükseltme makinesi (GYM)	1-ay	KP=0,01211	GYM
[132]	Güneş enerjisi çıkışı	Evrimsel mevsimsel ayrışma en küçük kareler destek vektör regresyonu (EMA- EKKDVR)		OMYH=%7,84, KOH =0,16 GWh	EMA- EKKDVR> Mevsimsel OBHO > EKKDVR > OBHO > GRSA
		En küçük kareler destek vektör regresyonu	1-ay	OMYH =%14,37, KOH =0,21 GWh	
		Otoregresif bütünleşik hareketli ortalama		OMYH =%22,70, KOH =0,43 GWh	
		Mevsimsel otoregresif bütünleşik hareketli ortalama		OMYH =%11,14, KOH =0,19 GWh	
		Genelleştirilmiş regresyon sinir ağı (GRSA)		OMYH =%36,02, KOH =0,62 GWh	

Çizelge 2.8. (devam) Uzun dönem fotovoltaik güç tahmininde kullanılan modeller

Önceki bölümlerde güneş ışınımı ve fotovoltaik güç tahminleri birbirinden bağımsız olarak değerlendirilmiştir. Her iki literatür taramalarının bir sonucu olarak aşağıdaki değerli çıkarımlar elde edilmiştir:

- Literatürde tahmin aralıkları ve tahmin hataları belirtilmeyen çalışmalar vardır. Zaman periyotuna dayalı değerlendirmeleri mümkün kılmak için tahmin aralıkları belirtilmeli ve doğruluk bazlı karşılaştırmaları mümkün kılmak için tahmin hataları sunulmalıdır.
- Genetik algoritma, evrimsel algoritma, parçacık sürü optimizasyonu, Levenberg-Marquardt algoritması, yapay arı koloni algoritması, ateş böceği sürüsü optimizasyonu, mercan resifleri optimizasyonu gibi sınırlı optimizasyon uygulamaları vardır. Bu optimizasyon yöntemlerine ek olarak, karınca aslanı, gri kurt, yusufçuk, güve alevi, balina, köklü ağaç vb. diğer yeni optimizasyon algoritmaları tahmin süreçlerine eklenmelidir.
- Güneş ışınımı tahmininde kullanılan KOH, R², OMYH ve OMH'a ve fotovoltaik güç tahmininde kullanılan OMH, OMYH, KOH ve NKOH hata ölçeklerine ek olarak, uygun kıyaslama testleri için süreklilik referans modeline göre iyileştirme yüzdeleri de verilmelidir. Çünkü, süreklilik referans modeli her iki literatürde de en yaygın kullanılan referans modelidir.

- Literatürdeki ilgili her çalışmanın kendi giriş verileri, zaman aralığı, doğruluk ölçeği ve tahmin modeli vardır. Bu duruma ek olarak, yapıcı ve etkin karşılaştırmalar yapmanın tek yolu olan süreklilik referans modelinin kullanımı literatürde nispeten sınırlıdır. Bu nedenlerden dolayı, bu aşamada, tahmin modellerinin performansı hakkında kesin değerlendirmeler yapmak mümkün değildir. Ancak, literatürdeki çalışmalarda gözlendiği üzere; hibrit güneş tahmin yöntemleri tekil güneş tahmin yöntemlerine göre daha düşük tahmin hataları sağlamaktadır.
- Son olarak, çok mevsimli veriler, tahmin yöntemlerinin mevsimsel değişikliklerden etkilenip etkilenmediğini ortaya çıkarmak için kullanılabilir. Ayrıca, araştırmacıların bu alandaki deneyimlerini paylaşmalarını sağlamak amacıyla dünya çapında ortak standart bir veri tabanı da oluşturulabilir.

Literatürde güneş ışınımı ve fotovoltaik güç tahmini çalışmalarına ek olarak, güneş enerjisi sistemlerinin performans optimizasyonu için çeşitli kontrol stratejilerine odaklanan başka çalışmalar da mevcuttur. [133-141].

3. KULLANILAN METOTLAR

Bu bölümde tez aşamasında kullanılan eğri uydurma yöntemleri, yapay sinir ağları, metasezgisel algoritmalar ve geliştirilen hibrit modeller anlatılmıştır.

3.1. Eğri Uydurma Yöntemleri

Eğri uydurma yöntemleri; deney sonunda elde edilen noktasal x değerlerini en yakından temsil eden bir y=f(x) eğrisi bulma işlemidir. Verilerin matematiksel bir modele uyması için kullanılan yöntemler olarak da düşünülebilir. Oluşturulan eğri uydurma yöntemleriyle, verilerin analizi, önizlemesi ve gözlenmesi kolaylaşmaktadır. Tez kapsamında kullanılan Polinom, Gauss ve Fourier eğri uydurma modelleri aşağıda kısaca açıklanmıştır [142].

3.1.1. Polinom modellemesi

Polinomlar genellikle basit ampirik model gerektiğinde, enterpolasyon veya ekstrapolasyon ve küresel bir uyum kullanarak verileri karakterize etmek için kullanılır. Polinom modelinde oluşturulacak fonksiyonun parametrelere doğrusal olarak bağlı olması nedeniyle minimizasyon problemi doğrusal ve kolay çözülebilir bir durumda olur [142-144].

Polinom modellemesinin genelleştirilmiş formülü Eş. 3.1'de verilmiştir: Burada n+1 polinom sırasını, n polinom derecesini ve p_i polinom katsayılarını ifade etmektedir.

$$y = \sum_{i=1}^{n+1} p_i x^{n+1-i}, 1 \le n \le 9$$
(3.1)

3.1.2. Gauss modellemesi

Tepe değerlerinin uydurulması için Gauss modeli kullanılır. Bilim ve mühendisliğin birçok alanında Gauss tepelerine rastlanır. Gauss modellemesinin genelleştirilmiş formülü Eş. 3.2'de verilmiştir [142]. Burada a genliği, b ağırlık merkezini (konumu), c tepe genişliğini ve n uygunluk için tepe sayısını temsil etmektedir.

$$y = \sum_{i=1}^{n} a_i e^{\left[-\left(\frac{x-b_i}{c_i}\right)^2 \right]}, 1 \le n \le 8$$
(3.2)

3.1.3. Fourier modellemesi

Fourier modeli, sinüs ve kosinüs fonksiyonlarının toplamı olup, periyodik bir sinyali tanımlamak için kullanılan fonksiyondur. Herhangi bir zaman serisinin sinüs eğrisi ile modellenebileceğini ifade eder. Trigonometrik formda veya üstel formda temsil edilir. Fourier modellemesinin genelleştirilmiş formülü Eş. 3.3'de verilmiştir [142, 145]. Burada a_0 sinyaldeki herhangi bir offset değerini belirler ve i=0 kosinüs terimi ile ilişkilendirilmiştir. ω sinyalin temel frekansını ve *n* serideki terimlerin sayısını ifade eder.

$$y = a_0 + \sum_{i=1}^n a_i \cos(i\omega x) + b_i \sin(i\omega x), \quad 1 \le n \le 8$$
(3.3)

3.2. Yapay Sinir Ağları

Bilindiği gibi; yeryüzünde insan beyni karmaşık ve gizemli hesap yapabilen muazzam özelliklere sahiptir. Yapay sinir ağları, insan beyninin biyolojik nöronlarından esinlenerek geliştirilmiş olup; yeni bilgiler üretebilen, keşfedebilen, öğrenebilen verimli sistemlerdir. İnsan beyninin sahip olduğu işleyiş özellikleri, yapay sinir ağı modellerinin gelişmesine yardımcı olmuştur [146].

Yapay sinir ağları, birbirleri ile bağlantılı nöronlardan oluşmaktadır. Literatüre bakıldığı zaman yapay sinir ağları, nöron ara bağlantı yapılarına göre ileri beslemeli ve geri beslemeli olmak üzere iki farklı ağ yapısına sahiptir.

İleri beslemeli yapay sinir ağları en basit ve yaygın olarak kullanılan ağ çeşidi olup, bu ağda bilgiler, giriş katmanından çıkış katmanına doğru tek yönlü bağlantılar kullanılarak taşınmaktadır [146]. Bu ağlar statik olarak bilinip; tek katmanlı algılayıcı ve çok katmanlı algılayıcı olmak üzere iki çeşittir.

Geri beslemeli yapay sinir ağlarında bir nöronun çıktısı her zaman kendisinden sonra gelen nöronun girişi olmayıp; kendisinden önce gelen veya kendisine giriş verisi olarak kullanılabilmektedir. Böylece girişler, hem ileri hem de geri yönde iletilmiş olur. Geri beslemeli yapay sinir ağları sahip olduğu bu özellik ile doğrusal olmayan bir davranış gösterirler [146-148]. Bu ağlar da dinamik olarak bilinmektedir. Basitlik, düşük hesaplama maliyeti ve yüksek performans, yapay sinir ağlarını son on yılda oldukça popüler bir hale getirmiştir.

Bu bölümde yapay sinir ağları kısaca anlatılmış olup, alt başlıklar halinde yapar sinir ağının eğitimi, yapay sinir ağı aktivasyon fonksiyonları ve eğitim algoritmalarına değinilmiştir.

3.2.1. Yapay sinir ağının eğitimi

Bir yapay sinir ağı sistemi için eğitim en önemli aşamadır ve bu ağlarda eğitim danışmanlı, danışmansız ve takviyeli olmak üzere üçe ayrılır [146].

Danışmanlı öğrenme

İleri beslemeli ağlarda sıklıkla tercih edilen öğrenme modeli olup, yapay sinir ağında giriş değerleri ile beraber çıkış değerleri de model içerisinde sunulur. Danışmanlı öğrenme kullanıldığı zaman, sistem kendisine verilen örneklerden yola çıkarak problemin sonucu için çözüm üretir.

Danışmansız öğrenme

Danışmansız öğrenme yönteminde çıkış değerleri olmadan sadece giriş değerleri model içerisinde sunulur. Danışmansız öğrenme kullanıldığı zaman, sistem kendisine verilen giriş değerlerinden en çok benzeyenleri gruplayarak her bir grup için farklı örnek tanımlar.

Takviyeli öğrenme

Takviyeli öğrenme yöntemi danışmanlı öğrenme yöntemine benzemektedir. Bu öğrenme yönteminde giriş değerleri ile beraber çıkış değerlerinin model içerisinde sunulmaması gerekir. Bir kriter belirlenerek, elde edilen çıkış değerlerinin giriş değerlerine uygunluğu belirlenir.

3.2.2. Yapay sinir ağı aktivasyon fonksiyonları

Yapay sinir ağı yapısında nöronların çıkış aralığını sınırlama işlemi, aktivasyon fonksiyonları aracılığıyla yapılmaktadır. Bu aralık genellikle [0,1] veya [-1,1] olmaktadır. Başlıca aktivasyon fonksiyonları doğrusal, basamak, sigmoid, hiperbolik tanjant ve sinüstür [146].

Doğrusal aktivasyon fonksiyonu

Doğrusal problem çözümlerinde tercih edilen bir yöntem olup, nöronun girişi doğrudan işlemci elemanın çıkışı olarak verilir. Eş. 3.4'de doğrusal aktivasyon fonksiyonunun denklemi verilmiştir [146]. Doğrusal aktivasyon fonksiyonunun grafiği Şekil 3.1'de gösterilmiştir [146].

y = A.x

(3.4)

Şekil 3.1. Doğrusal aktivasyon fonksiyonu

Basamak aktivasyon fonksiyonu

Basamak aktivasyon fonksiyonunda, gelen işlemci elemanın sıfır ya da sıfırdan büyük olmasına göre hücrenin çıktısı 1, sıfırdan küçük olmasına göre hücrenin çıktısı 0 değerini alır. Eş. 3.5'de basamak aktivasyon fonksiyonunun denklemi verilmiştir [146]. Basamak aktivasyon fonksiyonunun grafiği Şekil 3.2'de gösterilmiştir [146].

$$y = F(x) = \begin{cases} 1 & x \ge 0\\ 0 & x < 0 \end{cases}$$

Şekil 3.2. Basamak aktivasyon fonksiyonu

Sigmoid aktivasyon fonksiyonu

Doğrusal olmayan problem çözümlerinde tercih edilen ve geri yayılım öğrenme algoritması ile kullanılan aktivasyon fonksiyonların başında yer almaktadır. Sigmoid aktivasyon fonksiyonu, giriş değerlerinin büyüklüklerini önemsemeyerek, çıkış değerini 0 ile 1 olarak üretmektedir [146]. Eş. 3.6'da sigmoid aktivasyon fonksiyonunun denklemi verilmiştir [146]. Sigmoid aktivasyon fonksiyonunun grafiği Şekil 3.3'de gösterilmiştir [146].

$$y = \frac{1}{1 + e^{-x}} = \frac{1}{2} \left(tanh\left(\frac{x}{2}\right) - 1 \right)$$
(3.6)

(3.5)

Şekil 3.3. Sigmoid aktivasyon fonksiyonu

Hiperbolik tanjant aktivasyon fonksiyonu

Doğrusal olmayan problem çözümlerinde tercih edilen diğer bir aktivasyon fonksiyonu ise hiperbolik tanjant fonksiyonudur. Sigmoid aktivasyon fonksiyonu gibi hiperbolik tanjant aktivasyon fonksiyonu da doğrusal olmayan problem çözümlerinde tercih edilmektedir ve giriş uzayını genişleterek çıktı olarak -1 ile 1 aralığında değerler üretmektedir [146]. Eş. 3.7'de hiperbolik tanjant aktivasyon fonksiyonunun denklemi verilmiştir [149]. Hiperbolik tanjant aktivasyon fonksiyonunun grafiği Şekil 3.4'de gösterilmiştir [146].

$$y = \frac{1 - e^{-2x}}{1 + e^{2x}} = tanh(\beta x)$$
(3.7)

Şekil 3.4. Hiperbolik tanjant aktivasyon fonksiyonu

Sinüs aktivasyon fonksiyonu

-1 ile 1 aralığında değerler üreten, x sayısını sin(x) e dönüştüren aktivasyon fonksiyonudur [146]. Eş. 3.8'de sinüs aktivasyon fonksiyonunun denklemi verilmiştir [146]. Sinüs aktivasyon fonksiyonunun grafiği Şekil 3.5'de gösterilmiştir [146].

 $y = \sin(\beta x)$

Şekil 3.5. Sinüs aktivasyon fonksiyonu

3.2.3. Çok katmanlı algılayıcı (ÇKA) yapısı

Bu tez çalışmasında çok katmanlı algılayıcı tercih edilmiştir. Çok katmanlı algılayıcıyının farklı öğrenme algoritmaları ile uyum içerisinde çalışabilmesi, tahmin algoritmalarında başarılı sonuçlar vermesi tercih edilmesinin nedenlerindendir [146-148].

(3.8)

Şekil 3.6. Çok katmanlı algılayıcının genel yapısı

Şekil 3.6 çok katmanlı algılayıcı yapay sinir ağının genel yapısını göstermekte olup; giriş, gizli ve çıkış katmanı olmak üzere 3 katmandan oluşmaktadır. Her bir katmanda yer alan nöronlar bilgiyi bir sonraki katmana iletmektedir. İleri beslemeli sinir ağlarında nöronlar arası iletişim tek yönlü olup, hep ileriye doğrudur. Giriş katmanında herhangi bir işlem

yapılmayıp bilgi ara katmana iletilir. Ara katmanda ise bilgi işleme yapılır. Çıkış katmanında ise çıkışlar elde edilir.

Ağırlıklar ve biaslar, verilen girdilerden çok katmanlı algılayıcıların nihai çıktısını tanımlamaktan sorumludur. Bu durumda toplam fonksiyonun hesaplanması Eş. 3.9'daki gibi olacaktır [146-148]. Burada n giriş nöron sayısını, W_i ağırlık değerini, , X_i *i*. girişi gösterir.

$$f(net) = \sum_{i=1}^{n} W_{ij} \cdot X_i \quad i = 1, 2, \dots n$$
(3.9)

3.2.4. Yapay sinir ağı eğitim algoritmaları

Yapay sinir ağlarında kullanılan bazı eğitim algoritmaları bu bölümde açıklanmıştır.

Geri yayılım algoritması

Araştırmacılar tarafından uygulama geliştirilirken en sık kullanılan algoritmadır. Çok katmanlı algılayıcıların denetimli eğitimi için çevrimiçi öğrenmenin popülerliği, geri yayılma algoritmasının geliştirilmesi ile daha da ilerletilmiştir. Bu algoritma, hataları ters yönde azaltarak, çıkıştan girişe doğru çalışmaktadır. Genel bir ifadeyle, *a* ve *b* kat işlem elemanları arasındaki ağırlık hesaplaması Eş. 3.10'daki gibi olacaktır. Burada η öğrenme katsayısını, α momentum katsayısını ve $\delta_b b$ nöronuna ait bir faktörü temsil etmektedir.

$$\Delta w_{ba}(t) = \eta \delta_b x_a + \alpha \Delta w_{ba}(t-1) \tag{3.10}$$

Esnek yayılım algoritması

Esnek yayılım, mevcut en hızlı eğitim algoritmalarından biridir. Esnek yayılım algoritması sadece eğimin yönünü belirtir. Denetimli bir öğrenme yöntemidir. Ağırlık güncellemelerinin farklı bir şekilde yapılması dışında, geri yayılıma benzer şekilde çalışır. Geri yayılımda, ağırlıktaki değişiklik kısmi türevin büyüklüğü ile hesaplanır. Esnek yayılım, ağırlık güncellemesinin boyutunu belirleyen her bağlantı için ayrı bir Δ_{ba} 'yı Eş. 3.11'deki gibi hesaplar.

$$\Delta_{ba}^{(t)} = \begin{cases} \eta^{+}x \ \Delta_{ba}^{(t-1)}, \ \frac{\partial E^{(t-1)}}{\partial w_{ba}} x \frac{\partial E^{(t)}}{\partial w_{ba}} > 0\\ \eta^{-}x \ \Delta_{ba}^{(t-1)}, \ \frac{\partial E^{(t-1)}}{\partial w_{ba}} x \frac{\partial E^{(t)}}{\partial w_{ba}} < 0\\ \Delta_{ba}^{(t-1)}, \ yukarıdaki iki durumda değilse \end{cases}$$
(3.11)

$0 < \eta^- < 1 < \eta^+$

1

Delta algoritması

Algoritmanın temeli beklenen çıkış ile gerçekleşen çıkış arasındaki farkın birbirine yaklaştırılmasına dayanmaktadır. Algoritmada; fark sıfırsa, öğrenme gerçekleşmez; aksi takdirde, bu farkı azaltmak için ağırlıklarını ayarlar. En yaygın öğrenme kurallarından biri olup, danışmanlı öğrenmeye bağlıdır. Genel bir ifadeyle, işlem elemanları arasındaki ağırlık hesaplaması Eş. 3.12'deki gibi olup; η öğrenme katsayısı, *t* beklenen çıkış, *y* gerçekleşen çıkış ve x_i giriş değeridir [146]:

$$\Delta w = \eta (t - y) x_i \tag{3.12}$$

Delta-Bar-Delta algoritması

Delta-Bar-Delta, öğrenme hızını değiştiren sezgisel bir algoritmadır. Bu algoritmada her ağırlık kendi öğrenme oranına sahiptir ve her ağırlık için geçerli zaman adımındaki gradyan, önceki adımdaki gradyan ile karşılaştırılır. Gradyan aynı yöndeyse öğrenme oranı artar, zıt yöndeyse öğrenme oranı azalır. Delta-Bar-Delta algoritmasında bağlantı ağırlığının güncellenmesi Eş. 3.13 kullanılarak yapılır.

$$w(k+1) = w(k) + \alpha(k)\partial(k)$$
(3.13)

Burada,

 $\alpha(k)$: öğrenme katsayısıdır ve her bağlantıya atanır.

 $\partial(k)$: ağırlık değişiminin gradyan bileşenidir.

 $\overline{\delta}(k)$ Eş. 3.13 kullanılarak hesaplanır.

$$\overline{\delta}(k) = (1 - \theta)\delta(k) + \theta\delta(k - 1)$$
(3.14)

Burada,

 θ : dışbükey ağırlık faktörüdür. Öğrenme katsayısı değişikliği Eş. 3.15'te verilmiştir.

$$\Delta \alpha(k) = \begin{cases} \varkappa , \overline{\delta}(k-1)\,\delta(k) > 0\\ -\phi\alpha(k) , \overline{\delta}(k-1)\,\delta(k) < 0\\ 0, yukarıdaki iki durumda değilse \end{cases}$$
(3.15)

Burada,

κ: sürekli öğrenme katsayısı artış faktörüdür.

φ: sürekli öğrenme katsayısı azalma faktörüdür.

Levenberg-Marquardt algoritması

Levenberg (1994) ve Marquardt (1963) tarafından; Levenberg-Marquardt yöntemi aşağıdaki iki yöntem arasında bir uzlaşmadır [146]:

- Newton Yöntemi; yerel veya küresel bir minimum değere hızla yakınlaşma sağlamaktadır.
- Gradyan İniş Yöntemi; hata oranını en aza indirmek veya en yüksek doğruluğu bulmaktadır.

Levenberg-Marquardt algoritması, diğer doğrusal olmayan işlevlerin karelerinin toplamı olan işlevleri en aza indirmek için tasarlanmış, Newton yönteminin bir varyasyonudur. Bu algoritma, performans endeksinin ortalama kare hatası olduğu sinir ağı eğitimi için çok uygundur.

Levenberg-Marquardt algoritmasının, bir karelerinin toplamı hata fonksiyonu olduğu düşünülürse, *n* adet hata terimi için $e_i^2(x)$ hesabı aşağıdaki Eş. 3.17'de verilmiştir.

$$E(x) = \sum_{i=1}^{n} e_i^2 (wx) = ||f(x)||^2$$
(3.16)

$$e_i^2(x) = (y_i - yd_i)^2$$
(3.17)

Levenberg-Marquardt öğrenme algoritmalarında hedef; parametre vektörü w'nin, E(x)'yi minimum yapacak şekilde bulunmasıdır. Levenberg-Marquardt algoritmasının kullanılmasıyla yeni vektör w_{k+1} 'dan farzedilen vektör w_k dan Eş. 3.18'deki gibi hesaplanır.

$$w_{k+1} = w_{k+1} + \delta w_k \tag{3.18}$$

Burada δw_k ifadesi jakobyen değeridir ve Eş. 3.19'daki denklem ile hesaplanır.

$$(J_k^T J_k + \lambda I)\delta w_k = -J_k^T f(w_k)$$
(3.19)

Burada $I = D^T D$ birim matrisi, $J_k f$ nin değerlendirilmiş jakobyenini ve λ Marquardt (sönümleme) parametresini ifade eder.

3.3. Metasezgisel Optimizasyon Algoritmaları

Metasezgisel optimizasyon algoritmaları mühendislik uygulamalarında gün geçtikçe popüler hale gelmektedir. Gradyan bilgisi gerektirmemesi, yerel optimayı atlayabilir olması, farklı disiplinleri kapsayan çeşitli problemlerde kullanılabilir olması, basit yapılar üzerinde kalması ve uygulamasının kolay olması tercih edilmesinin nedenlerindendir [150].

Metasezgisel algoritmalar, doğadan ilham alan, biyolojik veya fiziksel olayları taklit ederek optimizasyon problemlerini çözerler. Bunlar evrim tabanlı, fizik tabanlı ve sürü tabanlı yöntemler olmak üzere üç ana kategoride gruplandırılırlar.

Evrime dayalı yöntemler, doğal evrim yasalarından esinlenmiştir. Arama süreci, sonraki nesiller boyunca gelişen rastgele oluşturulmuş bir popülasyonla başlar. Bu yöntemlerin gücü; en iyi bireylerin daima yeni nesil bireyleri oluşturmak için bir araya getirilmeleridir. Bu, nüfusun nesiller boyunca optimize edilmesini sağlar. En popüler evrim tabanlı optimizasyon tekniği, genetik algoritmalardır [151]. Bu kategorideki diğer popüler

algoritmalar ise; evrim stratejisi [152], olasılık temelli artan öğrenme [153], genetik programlama [154] ve biyocoğrafya tabanlı optimizasyondur [155].

Metasezgisel algoritmaların ikinci grubu olan fizik tabanlı yöntemler, evrendeki fiziksel kuralları taklit eder. En popüler algoritmalar; benzetimli tavlama [156], yerçekimi yerel arama [157], büyük-patlama büyük-çöküş [158], yerçekimi arama algoritması [159], yüklü sistem arama [160], merkezi kuvvet optimizasyonu [161], yapay kimyasal reaksiyon optimizasyonu algoritması [162], kara delik algoritması [163], ışın optimizasyonu algoritması [164], küçük dünya optimizasyon algoritması [165], galaksi tabanlı arama algoritması [166] ve kavisli uzay optimizasyonudur [167].

Doğadan ilham alan üçüncü yöntem, hayvan gruplarının sosyal davranışlarını taklit eden sürü tabanlı teknikleri içerir. En popüler algoritma parçacık sürü optimizasyonudur (PSO) [168]. PSO, kuş sürüsünün sosyal davranışından ilham alır. En iyi çözümü (yani en uygun konumu) bulmak için arama alanında etrafta dolaşan bir takım parçacıklar (aday çözümler) kullanır. Bu arada, hepsi yollarındaki en iyi yeri (en iyi çözümü) izler. Diğer bir ifadeyle, parçacıklar kendi en iyi çözümlerinin yanı sıra sürünün şimdiye kadar elde ettiği en iyi çözümü de göz önünde bulundururlar. Bir başka popüler sürü bazlı algoritma, karınca koloni algoritmasıdır. Bu algoritma, karınca kolonisindeki karıncaların sosyal davranışlarından esinlenmiştir. Aslında, karıncaların yuvadan en yakın yolu ve yiyecek kaynağını bulmadaki sosyal zekası bu algoritmanın ana ilham kaynağıdır.

Parçacık sürü optimizasyonu (PSO) [168], bal arılarında evlilik optimizasyonu algoritması [169], yapay balık sürüsü algoritması [170], termit algoritması [171], karınca koloni algoritması [172], yapay arı koloni algoritması [173], eşek arısı sürü algoritması [174], maymun arama algoritması [175], kurt sürüsü arama algoritması [176], arı polen toplama algoritması [177], guguk kuşu arama algoritması [178], yunus partner optimizasyonu [179], yarasa algoritması [180], ateş böceği algoritması [181], av arama algoritması [182], kuş çiftleşme algoritması [183], krill sürüsü algoritması [184], meyve sineği optimizasyon algoritması [185], yunuslarda sesle yer belirleme [186] algoritmaları da diğer sürü tabanlı tekniklerdir. Genel olarak bakıldığında, sürüye dayalı algoritmalar evrim temelli algoritmalara göre bazı avantajlara sahiptir. Örneğin, sürüye dayalı algoritmalar, sonraki yinelemelere göre arama alanı bilgisini korurken, evrim tabanlı algoritmalar yeni bir popülasyon oluşur oluşmaz herhangi bir bilgiyi korumazlar. Genellikle evrimsel

yaklaşımlara (seçim, çaprazlama, mutasyon, elitizm, vb.) kıyasla daha az operatör içerirler ve bu nedenle uygulanması daha kolaydır. Ayrıca karınca aslanı optimizasyon algoritması (KAO), balina optimizasyon (BO) ve gri kurt optimizasyon algoritması (GKO) da sürü tabanlı teknikler arasında yer almaktadır.

Literatürde insan davranışlarından esinlenen başka metasezgisel yöntemlerin de olduğu gözlenmiştir. En popüler algoritmalardan bazıları öğrenme tabanlı optimizasyon algoritması [187], uyum arama algoritması [188], tabu arama algoritması [189], grup arama optimizasyonu [190], emperyalist rekabetçi optimizasyon algoritması [191], lig şampiyonluğu algoritması [192], havai fişek algoritması [193], çarpışan cisimler optimizasyonu [194], iç mekan arama algoritması [195], mayın patlama algoritması [196], futbol ligi mücadele algoritması [197], arayıcı optimizasyon algoritması [198], sosyal tabanlı algoritma [199], döviz piyasası algoritması [200] ve grupla psikolojik danışmanlık optimizasyonudur [201].

Nüfus tabanlı metasezgisel optimizasyon algoritmaları, doğası ne olursa olsun ortak bir özelliği paylaşır. Arama süreci araştırma ve sömürü olmak üzere iki aşamaya ayrılmıştır. Optimize edici, arama alanını küresel olarak keşfetmek için operatörler içermelidir. Bu aşamada, hareketler mümkün olduğunca rastgele seçilmelidir. Sömürü aşaması, araştırma aşamasını takip eder ve arama alanının ümit verici alan(lar)ını ayrıntılı olarak inceleme süreci olarak tanımlanabilir. Bu nedenle sömürü, keşif aşamasında bulunan tasarım alanının gelecek vaat eden bölgelerinde yerel arama kabiliyeti ile ilgilidir. Keşif ve sömürü arasında uygun bir denge bulmak, optimizasyon sürecinin stokastik doğasından ötürü herhangi bir metasezgisel algoritmanın geliştirilmesinde en zorlayıcı görevdir.

Bir sonraki bölümde, tez çalışmasında kullanılan sürü tabanlı metasezgisel optimizasyon tekniklerinden gri kurt optimizasyon algoritması, karınca aslanı optimizasyon algoritması ve balina optimizasyon algoritması detaylı olarak anlatılmaktadır.

3.3.1. Gri kurt optimizasyon algoritması

Gri kurt optimizasyon algoritması 2014 yılında *Mirjalili ve çalışma arkadaşları* tarafından önerilen sürü tabanlı bir metasezgisel optimizasyon algoritmasıdır [202]. Gri kurt optimizasyon algoritması, gri kurtların sosyal hiyerarşisini ve avlanma davranışını taklit

eder. Gri kurtlar çoğunlukla grup halinde yaşarlar ve grup büyüklüğü ortalama 5 ile 12 arasındadır. Şekil 3.7'de görüldüğü gibi; gri kurtlar katı ve baskın bir sosyal hiyerarşiye sahiptir ve sosyal baskınlığın sırasıyla azaldığı alfa, beta, delta ve omega türleri mevcuttur.

Şekil 3.7. Gri kurt hiyerarşisi

Alfalar, grubu en iyi yöneten en baskın kurtlardır. Alfalar, çoğunlukla avlanma, uyuma alanı, uyanma zamanı vb. olaylar hakkında karar vermekten sorumludurlar. Bir sürünün organizasyonu ve disiplininin, sürünün gücünden daha önemli olması nedeniyle; alfanın sadece sürünün en güçlü üyesi olması değil, sürüyü en iyi yöneten olması gerekir. Betalar, karar verme sürecinde veya sürünün diğer faaliyetlerinde alfalara yardımcı olan ikinci seviye kurtlardır. Beta, alfa komutlarını sürüde uygularken, alfaya da geri bildirim sağlar. Beta kurt, alfa kurtlarından birinin ölmesi ya da çok yaşlanması durumunda alfa olabilecek en iyi adaydır.

Omegalar, kendilerinden baskın olan diğer kurtların emrinde olan kurtlardır. Rütbesi en düşük kurtlar olup, sürüde günah keçisi rolünü oynarlar. Buna rağmen, omegaların kaybedilmesi durumunda sürede kargaşa ortaya çıkar çünkü omegalar sürüdeki tüm şiddet ve tehditleri engeller ve tüm sürüyü tatmin etmeye çalışırlar. Eğer bir kurt alfa, beta veya omega değilse delta olarak adlandırılır. Deltalar ise alfalara ve betalara hizmet ederken, omegalara hükmeden kurtlardır. Sürüdeki izciler, nöbetçiler, yaşlılar, avcılar ve bakıcılar delta kurtlarıdır. İzciler, bölge sınırlarını izlerler, nöbetçiler sürünün güvenliğini sağlar, bakıcılar sürüdeki zayıf, hasta ve yaralı kurtlara bakarlar.

Dolaysıyla, gri kurt optimizasyon algoritmasında en uygun çözüm alfa (α) olarak değerlendirilir. Alfadan sonraki en uygun ikinci, üçüncü ve dördüncü çözümler ise sırasıyla beta (β), delta (δ) ve omega (ω) olarak kabul edilir.

Gri kurtların sosyal hiyerarşisine ek olarak, avlanma davranışındaki ana evreler aşağıdaki gibidir [202-203]: (Bkz. Şekil 3.8)

- Avı takip etmek, kovalamak ve ava yaklaşmak.
- Av durana kadar avı takip etmek, kuşatmak ve rahatsız etmek.
- Ava saldırmak

Şekil 3.8. Gri kurtların avlanma davranışları: (A) av peşinde koşmak, yaklaşmak ve takip etmek (B-D) rahatsız etmek ve kuşatmak (E) durağan durum ve saldırı

Gri kurtların avı çevreleme davranışı Eş. 3.20 ve Eş. 3.21 kullanılarak modellenir. Bu eşitliklerde t mevcut iterasyon sayısını, \vec{A} ve \vec{C} katsayı vektörlerini, $\vec{X}_{\rm P}$ avın konum vektörünü ve \vec{X} bir gri kurdun konumunu temsil eder. \vec{A} ve \vec{C} vektörleri ise Eş. 3.21 ve Eş. 3.22 kullanılarak hesaplanır. İterasyon süresince \vec{a} 'nın değeri 2'den 0'a doğrusal olarak düşürülür, \vec{r}_1 ve \vec{r}_2 ise [0, 1] aralığında rastlantısal vektörlerdir. Eş. 3.22 ve Eş. 3.23'ün etkilerini göstermek amacıyla bir gri kurtun 2B ve 3B konum vektörleri ve bunların olası sonraki konumları Şekil 3.9'da resmedilmiştir. \vec{r}_1 ve \vec{r}_2 rastgele vektörleri, gri kurtun, söz konusu noktalar arasında herhangi bir pozisyona erişmesine izin verir.

$$\vec{\mathbf{D}} = |\vec{\mathbf{C}}.\vec{\mathbf{X}}_{\mathrm{P}}(t) - \vec{\mathbf{X}}(t)$$
(3.20)

$$\vec{X}(t+1) = \vec{X}_{P}(t) - \vec{A}.\vec{D}$$
(3.21)

$$\vec{A} = 2\vec{a}.\vec{r}_1 - \vec{a} \tag{3.22}$$

 $\vec{C} = 2. \vec{r}_2$

Şekil 3.9. 2B ve 3B konum vektörleri ve olası sonraki konumlar

Soyut bir arama uzayında avın optimum konumu hakkında herhangi bir bilgi bulunmamaktadır. Bu nedenle, gri kurtların avlanma davranışını modellemek amacıyla alfa, beta ve deltanın avın potansiyel konumu hakkında daha iyi bilgiye sahip oldukları varsayılarak ilk üç en iyi çözüm olarak alınırlar. Sonrasında, diğer arama ajanlarının, en iyi arama ajanlarının pozisyonuna göre kendi pozisyonlarını güncellemeleri sağlanır. Bu işlemler için Eş. 3.24, Eş. 3.25 ve Eş. 3.26 kullanılır. Şekil 3.10 2B arama uzayında bir arama ajanının, alfa, beta ve deltaya göre konumunu nasıl güncellediğini göstermektedir. Son pozisyonun, alfa, beta ve delta pozisyonları ile tanımlanan bir daire içinde rastgele bir yerde olacağı gözlemlenebilir.

$$\vec{\mathbf{D}}_{\infty} = |\vec{\mathbf{C}}_1 \vec{\mathbf{X}}_{\infty} - \vec{\mathbf{X}}|, \vec{\mathbf{D}}_{\beta} = |\vec{\mathbf{C}}_2 \vec{\mathbf{X}}_{\beta} - \vec{\mathbf{X}}|, \vec{\mathbf{D}}_{\delta} = |\vec{\mathbf{C}}_2 \vec{\mathbf{X}}_{\delta} - \vec{\mathbf{X}}|$$
(3.24)

$$\vec{X}_{1} = \vec{X}_{\infty} - \vec{A}_{1}(\vec{D}_{\infty}), \vec{X}_{2} = \vec{X}_{\beta} - \vec{A}_{2}(\vec{D}_{\beta}), \vec{X}_{3} = \vec{X}_{\delta} - \vec{A}_{3}(\vec{D}_{\delta})$$
(3.25)

$$\vec{X}(t+1) = \frac{\vec{X}_1 + \vec{X}_2 + \vec{X}_3}{3}$$
(3.26)

(3.23)

Şekil 3.10. GKO'da pozisyon güncellemesi

Gri kurtlar, av durduğunda avına saldırarak av faliyetini sonlandırırlar. Gri kurtların ava yaklaşımını modellemek için \vec{a} değeri azaltılmalıdır. \vec{A} 'nın dalgalanma aralığı da \vec{a} tarafından düşürülür. \vec{A} , [-2a, 2a] aralığında rastlantısal bir değerdir. |A| < 1 sömürüyü vurgular ve gri kurtları avına saldırmaya zorlarken, |A| > 1 aramayı vurgular ve daha uygun bir av bulmak için gri kurtları avdan uzaklaştırmaya zorlar. Aramayı destekleyen diğer bir bileşen ise \vec{C} 'dir. Bu bileşen, Eş. 3.19'daki mesafenin tanımlanmasında avın etkisini stokastik olarak vurgulamak (C>1) veya önemsizleştirmek (C<1) amacıyla av için rastgele ağırlıklar üretir.

Özetle, GKO algoritmasında arama işlemi rastgele bir gri kurt popülasyonu (aday çözümler) oluşturmakla başlar. İterasyonlar süresince alfa, beta ve delta kurtları avın muhtemel konumunu tahmin eder. Her aday çözüm, av ile olan mesafesini günceller. Keşif ve sömürü işlemlerini vurgulamak için \vec{a} parametresi 2'den 0'a düşürülür. Bir sonlandırma kriterinin yerine getirilmesiyle gri kurt optimizasyon algoritması sınırlandırılır. GKO algoritmasının sözde kodu Şekil 3.11'de sunulmuştur.

Gri kurt popülasyonunu başlat X_i (i = 1, 2, ..., n) a, A ve C'nin ilk değerlerini ata Her bir arama ajanının uygunluğunu hesapla X_{α} = en iyi arama ajanı X_{β} = ikinci en iyi arama ajanı X_{δ} = üçüncü en iyi arama ajanı while (iterasyon sayısı < maksimum iterasyon sayısı) for her bir arama ajanı Eş. 3.26 aracılığıyla o anki arama ajanının pozisyonunu güncelle end for a, A ve C'yi güncelle Tüm arama ajanlarının uygunluğunu hesapla X_{α} , X_{β} , X_{δ} 'yi güncelle iterasyon sayısı= iterasyon sayısı +1 end while

Şekil 3.11. GKO algoritmasının sözde kodu

3.3.2. Karınca aslanı optimizasyon algoritması

Karınca aslanı optimizasyon algoritması 2015 yılında *Mirjalili* tarafından tasarlanmıştır ve karınca aslanları ve tuzaklarındaki ka rıncalar arasındaki etkileşimi taklit eder [204]. Karınca aslanlarının yaşam döngüsü larva ve yetişkinlik olmak üzere iki ana aşamadan oluşur. Doğal hayat döngüleri 3 yıl kadardır. Bu sürenin büyük bir çoğunluğunu larva olarak geçirirler ve sadece 3-5 haftalık ömürleri yetişkinlikle geçer. Şekil 3.12'de görüldüğü gibi; karınca aslanları büyük ağızları ile kumları dairesel yollar boyunca fırlatarak ilerler ve koni şeklinde çukurlar açarlar. Kenarları keskin olan bu çukurun altında saklanır ve karıncaların bu çukura gelmesini bekler. Çukura düşen karıncalar, hemen yakalanamazlar ve kaçmak isterler. Karınca aslanı, karıncaların çukura girdiğini görünce kumları çukur kenarlarına doğru fırlatarak karıncaların kaymalarını ve çukur tabanına düşmelerini sağlarlar. Çenesiyle karıncaları yakaladığında, onları toprak altına çeker, tüketir ve sonrasında çukuru tekrar düzenleyerek bir sonraki avını bekler.

Şekil 3.12. Koni şeklindeki tuzaklar ve karınca aslanlarının avlanma davranışı

Karıncalar doğada yemek ararken stokastik (rastgele) olarak hareket ettiklerinden karıncaların hareketini modellemek için Eş. 3.27 ve Eş. 3.28 kullanılarak rastgele bir yürüyüş seçilir. Bu eşitliklerde *cumsum* kümülatif toplamı, *n* maksimumu iterasyon sayısını, *t* rastgele yürüyüş adımını, r(t) stokastik bir fonksiyonu ve *rand* [0, 1] aralığında eşit bir dağılım ile üretilen rastlantısal bir sayıyı temsil eder. Şekil 3.13, 500 iterasyon için karınca aslanı optimizasyon algoritmasının rastlantısal üç yürüyüşü göstermektedir. Bu şekilden görüldüğü gibi; rastgele yürüyüş, orijin etrafında dalgalanan (kırmızı eğri), artan (siyah eğri) veya azalan (mavi eğri) trendler gösterebilir.

$$X(t) = [0, cumsum(2r(t_1) - 1), ..., cumsum(2r(t_n) - 1)]$$
(3.27)

$$r(t) = \begin{cases} 1 & \text{if rand} > 0,5 \\ 0 & \text{if rand} \le 0,5 \end{cases}$$
(3.28)

Şekil 3.13. Karınca aslanı optimizasyon algoritmasının rastlantısal üç yürüyüşü

Her arama uzayının bir sınırı olduğundan Eş. 3.27 ve Eş. 3.28 karıncaların konumlarını güncellemede doğrudan kullanılamaz. Karıncaların rastlantısal yürüyüşlerini arama uzayı içerisinde tutabilmek için Eş. 3.29 kullanılarak her iterasyonda normalizasyon yapılır. Bu eşitlikte a_i *i*. değişkenin rastlantısal yürüyüşünün minimumunu, b_i *i*. değişkenin rastlantısal yürüyüşünün minimumunu, b_i *i*. değişkenin rastlantısal yürüyüşünün minimumunu ve d_i^t *t*. iterasyondaki *i*. değişkenin maksimumunu temsil eder.

$$X_{i}^{t} = \frac{(X_{i}^{t} - a_{i}) \times (d_{i} - c_{i}^{t})}{(d_{i}^{t} - a_{i})} + c_{i}$$
(3.29)

Karıncaların rastgele yürüyüşleri karınca aslanlarının tuzaklarından etkilenir. Bu varsayımı matematiksel olarak modellemek için Eş. 3.30 ve Eş. 3.31 kullanılır. Bu eşitliklerde $c^t t$. iterasyondaki tüm değişkenlerin minimumunu, $d^t t$. iterasyondaki tüm değişkenlerin maksimumunu ve Antlion^t_j t. iterasyonda seçilen *j*. karınca aslanının konumunu temsil eder. Eş. 3.30 ve Eş. 3.31, seçilen bir karınca aslanı etrafında *c* ve *d* vektörleriyle tanımlanan bir hiperküre içerisinde karıncaların rastgele yürümesi gerektiğini gösterir. Bu davranışın kavramsal bir modeli Şekil 3.14'de sunulmuştur.

$$c_i^t = \text{Antlion}_i^t + c^t \tag{3.30}$$

$$d_i^t = \text{Antlion}_i^t + d^t \tag{3.31}$$

Şekil 3.14. Karınca aslanı tuzağının içindeki karıncanın rastgele yürüyüşü

Karınca aslanları, bir karıncanın tuzağa düştüğünü fark ettiklerinde çukurun merkezinden dışarı doğru kum atarlar. Bu davranış, kaçmaya çalışan tuzağa düşmüş karıncanın aşağı kaymasını sağlar. Bu davranışı matematiksel olarak modellemek için karıncaların bir hiper-küre içindeki rastlantısal yürüyüşlerinin yarıçapı Eş. 3.32 ve Eş. 3.33 kullanılarak adaptif olarak azaltılır. Bu eşitliklerde $I = 10^{w_{\overline{T}}}$ olup, t mevcut iterasyon sayısını, Tmaksimum iterasyon sayısını ve w mevcut iterasyona göre belirlenen bir sabiti temsil eder. (t > 0,1T olduğunda w = 2, t > 0,5T olduğunda w = 3, t > 0,75T olduğunda w = 4, t > 0,9T olduğunda w = 5 ve t > 0.95T olduğunda w = 6) w, temel olarak, sömürünün kararlılık seviyesini ayarlar.

$$c^{t} = \frac{c^{t}}{I} \tag{3.32}$$

$$d^{t} = \frac{d^{t}}{I}$$
(3.33)

Bir karınca çukurun dibine ulaştığında ve karınca aslanın çenesine takıldığında avın son aşaması gerçekleşir. Bu aşamadan sonra, karınca aslanı, karıncayı kumun içine çeker ve onu tüketir. Bunun, karıncaların karşılık gelen karınca aslanlarına göre daha zayıf hale geldiğinde oluştuğu varsayılır. Ayrıca, yeni bir av yakalama şansını arttırmak için herhangi bir karınca aslanı, avlanan karıncanın konumuna göre konumunu günceller. Bu süreç Eş. 3.34 kullanılarak modellenir ve $Ant_i^t t$. iterasyonda *i*. karıncanın konumunu belirtir.

$$Antlion_{i}^{t} = Ant_{i}^{t} \text{ if } f(Ant_{i}^{t}) > f(Antlion_{i}^{t})$$

$$(3.34)$$

Elitizm, evrimsel algoritmaların önemli bir özelliğidir ve optimizasyon işleminin herhangi bir aşamasında elde edilen en iyi çözümü sağlar. Dolayısıyla, her bir iterasyonda o ana kadar elde edilen en uygun karınca aslanı elit olarak kaydedilir ve tüm karıncaların hareketlerinin, elitten etkilenmesi için rulet tekerleği aracılığıyla her karıncanın seçili bir karınca aslanı etrafında rastlantısal olarak yürüdüğü varsayılır. Aynı zamanda elit, Eş. 3.35'deki gibi olur. Bu eşitlikte R_A^t t. iterasyonda rulet tekerleği tarafından seçilen karınca aslanı etrafındaki rastgele yürüyüşü ve R_E^t t. iterasyonda elit etrafındaki rastgele yürüyüşü temsil eder.

$$\operatorname{Ant}_{i}^{t} = \frac{\operatorname{R}_{A}^{t} + \operatorname{R}_{E}^{t}}{2}$$
(3.35)

Son olarak, optimizasyon sürecinde, karınca aslanları kendi uygunluk değeriyle orantılı çukurlar inşa edebilir (daha yüksek uygunluk değeri, daha büyük çukur). Bu sayede, daha büyük çukurlara sahip karınca aslanlarının, karıncaları yakalama olasılığı daha yüksektir. Karınca aslanlarına doğru kayan karıncaları simüle etmek için rastgele yürüyüş aralığı adaptif olarak azaltılır. Karınca aslanı optimizasyon algoritmasının sözde kodu Şekil 3.15'de verilmiştir.

Karıncaların ve karınca aslanlarının ilk popülasyonunu rastgele başlat Karıncaların ve karınca aslanlarının uygunluklarını hesapla En iyi karınca aslanını bul ve elit olarak kabul et **while** son kriter karşılanmadı **for** her bir karınca Rulet tekerleğini kullanarak bir karınca aslanı seç Eş. 3.32 ve Eş. 3.33'ü kullanarak *c* ve *d*'yi güncelle Eş. 3.27 ve Eş. 3.29'u kullanarak rastgele bir yürüyüş oluştur ve normalleştir Eş. 3.35'i kullanarak karınca pozisyonunu güncelle **end for** Tüm karıncaların uygunluklarını hesapla Eş. 3.34'ü kullanarak, daha uygun olması durumunda karınca aslanını karşılık gelen karıncayla yer değiştir. Eğer bir karınca aslanı elitten daha uygun olursa, eliti güncelle **end while**

Şekil 3.15. KAO algoritmasının sözde kodu

3.3.3. Balina optimizasyon algoritması

Balina optimizasyon algoritması, 2016 yılında *Mirjalili ve Lewis* tarafından önerilmiştir ve kambur balinaların avlanma davranışını taklit eder [150]. Balinalar, dünyanın en büyük memelileridir ve yetişkin bir balinanın uzuluğu 30 m kadar, ağırlığı ise 180 ton kadar olabilir. Balinaların, zeka seviyeleri ile bir insan gibi düşünebileceği, öğrenebileceği, yargılayabileceği, iletişim kurabileceği ve duygusal olabileceği kanıtlanmıştır [205]. Yalnız ya da gruplar halinde yaşarlar. Ancak, çoğunlukla gruplar halinde görülürler. En sevdikleri av; krill ve yüzeye yakın küçük balık sürüleridir.

Kambur balinalar kabarcık-ağ beslenme yöntemi olarak adlandırılan ilginç bir avlanma stratejisine sahiptir [206]. Şekil 3.16'da gösterilen bu avlanma yönteminde, kambur balinalar öncelikle belirli bir derinlikte aşağı dalarlar. Sonrasında avın etrafında spiral şekilde kabarcıklar oluşturmaya başlayıp yüzeye doğru yüzerler. Bu sayede, hem kendilerini gizlemiş olurlar hem de avlarının kabarcık ağı içerisinde kalmasını sağlayıp beslenirler.

Şekil 3.16. Kambur balinaların kabarcık-ağ besleme davranışı

Arama uzayındaki en uygun tasarımın yeri önceden bilinmediğinden, balina optimizasyon algoritması, mevcut en iyi aday çözümün hedef av olduğunu veya optimuma yakın olduğunu varsayar. En iyi arama ajanı tanımlandıktan sonra diğer arama ajanları konumlarını en iyi arama ajanına göre güncellemeye çalışır. Bu davranış, gri kurt optimizasyon algoritmasına benzer şekilde Eş. 3.20, Eş. 3.21, Eş. 3.22 ve Eş. 3.23 kullanılarak modellenir. Ayrıca, iterasyon süresince \vec{a} 'nın değeri 2'den 0'a doğru düşürülerek kabarcık-ağ beslenme yöntemindeki daralan çevreleme mekanizması yerine getirilmiş olur. Şekil 3.17'de balina optimizasyon algoritması için 2B ve 3B konum vektörleri ve olası sonraki konumları gösterilmiştir. Dolayısıyla, \vec{A} ve \vec{C} vektörlerinin değerleri düzenlenerek bir arama ajanının konumu (X,Y), mevcut en iyi arama ajanının konumuna (X^*, Y^*) göre güncellenebilir.

Şekil 3.17. 2B ve 3B konum vektörleri ve olası sonraki konumları

Diğer taraftan, kabarcık-ağ beslenme yöntemindeki daralan çevreleme mekanizması ve spiral konum güncellemesi için Eş. 3.36 ve Eş. 3.37 kullanılır. Bu eşitlikler sayesinde kambur balinanın konumu ve avın konumu arasındaki sarmal hareket modellenir. Burada, $\overrightarrow{D'}$ *i*. balinanın ava olan uzaklığını (o ana kadar elde edilen en iyi çözümü), *b* logaritmik spiral şeklini tanımlamak için bir sabiti ve *l* [-1, 1] aralığındaki rastlantısal bir sayıyı temsil eder. Kambur balinaların av etrafındaki daralan çevreleme mekanizmasını ve spiral konum güncellemesini eşzamanlı olarak modellemek için ise Eş. 3.38 kullanılır. Burada, *p* [0,1] aralığında rastlantısal bir sayıdır. Gri kurt optimizasyon algoritmasında olduğu gibi; |A| > 1 durumunda balinalar global arama yaparken, |A| < 1 durumunda elit balina seçilir ve diğer balinaların elit balinaya göre konumlarını güncellemeleri sağlanır. Şekil 3.18'de balina optimizasyon algoritmasının kabarcık-ağ arama yöntemine ait daralan çevreleme mekanizması ve spiral konum güncellemesi gösterilmiştir.

$$\vec{X}(t+1) = \vec{D'} \cdot e^{bl} \cdot \cos(2\pi l) + \vec{X^*}(t)$$
(3.36)

$$\overrightarrow{D'} = |\overrightarrow{X^*}(t) - \overrightarrow{X}(t)|$$
(3.37)

$$\vec{X}(t+1) = \begin{cases} \vec{X^{*}}(t) - \vec{A} \cdot \vec{D} & \text{if } p < 0.5\\ \vec{D'} \cdot e^{bl} \cdot \cos(2\pi l) + \vec{X^{*}}(t) & \text{if } p \ge 0.5 \end{cases}$$
(3.38)

Şekil 3.18. Balina optimizasyon algoritmasının kabarcık-ağ arama yöntemi a) daralan çevreleme mekanizması b) spiral konum güncellemesi

Balina optimizasyon algoritmasının sözde kodu Şekil 3.19'da sunulmuştur.

Balinaların popülasyonunu başlat X_i (i = 1, 2, ..., n) Her bir arama ajanının uygunluk değerini hesapla $X^* = En$ iyi arama ajanı **while** (iterasyon sayısı < maksimum iterasyon sayısı) for her bir arama ajanı a, A, C, I ve p'yi güncelle **if1** (p <0,5) **if2** (|*A*| <1) Eş. 3.20 kullanılarak o anki arama ajanının pozisyonunu güncelle else if 2 ($|A| \ge 1$) Rastgele bir arama ajanı seç (Xrand) Eş. 3.21 aracılığıyla o anki arama ajanının pozisyonunu güncelle end if 2 **else if1** (p≥0,5) Eş. 3.36 kullanılarak o anki arama ajanının pozisyonunu güncelle end if 1 end for Herhangi bir arama ajanının arama alanının dışına çıkıp çıkmadığı kontrol et ve düzelt Her bir arama ajanının uygunluk değerini hesapla Eğer daha iyi bir çözüm varsa, X*'i güncelle iterasyon sayısı= iterasyon sayısı +1 end while *X**'i geri gönder

Şekil 3.19. BO algoritmasının sözde kodu

3.4. Geliştirilen Hibrit Modeller

Çok katmanlı algılayıcının eğitimi sürecinde metasezgisel optimizasyon tekniklerinden gri kurt optimizasyon algoritması, karınca aslanı optimizasyon algoritması ve balina optimizasyon algoritması kullanılmış olup, geliştirilen hibrit modellerin detayları aşağıdaki bölümlerde anlatılmıştır.

3.4.1. Gri kurt optimizasyon algoritması tabanlı çok katmanlı algılayıcı (GKO-ÇKA) hibrit modeli

Çok katmanlı bir algılayıcının en önemli değişkenleri ağırlıklar ve biaslardır. Gri kurt optimizasyon algoritması ise çalışma prensibi olarak değişkenleri bir vektör formatında kabul etmektedir. Dolayısıyla, çok katmanlı algılayıcının değişkenleri, gri kurt optimizasyon algoritması için Eş. 3.39'daki gibi sunulmaktadır:

$$\overrightarrow{V_{GKO}} = \left\{ \overrightarrow{W}, \overrightarrow{\Theta} \right\} = \left\{ W_{1,1}, W_{1,2}, \dots, W_{i,j}, \Theta_1, \Theta_2, \Theta_3, \dots, \Theta_j \right\}$$
(3.39)

 $W_{i,i}$: *i*. düğümden *j*. düğüme bağlantı ağırlığı

 Θ_i : *j*. gizli nöronun bias değeri

Şekil 3.20'de ise gri kurt optimizasyon algoritması kullanarak çok katmanlı bir algılayıcının eğitimine ait genel süreç gösterilmektedir.

Şekil 3.20. GKO-ÇKA'nın eğitim süreci

Şekil 3.21'de sunulan GKO-ÇKA hibrit modelinin iş akış diyagramı aşağıda maddeler halinde anlatılmıştır:

- 1. Çok katmanlı algılayıcı yapısı oluşturulur.
- 2. Çok katmanlı algılayıcının ağırlık ve bias değerleri atanır.
- 3. Gri kurt optimizasyon algoritması başlatılır.
- 4. Gri kurt için ilk popülasyon başlatılır.
- 5. Her arama ajanının uygunluğu hesaplanır.
- 6. Arama ajanlarının pozisyonları güncellenir.
- 7. t=t+1 ile iterasyon sayacı güncellenir.
- 8. Optimizasyonu durdurma kriteri kontrol edilir. Eğer kriterler yeterli ise, değerler yapay sinir ağına gönderilir. Yeterli değilse, başa dönülür.
- 9. Optimum sonuç için yapay sinir ağının ağırlıklarına ve biaslarına değer ataması yapılır.
- 10. Hata değeri hesaplanır.
- 11. Ağırlıklar ve biaslar güncellenir.

- Kriterlerin kontrolü yapılır. Eğer kriterler yeterli ise işlem sonlandırılır. Yeterli değilse, hata hesaplama kısmına geri dönülür.
- 13. İşlemi sonlanan hibrit modelin başarı değerleri hesaplanır.

Şekil 3.21. GKO-ÇKA hibrit modelinin özetlenmiş iş akış diyagramı

3.4.2. Karınca aslanı optimizasyon algoritması tabanlı çok katmanlı algılayıcı (KAO-ÇKA) hibrit modeli

Karınca aslanı optimizasyon algoritması, değişkenleri tek boyutlu vektör formatında kabul etmektedir. Dolayısıyla, çok katmanlı algılayıcının değişkenleri, karınca aslanı optimizasyon algoritması için Eş. 3.40'daki gibi sunulmaktadır:

$$\overrightarrow{V_{KAO}} = \left\{ \overrightarrow{W}, \overrightarrow{\Theta} \right\} = \left\{ W_{1,1}, W_{1,2}, \dots, W_{i,j}, \Theta_1, \Theta_2, \Theta_3, \dots, \Theta_j \right\}$$
(3.40)

 $W_{i,j}$: *i*. düğümden *j*. düğüme bağlantı ağırlığı

 Θ_i : *j*. gizli nöronun bias değeri

Şekil 3.22'de karınca aslanı optimizasyon algoritması kullanılarak çok katmanlı bir algılayıcının eğitimine ait genel süreç gösterilmiştir.

Şekil 3.22. KAO-ÇKA'nın eğitim süreci

Şekil 3.23'de sunulan KAO-ÇKA hibrit modelinin iş akış diyagramı aşağıda maddeler halinde anlatılmıştır:

- 1. Çok katmanlı algılayıcı yapısı oluşturulur.
- 2. Çok katmanlı algılayıcının ağırlık ve bias değerleri atanır.
- 3. Karınca aslanı optimizasyon algoritması başlatılır.
- 4. Karıncalar ve karınca aslanları için ilk popülasyon başlatılır.
- 5. Karıncaların ve karınca aslanlarının uygunlukları hesaplanır.
- 6. En iyi karınca aslanı bulunup, elit kabul edilir.
- 7. İterasyonun kontrolü yapılır. Eğer iterasyon durursa, en iyi karınca aslanı bulunmuş olur. İterasyon devam ederse her bir karınca için karınca aslanı seçilir.
- 8. Algoritmanın kontrol parametreleri güncellenir.
- 9. Rastgele bir yürüyüş tanımlanır ve karıncaların pozisyonları güncellenir.
- 10. Tüm karıncaların uygunlukları hesaplanır.
- 11. Optimizasyonu durdurma kriteri kontrol edilir. Eğer kriterler yeterli ise, değerler yapay sinir ağına gönderilir. Yeterli değilse, başa dönülür.
- 12. Optimum sonuç için yapay sinir ağının ağırlıklarına ve biaslarına değer ataması yapılır.
- 13. Hata değeri hesaplanır.
- 14. Ağırlıklar ve biaslar güncellenir.
- 15. Kriterlerin kontrolü yapılır. Eğer kriterler yeterli ise, işlem sonlandırılır. Yeterli değilse, hata hesaplama kısmına geri dönülür.
- 16. İşlemi sonlanan hibrit modelin başarı değerleri hesaplanır.

Şekil 3.23. KAO-ÇKA hibrit modelinin özetlenmiş iş akış diyagramı

3.4.3. Balina optimizasyon algoritması tabanlı çok katmanlı algılayıcı (BO-ÇKA) hibrit modeli

Balina optimizasyon algoritması, değişkenleri vektör formatında kabul etmektedir. Dolayısıyla, çok katmanlı algılayıcının değişkenleri balina optimizasyon algoritması için Eş. 3.41'deki gibi sunulmaktadır:

$$\overline{V_{BO}} = \{ \overline{W}. \vec{\Theta} \} = \{ W_{1,1}, W_{1,2}, \dots, W_{i,j}. \Theta_1, \Theta_2, \Theta_3, \dots, \Theta_j \}$$
(3.41)

 $W_{i,j}$: *i*. düğümden *j*. düğüme bağlantı ağırlığı

 Θ_i : *j*. gizli nöronun bias değeri

Şekil 3.24'de balina optimizasyon algoritması kullanılarak çok katmanlı bir algılayıcının eğitimine ait genel süreç gösterilmektedir.

Şekil 3.24. BO-ÇKA'nın eğitim süreci

Şekil 3.25'de sunulan BO-ÇKA hibrit modelinin iş akış diyagramı aşağıda maddeler halinde anlatılmıştır:

- 1. Çok katmanlı algılayıcı yapısı oluşturulur.
- 2. Çok katmanlı algılayıcının ağırlık ve bias değerleri atanır.
- 3. Optimum ağırlık ve bias değerlerini elde etmek için balina optimizasyon algoritması başlatılır.
- 4. Balinalar için ilk popülasyon başlatılır.
- 5. Her bir arama ajanının uygunluğu hesaplanır.
- 6. Her bir arama ajanı için |A| değeri hesaplanır.
- 7. Yeni |A| değerlerine göre arama ajanlarının pozisyonları güncellenir.
- 8. Daha iyi bir sonuç varsa en iyi arama ajanı X* güncellenir.
- 9. Optimizasyonu durdurma kriteri kontrol edilir. Eğer kriterler yeterli ise, değerler yapay sinir ağına gönderilir. Yeterli değilse, başa dönülür.
- 10. Optimum sonuç için yapay sinir ağının ağırlıklarına ve biaslarına değer ataması yapılır.
- 11. Hata değeri hesaplanır.
- 12. Ağırlıklar ve biaslar güncellenir.
- 13. Kriterlerin kontrolü yapılır. Eğer kriterler yeterli ise işlem sonlandırılır. Yeterli değilse hata hesaplama kısmına geri dönülür.
- 14. İşlemi sonlanan hibrit modelin başarı değerleri hesaplanır.

Şekil 3.25. BO-ÇKA hibrit modelinin özetlenmiş iş akış diyagramı

4. EĞRİ UYDURMA YÖNTEMLERİNİN VE GELİŞTİRİLEN HİBRİT TAHMİN MODELLERİNİN UYGULAMALARI

Tezin bu bölümünde, kullanılan veri setlerine, yapılan analizlere ve elde edilen sonuçlara yer verilmektedir.

4.1. Kullanılan Veri Seti Özellikleri ve Analizi

Bu tez kapsamında eğri uydurma yöntemleri ve geliştirilen hibrit tahmin modelleri için iki farklı veri seti kullanılmıştır.

4.1.1. Eğri uydurma yöntemleri için kullanılan veri seti özellikleri

Eğri uydurma yöntemleri için kullanılan veri seti, T.C. Orman ve Su İşleri Bakanlığı Meteoroloji Genel Müdürlüğü veri tabanından temin edilen 2007, 2008, 2009, 2010, 2011, 2012, 2013, 2014, 2015 ve 2016 yılları olmak üzere 10 yıllık Ankara iline ait aylık ortalama hava sıcaklığı, aylık toplam güneşlenme süresi ve aylık toplam global güneş ışınım şiddeti meteorolojik verilerini içermektedir [207].

Hava sıcaklığı verisi

Ankara ilinin 2007 ve 2016 yılları arasındaki aylık ortalama hava sıcaklıkları görselleştirilmiş ve Şekil 4.1'de detaylı olarak sunulmuştur.

Ankara ilinin minimum aylık ortalama hava sıcaklıkları incelendiğinde; en düşük değerler 2007, 2008, 2009, 2010, 2011, 2014 ve 2016 yıllarının Ocak aylarında sırasıyla 1,30 °C, - 4,00 °C, 2,40 °C, 3,10 °C, 2,30 °C, 3,20 °C ve 0,30 °C olarak gözlemlenmiştir. Diğer taraftan, 2012, 2013 ve 2015 yıllarındaki en düşük hava sıcaklıkları farklı aylarda görülmüştür. 2012 yılı için Şubat ayında -2,00 °C olarak, 2013 yılı için Aralık ayında -1,00 °C olarak ve 2015 yılı için Aralık ayında 0,10 °C olarak en düşük hava sıcaklıkları kaydedilmiştir.

Ankara ilinin maksimum aylık ortalama hava sıcaklıkları incelendiğinde; en yüksek değerler 2008, 2010, 2013, 2014, 2015 ve 2016 yıllarının Ağustos aylarında sırasıyla 26,70

°C, 28,10 °C, 24,20 °C, 25,70 °C, 24,50 °C ve 25,30 °C olarak görülmüştür. 2007, 2009, 2011 ve 2012 yıllarındaki en yüksek değerler ise sırasıyla 26,80 °C, 23,60 °C, 25,00 °C ve 26,70 °C olarak kaydedilmiştir.

Ankara ilinin son 10 yılının minimum aylık ortalama hava sıcaklıkları genel olarak değerlendirildiğinde, en düşük değer 2008 yılının Ocak ayında -4,00 °C olarak tespit edilmiştir. Maksimum aylık ortalama hava sıcaklıkları genel olarak değerlendirildiğinde, en büyük değer 2010 yılının Ağustos ayında 28,10 °C olarak tespit edilmiştir.

Şekil 4.1. Ankara ilinin 2007 ve 2016 yılları arasındaki aylık ortalama hava sıcaklıkları

Güneşlenme süresi verisi

Ankara ilinin 2007 ve 2016 yılları arasındaki aylık toplam güneşlenme süreleri görselleştirilmiş ve Şekil 4.2'de detaylı olarak sunulmuştur.

Ankara ilinin minimum aylık toplam güneşlenme süreleri incelendiğinde; en düşük değerler 2007, 2009, 2012 ve 2014 yıllarında sırasıyla 58,80 saat, 46,40 saat, 63,30 saat ve 57,40 saat olarak Aralık aylarında, 2011, 2013, 2015 ve 2016 yıllarında sırasıyla 60,00 saat, 42,40 saat, 76,40 saat, 69,80 saat olarak Ocak aylarında, 2008 yılında 55,90 saat olarak Mart ayında ve 2010 yılında ise 57,20 saat olarak Şubat ayında gözlemlenmiştir.

Ankara ilinin maksimum aylık toplam güneşlenme süreleri incelendiğinde; en yüksek değerler 2007, 2008, 2011, 2014 ve 2015 yıllarında sırasıyla 312,10 saat, 341,60 saat, 321,60 saat, 333,20 saat ve 335,20 saat olarak Temmuz aylarında, 2009, 2010, 2012, 2013 yıllarında sırasıyla 315,10 saat, 322,40 saat, 303,60 saat, 317,70 saat olarak Ağustos aylarında ve 2016 yılında ise 271,90 saat olarak Eylül ayında gözlemlenmiştir.

Ankara ilinin son 10 yılının minimum aylık toplam güneşlenme süreleri genel olarak değerlendirildiğinde, en düşük değer 2013 yılının Ocak ayında 42,40 saat olarak tespit edilmiştir. Maksimum aylık toplam güneşlenme süreleri değerlendirildiğinde, en büyük değer 2008 yılının Temmuz ayında 341,60 saat olarak tespit edilmiştir.

Şekil 4.2. Ankara ilinin 2007 ve 2016 yılları arasındaki aylık toplam güneşlenme süreleri

Global güneş ışınım şiddeti verisi

Ankara ilinin 2007 ve 2016 yılları arasındaki aylık toplam global güneş ışınım şiddetleri görselleştirilmiş ve Şekil 4.3'de detaylı olarak sunulmuştur.

Ankara ilinin minimum aylık toplam global güneş ışınım şiddetleri incelendiğinde; en düşük değerler 2007, 2008, 2009, 2010, 2012, 2014 ve 2016 yıllarında sırasıyla 2540,20 kW/m², 2958,60 kW/m², 2573,85 kW/m², 2690,88 kW/m², 2674,77 kW/m², 2372,83

 kW/m^2 ve 2912,14 kW/m^2 olarak Aralık aylarında ve 2011, 2013 ve 2015 yılları için 2752,85 kW/m^2 , 2829,83 kW/m^2 ve 3001,73 kW/m^2 olarak Ocak aylarında gözlemlenmiştir.

Ankara ilinin maksimum aylık toplam global güneş ışınım şiddetleri incelendiğinde; en yüksek değerler 2007, 2008, 2010, 2011, 2013, 2014, 2015 ve 2016 yıllarında sırasıyla 14451,31 kW/m², 14427,92 kW/m², 13520,95 kW/m², 13848,79 kW/m², 13511,43 kW/m², 13931,82 kW/m², 14288,82 kW/m² ve 13750,45 kW/m² olarak Temmuz aylarında ve 2009 ve 2012 yıllarında sırasıyla 13183,74 kW/m² ve 14026,72 kW/m² olarak Haziran aylarında gözlemlenmiştir.

Ankara ilinin son 10 yılının minimum aylık toplam global güneş ışınım şiddetleri değerlendirildiğinde, en düşük değer 2014 yılının Aralık ayında 2372,83 kW/m² olarak tespit edilmiştir. Maksimum aylık toplam global güneş ışınım şiddetleri değerlendirildiğinde, en büyük değer 2007 yılının Temmuz ayında 14451,31 kW/m² olarak tespit edilmiştir.

Şekil 4.3. Ankara ilinin 2007 ve 2016 yılları arasındaki aylık toplam global güneş ışınım şiddetleri

4.1.2. Güneş ışınım şiddeti ve fotovoltaik güç tahmininde kullanılan veri seti özellikleri

Güneş ışınım şiddeti ve fotovoltaik güç tahminlerinde kullanılan ham veriler Avustralya'nın en yüksek güneş kaynaklarından birine sahip olan Alice Springs'deki Çöl Bilgi Bölgesi'nde DKA Solar Center'dan temin edilmiştir [208]. Bu veri seti; hava sıcaklığı, bağıl nem, toplam yatay güneş ışınım şiddeti, difüz yatay güneş ışınım şiddeti ve fotovoltaik güç üretimi parametrelerini kapsayan toplam 365 adet günlük ölçümleri içerir. Bahsedilen bu parametrelerin birimleri sırasıyla °C, %, W/m², W/m² ve kW olarak atanmıştır.

Geliştirilen hibrit tahmin modellerinde kullanılan sigmoid aktivasyon fonksiyonu 0 ile 1 arasında değerler üretirken, hiperbolik tanjant ve sinüs aktivasyon fonksiyonları -1 ile 1 arasında değerler üretir. Bu nedenle, toplam veri setini 0 ile 1 arasında normalize etmek amacıyla Eş. 4.1'de verilen Min–Max normalizasyon metotu kullanılmıştır [209].

$$x_{\text{normalized}} = \frac{x - x_{\min}}{x_{\max} - x_{\min}}$$
(4.1)

Ayrıca, elde edilen tahmin sonuçlarını diğer modellerle karşılaştırmak için Naive Predictor olarak da bilinen süreklilik referans modeli kullanılmıştır. Bu referans modelde, t + 1 anında öngörülen değer, t anındaki değere eşittir. İyileştirme yüzdesi formülü Eş. 4.2 'de verilmiştir [210, 211].

$$P_{\rm imp} = \left(1 - \frac{e_{\rm h}}{e_{s\"ureklilik}}\right) \times 100 \tag{4.2}$$

e_h: Hibrit tahmin modelinin hatası e_{süreklilik}: Süreklilik referans modelinin hatası

Güneş ışınım şiddeti tahmininde giriş olarak kullanılan parametreler hava sıcaklığı (S_H), bağıl nem (N_B) ve difüz yatay güneş ışınımı (GI_{DY}) meteorolojik verileriyken, toplam yatay güneş ışınımı (GI_{TY}) parametresi çıkış verisi olarak kullanılmıştır. Bir yıllık veri içerisinden rastgele seçilen 2 haftalık veri seti test, kalan diğer veriler ise eğitim amaçlı kullanılmıştır. Fotovoltaik güç tahmininde giriş olarak kullanılan parametreler hava sıcaklığı (S_H), bağıl nem (N_B), difüz yatay güneş ışınımı (GI_{DY}) ve toplam yatay güneş ışınımı (GI_{TY}) meteorolojik verileriyken, fotovoltaik güç üretimi parametresi çıkış verisi olarak kullanılmıştır. Bir yıllık veri içerisinden 2 aylık veri seti test, kalan diğer veriler ise eğitim amaçlı kullanılmıştır.

Parametreler	Maksimum Değer	Minimum Değer	Ortalama Değer	Standart Sapma
Hava sıcaklığı (°C)	41,754	11,566	26,854	7,609
Bağıl nem (%)	97,223	5,055	23,287	12,974
Difüz yatay güneş ışınımı (W/m²)	373,500	43,251	108,287	66,651
Toplam yatay güneş ışınımı (W/m²)	927,980	108,058	630,450	161,528
Fotovoltaik güç üretimi (kW)	3,725	0,572	2,941	0,576

Çizelge 4.1. Toplam veri setine ait istatistiki değerler

Çizelge 4.1'de toplam veri setine ait istatistiki değerler verilmiştir. Bu çizelgeden görüldüğü üzere, hava sıcaklığı verisi için maksimum değer 41,754 °C, minimum değer 41,754 °C, ortalama değer 26,854 °C ve standart sapma değeri 7,609 °C bulunmuştur. Bağıl nem verisi için maksimum değer % 97,223, minimum değer % 5,055, ortalama değer % 23,287 ve standart sapma değeri % 12,974 bulunmuştur. Difüz yatay güneş ışınımı verisi için maksimum değer 373,500 W/m², minimum değer 43,251 W/m², ortalama değer 108,287 W/m² ve standart sapma değeri 66,651 W/m² bulunmuştur. Toplam yatay güneş ışınımı verisi için maksimum değer 927,980 W/m², minimum değer 108,058 W/m², ortalama değer 630,450 W/m² ve standart sapma değeri 161,528 W/m² bulunmuştur. Fotovoltaik güç üretimi verisi için maksimum değer 3,725 kW, minimum değer 0,572 kW, ortalama değer 2,941 kW ve standart sapma değeri 0,576 kW bulunmuştur.

Güneş ışınım şiddeti ve fotovoltaik güç tahmini için kullanılan hava sıcaklığı, bağıl nem, difüz yatay güneş ışınımı, toplam yatay güneş ışınımı ve fotovoltaik güç üretimine ait gerçek veriler görselleştirilmiş olup, Şekil 4.4'de detaylı olarak sunulmuştur.

Şekil 4.4. Güneş ışınım şiddeti ve fotovoltaik güç tahmini için kullanılan gerçek veriler

4.2. Eğri Uydurma Yöntemleri Aracılığıyla Hava Sıcaklığı, Güneşlenme Süresi ve Global Güneş Işınım Şiddeti Verilerinin Modellenmesi

Bu bölümde Ankara ilinin uzun yıllar (2007 ve 2016 arası) aylık ortalama hava sıcaklığı, aylık toplam güneşlenme süresi ve aylık toplam global güneş ışınım şiddeti verilerinin modellenmesi için Polinom, Gauss ve Fourier eğri uydurma modelleri kullanılmıştır. Modelleme aşamasında 7. dereceden polinom modeli, 3 terimli Gauss modeli ve 4 terimli Fourier modeli kullanılmış olup, söz konusu modellerin denklemleri sırasıyla Eş. 4.3, Eş. 4.4 ve Eş. 4.5'de verilmiştir. Bu modellerin eğri uydurma performanslarını karşılaştırmak için Matlab ortamında hesaplanan karekök ortalama hata ve belirlilik katsayısı ölçeklerine ait eşitlikler Eş. 4.6 ve Eş. 4.7'de verilmiştir [212]. Bu eşitliklerde y_i gerçek değeri, \hat{y}_i tahmin değerini ve \bar{y} gerçek değerlerin ortalamasını temsil eder.

$$f_1(x) = p_1 x^7 + p_2 x^6 + p_3 x^5 + p_4 x^4 + p_5 x^3 + p_6 x^2 + p_7 x + p_8$$
(4.3)

$$f_{2}(x) = a_{1}e^{\left[-\left(\frac{x-b_{1}}{c_{1}}\right)^{2}\right]} + a_{2}e^{\left[-\left(\frac{x-b_{2}}{c_{2}}\right)^{2}\right]} + a_{3}e^{\left[-\left(\frac{x-b_{3}}{c_{3}}\right)^{2}\right]}$$
(4.4)

 $f_3(x) = a_0 + a_1 \cos(wx) + b_1 \sin(wx) + a_2 \cos(2wx) + b_2 \sin(2wx) + a_3 \cos(3wx) + b_3 \sin(3wx) + a_4 \cos(4wx) + b_4 \sin(4wx)$ (4.5)

$$KOH = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2}$$
(4.6)

$$R^{2} = \frac{\sum_{i=1}^{n} (\hat{y}_{i} - \bar{y})^{2}}{\sum_{i=1}^{n} (y_{i} - \bar{y})^{2}}$$
(4.7)

4.2.1. Hava sıcaklığı verilerinin modellemesi

Uzun yıllar aylık ortalama hava sıcaklığı verilerinin ortalamasını temsil eden gözlem değerlerinin modellenmesinde %95 güven sınırıyla 7. dereceden polinom modeli oluşturulmuş olup, karekök ortalama hatası KOH=0,4035 °C ve belirlilik katsayısı R^2 =0,9992 olarak hesaplanmıştır. Elde edilen polinom modelinin katsayıları p1=-0,0002315, p2=0,01027, p3=-0,1798, p4=1,589, p5=-7,675, p6=20,51, p7=-24,37 ve p8=11,36 olarak bulunmuş olup, modelin denklemi Eş. 4.8'de verilmiştir.

$$f_7(x) = -0,0002315x^7 + 0,01027x^6 - 0,1798x^5 + 1,589x^4 - 7,675x^3 + 20,51x^2 - 24,37x + 11,36$$
(4.8)

Uygulanan diğer yöntemde, %95 güven sınırıyla 3 terimli Gauss modeli oluşturulmuş olup, karekök ortalama hatası KOH=0,4046 °C ve belirlilik katsayısı R²=0,9994 olarak bulunmuştur. Geliştirilen Gauss modelindeki katsayılar a_1 =25,69, b_1 =7,491, c_1 =3,183, a_2 =2,674, b_2 =4,604, c_2 =1,094, a_3 =3,443, b_3 =2,982 ve c_3 =1,646 bulunmuş olup, modelin denklemi Eş. 4.9'da verilmiştir.

$$f_8(x) = 25,69e^{\left[-\left(\frac{x-7,491}{3,183}\right)^2\right]} + 2,674e^{\left[-\left(\frac{x-4,604}{1,094}\right)^2\right]} + 3,443e^{\left[-\left(\frac{x-2,982}{1,646}\right)^2\right]}$$
(4.9)

Diğer bir yöntemde, %95 güven sınırıyla 4 terimli Fourier modeli oluşturulmuş olup, karekök ortalama hatası KOH=0,09114 °C ve belirlilik katsayısı R²=0,9999 olarak hesaplanmıştır. Elde edilen Fourier modelindeki katsayılar a₀=12,38, a₁=-11,16, b₁=-4,455, a₂=-0,1979, b₂=1,195, a₃=0,02564, b₃=-0,3269, a₄=-0,3458, b₄=0,08152 ve w=0,491 olarak hesaplanmış olup, modelin denklemi Eş. 4.10'da verilmiştir.

$$\begin{split} f_9(x) &= 12,38 - 11,16\cos(0,491x) - 4,455\sin(0,491x) - 0,1979\cos(0,982x) + 1,195\sin(0,982x) + \\ & 0,02564\cos(1,473x) - 0,3269\sin(1,473x) - 0,3458\cos(1,964x) + 0,08152\sin(1,964x) \end{split}$$

Şekil 4.5'de Ankara ilinin uzun yıllar aylık ortalama hava sıcaklığı verilerinin modellemesi gösterilmiştir.

Şekil 4.5. Ankara ilinin uzun yıllar aylık ortalama hava sıcaklığı verilerinin modellemesi (2007-2016)

4.2.2. Güneşlenme süresi verilerinin modellemesi

Uzun yıllar aylık ortalama güneşlenme süresi verilerinin ortalamasını temsil eden gözlem değerlerinin modellenmesinde %95 güven sınırıyla 7. dereceden polinom modeli oluşturulmuş olup, karekök ortalama hatası KOH=9,285 saat ve belirlilik katsayısı R^2 =0,9954 olarak hesaplanmıştır. Elde edilen polinom modelinin katsayıları p1=-0,004963, p2=0,2233, p3=-4,008, p4=36,66, p5=-182,4, p6=487,6, p7=-600,3 ve p8=334 olarak bulunmuş olup, modelin denklemi Eş. 4.11'de verilmiştir.

$$f_4(x) = -0,004963x^7 + 0,2233x^6 - 4,008x^5 + 36,66x^4 - 182,4x^3 + 487,6x^2 + -600,3x + 334$$
(4.11)

Uygulanan diğer yöntemde %95 güven sınırıyla 3 terimli Gauss modeli oluşturulmuş olup, karekök ortalama hatası KOH=8,545 saat ve belirlilik katsayısı R^2 =0,9971 olarak bulunmuştur. Geliştirilen Gauss modelindeki katsayılar a1=186,3, b1=7,365, c1=3,313, a2=-46,06, b2=5,751, c2=1,106, a3=135,1, b3=6,269 ve c3=6,291 bulunmuş olup, modelin denklemi Eş. 4.12'de verilmiştir.

$$f_{5}(x) = 186,3e^{\left[-\left(\frac{x-7,365}{3,313}\right)^{2}\right]} - 46,06e^{\left[-\left(\frac{x-5,751}{1,106}\right)^{2}\right]} + 135,1e^{\left[-\left(\frac{x-6,269}{6,291}\right)^{2}\right]}$$
(4.12)

Diğer bir yöntemde, %95 güven sınırıyla 4 terimli Fourier modeli oluşturulmuş olup, karekök ortalama hatası KOH=5,944 saat ve belirlilik katsayısı R^2 =0,9990 olarak hesaplanmıştır. Elde edilen Fourier modelindeki katsayılar a_0 =132,4, a_1 =-150,2, b_1 =60,63, a_2 =12,61, b_2 =32,07, a_3 =-0,6308, b_3 =19,82, a_4 =16,71, b_4 =4,193 ve w=0,399 olarak hesaplanmış olup, modelin denklemi Eş. 4.13'de verilmiştir.

Şekil 4.6'da Ankara ilinin uzun yıllar aylık toplam güneşlenme süresi verilerinin modellemesi gösterilmiştir.

Şekil 4.6. Ankara ilinin uzun yıllar aylık toplam güneşlenme süresi verilerinin modellemesi (2007-2016)

4.2.3. Global güneş ışınım şiddeti verilerinin modellemesi

Ankara ilinin uzun yıllar aylık toplam global güneş ışınım şiddeti verilerinin ortalamasını temsil eden gözlem değerlerinin modellenmesinde %95 güven sınırıyla 7. dereceden polinom modeli oluşturulmuş ve karekök ortalama hatası KOH=353,7744 kW/m² ve belirlilik katsayısı R²=0,9970 olarak hesaplanmıştır. Elde edilen polinom modelinin katsayıları p1=-0,1551, p2=6,99, p3=-125,9, p4=1167, p5=-6002, p6=1,693×10⁴, p7=-2,149×10⁴ ve p8=1,254×10⁴ olarak bulunmuş olup, modelin denklemi Eş. 4.14'de gösterilmiştir.

$$f_1(x) = -0,1551x^7 + 6,99x^6 - 125,9x^5 + 1167x^4 - 6002x^3 + 1,693 \times 10^4 x^2 - 2,149 \times 10^4 x + (4.14)$$

Uygulanan diğer yöntemde %95 güven sınırıyla 3 terimli Gauss modeli oluşturulmuş olup, karekök ortalama hatası KOH=206,7778 kW/m² ve belirlilik katsayısı R²=0,9992 olarak bulunmuştur. Elde edilen Gauss modelindeki katsayılar a₁=3841, b₁=7,494, c₁=1,73, a₂=1714, b₂=4,502, c₂=1,373, a₃=1,01×10⁴, b₃=6,428 ve c₃=4,905 olarak bulunmuş olup, modelin denklemi Eş. 4.15'de verilmiştir.

$$f_{2}(x) = 3841e^{\left[-\left(\frac{x-7,494}{1,73}\right)^{2}\right]} + 1714e^{\left[-\left(\frac{x-4,502}{1,373}\right)^{2}\right]} + 1,01 \times 10^{4}e^{\left[-\left(\frac{x-6,428}{4,905}\right)^{2}\right]}$$
(4.15)

Diğer bir yöntemde, %95 güven sınırıyla 4 terimli Fourier modeli oluşturulmuş olup; karekök ortalama hatası KOH=257,3 kW/m² ve belirlilik katsayısı R²=0,9991 olarak bulunmuştur. Elde edilen Fourier modelindeki katsayılar a_0 =8213, a_1 =-4772, b_1 =-2018, a_2 =-413,7, b_2 =202,6, a_3 =278,8, b_3 =-75,17, a_4 =-151,4, b_4 =-106,6 ve w=0,5405 olarak hesaplanmış olup, modelin denklemi Eş. 4.16' da verilmiştir.

$$f_{3}(x) = 8213 - 4772\cos(0.5405x) - 2018\sin(0.5405x) - 413.7\cos(1.081x) + 202.6\sin(1.081x) + 278.8\cos(1.6215x) - 75.17\sin(1.6215x) - 151.4\cos(2.162x) - 106.6\sin(2.162x)$$
(4.16)

Şekil 4.7'de Ankara ilinin uzun yıllar aylık toplam global güneş ışınım şiddeti verilerinin modellemesi gösterilmiştir.

Şekil 4.7. Ankara ilinin uzun yıllar aylık toplam global güneş ışınım şiddeti verilerinin modellemesi (2007-2016)

Elde edilen tüm modelleme sonuçları karşılaştırıldığında, 4 terimli Fourier modeli uzun yıllar aylık ortalama hava sıcaklığı ve uzun yıllar aylık toplam güneşlenme süresi verilerinin modellenmesinde sırasıyla 0,9999 ve 0,9990 belirlilik katsayılarıyla en iyi kararlılığı sergilerken, 3 terimli Gauss modeli uzun yıllar aylık toplam global güneş ışınım şiddeti verilerinin modellenmesinde 0,9992'lik belirlilik katsayısıyla en iyi performansı göstermiştir. Bu sonuçlara ilaveten, 3 terimli Gauss modeli ve 4 terimli Fourier modeline göre 7. dereceden polinom modeli her bir parametrenin modellenmesinde en düşük belirlilik katsayılarını sağlamıştır.

4.3. Metasezgisel Optimizasyon Tabanlı Çok Katmanlı Algılayıcı Kullanılarak Günlük Toplam Yatay Güneş Işınımı Tahmini

Bu bölümde gri kurt optimizasyonu, karınca aslanı optimizasyonu ve balina optimizasyonu tabanlı çok katmanlı algılayıcı modelleri kullanılarak günlük toplam yatay güneş ışınımı tahmini yapılmıştır. Geliştirilen tahmin yöntemlerinin modelleme başarısını değerlendirmek için belirlilik katsayısı (R^2), Eş. 4.17'de verilen ortalama mutlak hata

(OMH) ve Eş. 4.18'de verilen ortalama mutlak yüzdesel hata (OMYH) ölçekleri kullanılmıştır [213].

$$OMH = \sum_{i=1}^{n} (|\hat{y}_i - y_i|) x \frac{1}{n}$$
(4.17)

$$OMYH = \sum_{i=1}^{n} \left(\left| \frac{\hat{y}_i - y_i}{y_i} \right| \right) x \frac{100}{n}$$
(4.18)

 y_i : gerçek değer

\hat{y}_i : tahmin değeri

Çok katmanlı algılayıcı algoritmasında sigmoid, sinüs ve hiperbolik tanjant aktivasyon fonksiyonları kullanılmıştır. Geliştirilen her bir hibrit tahmin modeli için en iyi tahmin performansını sağlayan 2 aktivasyon fonksiyonuna ait sonuçlar verilmiştir. Ayrıca, çok demetli giriş verileri olarak hava sıcaklığı (S_H), bağıl nem (N_B) ve difüz yatay güneş ışınımı (GI_{DY}) meteorolojik parametrelerinden faydalanılmıştır.

Bunlara ek olarak, 3 demetli meteorolojik girişlerin kullanıldığı optimizasyon algoritmalarında arama ajanlarının sayısı 20, alt ve üst sınırlar -10 ile 10 olarak ve 2 demetli meteorolojik girişlerin kullanıldığı optimizasyon algoritmalarında arama ajanlarının sayısı 20, alt ve üst sınırlar -15 ile 15 olarak alınmıştır. Tüm optimizasyon algoritmalarında maksimum iterasyon sayısı ise 250 olarak atanmıştır. Bahsedilen bu karakteristik değerler deneysel çalışmalar sonucunda belirlenmiştir. Geliştirilen hibrit modellerde 2 demetli meteorolojik girişlerin kullanıldığı modeller için 5 gizli katman, 3 demetli meteorolojik girişlerin kullanıldığı modeller için 7 gizli katman kullanılmıştır. Ayrıca, beklenmedik (rastlantısal) durumları ortadan kaldırmak amacıyla her bir hibrit tahmin algoritması 30 defa bağımsız olarak çalıştırılmıştır.

Bunların dışında, geliştirilen hibrit tahmin modellerinin performansları süreklilik referans modeliyle de karşılaştırılmıştır. Süreklilik referans modelinin günlük toplam yatay güneş ışınımı tahminindeki performansı belirlilik katsayısı açısından 0,4003 olarak, ortalama mutlak hata açısından 0,101 olarak ve ortalama mutlak yüzdesel hata açısından %14,746 olarak hesaplanmıştır.

4.3.1. Gri kurt optimizasyon algoritması tabanlı çok katmanlı algılayıcı kullanılarak günlük toplam yatay güneş ışınımı tahmini

Sigmoid aktivasyon fonksiyonunu kullanan gri kurt optimizasyon algoritması tabanlı çok katmanlı algılayıcıya ait günlük toplam yatay güneş ışınımı tahmini sonuçları Çizelge 4.2'de verilmiştir. Bu çizelgedeki hata değerleri incelendiğinde, hava sıcaklığı, bağıl nem ve difüz yatay güneş ışınımı parametrelerini giriş olarak kullanan GKO-ÇKA metodu için R² değeri 0,9786, OMH değeri 0,022 ve OMYH değeri %3,025 olarak bulunmuştur. 2demetli meteorolojik girişler içerisinde en iyi tahmin performansı ise hava sıcaklığı ve bağıl nem parametrelerini kullanan GKO-ÇKA metodu için R² değeri 0,9699, OMH değeri 0,030 ve OMYH değeri %4,233 olarak elde edilmiştir.

Çizelge 4.2. Sigmoid aktivasyon fonksiyonunu kullanan GKO-ÇKA metoduna ait günlük toplam yatay güneş ışınımı tahmini sonuçları

No	Çok Demetli	Sigmoid Aktivasyon Fonksiyonu			
	Meteorolojik Girişler	\mathbb{R}^2	OMH	OMYH (%)	
1	S_{H}, N_{B}, GI_{DY}	0,9786	0,022	3,025	
2	S_{H}, N_{B}	0,9699	0,030	4,233	
3	$S_{\rm H}, GI_{\rm DY}$	0,9721	0,056	9,335	
4	N _B , GI _{DY}	0,9723	0,057	7,954	

Dolayısıyla, sigmoid aktivasyon fonksiyonunun kullanıldığı hata sonuçları içerisinde en iyi tahmin performansını hava sıcaklığı, bağıl nem ve difüz yatay güneş ışınımı parametrelerini giriş olarak kullanan GKO-ÇKA metodu başarmıştır. Bu hibrit metoda ait tahmini toplam yatay güneş ışınımı değerleri Şekil 4.8'de sunulmuştur. Diğer taraftan, en kötü tahmin performansı ise hava sıcaklığı ve difüz yatay güneş ışınımı parametrelerini giriş olarak kullanan GKO-ÇKA metodu tarafından 0,9721'lik R², 0,056'lık OMH ve % 9,335'lik OMYH değerleriyle ortaya çıkmıştır.

Şekil 4.8. S_H, N_B ve GI_{DY} girişlerini kullanan GKO-ÇKA metoduna ait tahmini toplam yatay güneş ışınımı değerleri

Sinüs aktivasyon fonksiyonunu kullanan gri kurt optimizasyon algoritması tabanlı çok katmanlı algılayıcıya ait günlük toplam yatay güneş ışınımı tahmini sonuçları Çizelge 4.3'de verilmiştir. Bu çizelgedeki hata değerleri incelendiğinde, hava sıcaklığı, bağıl nem ve difüz yatay güneş ışınımı parametrelerini giriş olarak kullanan GKO-ÇKA metodu için R² değeri 0,9764, OMH değeri 0,034 ve OMYH değeri % 4,479 olarak bulunmuştur. 2demetli meteorolojik girişler içerisinde en iyi tahmin performansı ise hava sıcaklığı ve bağıl nem parametrelerini kullanan GKO-ÇKA metodu için R² değeri 0,9671, OMH değeri 0,037 ve OMYH değeri % 5,970 olarak elde edilmiştir.

Dolayısıyla, sinüs aktivasyon fonksiyonunun kullanıldığı hata sonuçları içerisinde en iyi tahmin performansını hava sıcaklığı, bağıl nem ve difüz yatay güneş ışınımı parametrelerini giriş olarak kullanan GKO-ÇKA metodu başarmıştır. Bu hibrit metoda ait tahmini toplam yatay güneş ışınımı değerleri Şekil 4.9'da sunulmuştur. Diğer taraftan, en kötü tahmin performansı ise bağıl nem ve difüz yatay güneş ışınımı parametrelerini giriş olarak kullanan GKO-ÇKA metodu tarafından 0,9466'lık R², 0,103'lük OMH ve % 15,721'lik OMYH değerleriyle ortaya çıkmıştır.

No	Çok Demetli	Sinüs Aktivasyon Fonksiyonu			
	Meteorolojik Girişler	\mathbb{R}^2	OMH	OMYH (%)	
1	S_{H}, N_{B}, GI_{DY}	0,9764	0,034	4,479	
2	S _H , N _B	0,9671	0,037	5,970	
3	S _H , GI _{DY}	0,9674	0,084	14,973	
4	N _B , GI _{DY}	0,9466	0,103	15,721	

Çizelge 4.3. Sinüs aktivasyon fonksiyonunu kullanan GKO-ÇKA metoduna ait günlük toplam yatay güneş ışınımı tahmini sonuçları

Şekil 4.9. S_H, N_B ve GI_{DY} girişlerini kullanan GKO-ÇKA metoduna ait tahmini toplam yatay güneş ışınımı değerleri

Tahmin sonuçları genel olarak değerlendirildiğinde, sigmoid aktivasyon fonksiyonunu kullanan GKO-ÇKA metodu sinüs aktivasyon fonksiyonunu kullanan GKO-ÇKA metodundan daha iyi tahmin performansı gerçekleştirmiştir. GKO-ÇKA metodu tarafından gerçekleştirilen en iyi günlük toplam yatay güneş ışınımı tahmini, süreklilik referans modeli ile karşılaştırıldığında R² değeri açısından % 144,4199'luk, OMH değeri açısından % 78,294'lik ve OMYH değeri açısından % 79,485'lik iyileştirmeler ortaya çıkmıştır. Son olarak, GKO-ÇKA metoduna ait en düşük mutlak yüzdesel hata değerleri Şekil 4.10'da sunulmuştur.

Şekil 4.10. GKO-ÇKA metoduna ait en düşük mutlak yüzdesel hata değerleri

4.3.2. Karınca aslanı optimizasyon algoritması tabanlı çok katmanlı algılayıcı kullanılarak günlük toplam yatay güneş ışınımı tahmini

Sigmoid aktivasyon fonksiyonunu kullanan karınca aslanı optimizasyon algoritması tabanlı çok katmanlı algılayıcıya ait günlük toplam yatay güneş ışınımı tahmini sonuçları Çizelge 4.4'de verilmiştir. Bu çizelgedeki hata değerleri incelendiğinde, hava sıcaklığı, bağıl nem ve difüz yatay güneş ışınımı parametrelerini giriş olarak kullanan KAO-ÇKA metodu için R² değeri 0,9593, OMH değeri 0,038 ve OMYH değeri % 5,925 olarak bulunmuştur. 2demetli meteorolojik girişler içerisinde en iyi tahmin performansı ise hava sıcaklığı ve difüz yatay güneş ışınımı parametrelerini kullanan KAO-ÇKA metodu için R² değeri 0,9787, OMH değeri 0,045 ve OMYH değeri % 5,524 olarak elde edilmiştir.

Dolayısıyla, sigmoid aktivasyon fonksiyonunun kullanıldığı hata sonuçları içerisinde en iyi tahmin performansını hava sıcaklığı ve difüz yatay güneş ışınımı parametrelerini giriş olarak kullanan KAO-ÇKA metodu başarmıştır. Bu hibrit metoda ait tahmini toplam yatay güneş ışınımı değerleri Şekil 4.11'de sunulmuştur. Diğer taraftan, en kötü tahmin performansı ise bağıl nem ve difüz yatay güneş ışınımı parametrelerini giriş olarak kullanan KAO-ÇKA metodu tarafından 0,9587'lük R², 0,077'lik OMH ve % 10,224'lük OMYH değerleriyle ortaya çıkmıştır.

No	Çok Demetli	Sigmoid Aktivasyon Fonksiyonu			
	Meteorolojik Girişler	\mathbb{R}^2	OMH	OMYH (%)	
1	S_{H}, N_{B}, GI_{DY}	0,9593	0,038	5,925	
2	S_{H}, N_{B}	0,9694	0,053	6,661	
3	S_{H}, GI_{DY}	0,9787	0,045	5,524	
4	N _B , GI _{DY}	0,9587	0,077	10,224	

Çizelge 4.4. Sigmoid aktivasyon fonksiyonunu kullanan KAO-ÇKA metoduna ait günlük toplam yatay güneş ışınımı tahmini sonuçları

Şekil 4.11. SH ve GIDY girişlerini kullanan KAO-ÇKA metoduna ait tahmini toplam yatay güneş ışınımı değerleri

Hiperbolik tanjant aktivasyon fonksiyonunu kullanan karınca aslanı optimizasyon algoritması tabanlı çok katmanlı algılayıcıya ait günlük toplam yatay güneş ışınımı tahmini sonuçları Çizelge 4.5'de verilmiştir. Bu çizelgedeki hata değerleri incelendiğinde, hava sıcaklığı, bağıl nem ve difüz yatay güneş ışınımı parametrelerini giriş olarak kullanan KAO-ÇKA metodu için R² değeri 0,9799, OMH değeri 0,037 ve OMYH değeri % 6,199 olarak bulunmuştur. 2-demetli meteorolojik girişler içerisinde en iyi tahmin performansı ise hava sıcaklığı ve bağıl nem parametrelerini kullanan KAO-ÇKA metodu için R² değeri 0,9799 değeri 0,9810, OMH değeri 0,036 ve OMYH değeri % 5,690 olarak elde edilmiştir.

Dolayısıyla, hiperbolik tanjant aktivasyon fonksiyonunun kullanıldığı hata sonuçları içerisinde en iyi tahmin performansını hava sıcaklığı ve bağıl nem parametrelerini giriş olarak kullanan KAO-ÇKA metodu başarmıştır. Bu hibrit metoda ait tahmini toplam yatay güneş ışınımı değerleri Şekil 4.12'de sunulmuştur. Diğer taraftan, en kötü tahmin performansı ise bağıl nem ve difüz yatay güneş ışınımı parametrelerini giriş olarak

kullanan KAO-ÇKA metodu tarafından 0,9801'lik R², 0,100'lük OMH ve % 15,813'lük OMYH değerleriyle ortaya çıkmıştır.

Çizelge 4.5. Hiperbolik tanjant aktivasyon fonksiyonunu kullanan KAO-ÇKA metoduna ait günlük toplam yatay güneş ışınımı tahmini sonuçları

No	Çok Demetli	Hiperbolik Tanjant Aktivasyon Fonksiyonu			
	Meteorolojik Girişler	\mathbb{R}^2	OMH	OMYH (%)	
1	S_{H}, N_{B}, GI_{DY}	0,9799	0,037	6,199	
2	S_{H}, N_{B}	0,9810	0,036	5,690	
3	$S_{\rm H}, GI_{\rm DY}$	0,9754	0,083	13,409	
4	N _B , GI _{DY}	0,9801	0,100	15,813	

Şekil 4.12. S_H ve N_B girişlerini kullanan KAO-ÇKA metoduna ait tahmini toplam yatay güneş ışınımı değerleri

Tahmin sonuçları genel olarak değerlendirildiğinde, sigmoid aktivasyon fonksiyonunu kullanan KAO-ÇKA metodu hiperbolik tanjant aktivasyon fonksiyonunu kullanan KAO-ÇKA metodundan daha iyi tahmin performansı gerçekleştirmiştir. KAO-ÇKA metodu tarafından gerçekleştirilen en iyi günlük toplam yatay güneş ışınımı tahmini, süreklilik referans modeli ile karşılaştırıldığında R² değeri açısından % 244,4449'luk, OMH değeri açısından % 55,601'lik ve OMYH değeri açısından % 62,539'luk iyileştirmeler ortaya çıkmıştır. Son olarak, KAO-ÇKA metoduna ait en düşük mutlak yüzdesel hata değerleri Şekil 4.13'de sunulmuştur.

Şekil 4.13. KAO-ÇKA metoduna ait en düşük mutlak yüzdesel hata değerleri

4.3.3. Balina optimizasyon algoritması tabanlı çok katmanlı algılayıcı kullanılarak günlük toplam yatay güneş ışınımı tahmini

Sigmoid aktivasyon fonksiyonunu kullanan balina optimizasyon algoritması tabanlı çok katmanlı algılayıcıya ait günlük toplam yatay güneş ışınımı tahmini sonuçları Çizelge 4.6'da verilmiştir. Bu çizelgedeki hata değerleri incelendiğinde, hava sıcaklığı, bağıl nem ve difüz yatay güneş ışınımı parametrelerini giriş olarak kullanan BO-ÇKA metodu için R² değeri 0,9733, OMH değeri 0,039 ve OMYH değeri % 5,687 olarak bulunmuştur. 2demetli meteorolojik girişler içerisinde en iyi tahmin performansı ise hava sıcaklığı ve difüz yatay güneş ışınımı parametrelerini kullanan BO-ÇKA metodu için R² değeri 0,9747, OMH değeri 0,056 ve OMYH değeri % 6,975 olarak elde edilmiştir.

Çizelge 4.6. Sigmoid aktivasyon fonksiyonunu kullanan BO-ÇKA metoduna ait günlük toplam yatay güneş ışınımı tahmini sonuçları

No	Çok Demetli	Sigmoid Aktivasyon Fonksiyonu			
	Meteorolojik Girişler	\mathbb{R}^2	OMH	OMYH (%)	
1	S_{H}, N_{B}, GI_{DY}	0,9733	0,039	5,687	
2	S_{H}, N_{B}	0,9615	0,049	7,014	
3	S_{H}, GI_{DY}	0,9747	0,056	6,975	
4	N _B , GI _{DY}	0,9937	0,048	8,665	

Dolayısıyla, sigmoid aktivasyon fonksiyonunun kullanıldığı hata sonuçları içerisinde en iyi tahmin performansını, hava sıcaklığı, bağıl nem ve difüz yatay güneş ışınımı parametrelerini giriş olarak kullanan BO-ÇKA metodu başarmıştır. Bu hibrit metoda ait tahmini toplam yatay güneş ışınımı değerleri Şekil 4.14'de sunulmuştur. Diğer taraftan, en

kötü tahmin performansı ise bağıl nem ve difüz yatay güneş ışınımı parametrelerini giriş olarak kullanan BO-ÇKA metodu tarafından 0,9937'lik R², 0,048'lik OMH ve % 8,665'lik OMYH değerleriyle ortaya çıkmıştır.

Şekil 4.14. S_H, N_B ve GI_{DY} girişlerini kullanan BO-ÇKA metoduna ait tahmini toplam yatay güneş ışınımı değerleri

Sinüs aktivasyon fonksiyonunu kullanan balina optimizasyon algoritması tabanlı çok katmanlı algılayıcıya ait günlük toplam yatay güneş ışınımı tahmini sonuçları Çizelge 4.7'de sunulmuştur. Bu çizelgedeki hata değerleri incelendiğinde, hava sıcaklığı, bağıl nem ve difüz yatay güneş ışınımı parametrelerini giriş olarak kullanan BO-ÇKA metodu için R² değeri 0,9643, OMH değeri 0,052 ve OMYH değeri % 6,638 olarak elde edilmiştir. 2demetli meteorolojik girişler içerisinde en iyi tahmin performansı ise hava sıcaklığı ve bağıl nem parametrelerini kullanan BO-ÇKA metodu için R² değeri 0,9638, OMH değeri 0,040 ve OMYH değeri % 5,040 olarak bulunmuştur.

Dolayısıyla, sinüs aktivasyon fonksiyonunun kullanıldığı hata sonuçları içerisinde en iyi tahmin performansını hava sıcaklığı ve bağıl nem parametrelerini giriş olarak kullanan BO-ÇKA metodu başarmıştır. Bu hibrit metoda ait tahmini toplam yatay güneş ışınımı değerleri Şekil 4.15'de sunulmuştur. Diğer taraftan, en kötü tahmin performansı ise bağıl nem ve difüz yatay güneş ışınımı parametrelerini giriş olarak kullanan BO-ÇKA metodu tarafından 0,8660'lık R², 0,073'lük OMH ve % 11,949'luk OMYH değerleriyle ortaya çıkmıştır.

No	Çok Demetli	Sinüs Aktivasyon Fonksiyonu			
	Meteorolojik Girişler	\mathbb{R}^2	OMH	OMYH (%)	
1	S_{H}, N_{B}, GI_{DY}	0,9643	0,052	6,638	
2	S_{H}, N_{B}	0,9638	0,040	5,040	
3	$S_{\rm H}, GI_{\rm DY}$	0,9730	0,041	5,827	
4	N_B, GI_{DY}	0,8660	0,073	11,949	

Çizelge 4.7. Sinüs aktivasyon fonksiyonunu kullanan BO-ÇKA metoduna ait günlük toplam yatay güneş ışınımı tahmini sonuçları

Şekil 4.15. S_H ve N_B girişlerini kullanan BO-ÇKA metoduna ait tahmini toplam yatay güneş ışınımı değerleri

Tahmin sonuçları genel olarak değerlendirildiğinde, sinüs aktivasyon fonksiyonunu kullanan BO-ÇKA metodu sigmoid aktivasyon fonksiyonunu kullanan BO-ÇKA metodundan daha iyi tahmin performans gerçekleştirmiştir. BO-ÇKA metodu tarafından gerçekleştirilen en iyi günlük toplam yatay güneş ışınımı tahmini, süreklilik referans modeli ile karşılaştırıldığında ise R² değeri açısından % 240,7234'lük, OMH değeri açısından % 60,534'lük ve OMYH değeri açısından % 65,821'lik iyileştirmeler ortaya çıkmıştır. Son olarak, BO-ÇKA metoduna ait en düşük mutlak yüzdesel hata değerleri Şekil 4.16'da verilmiştir.

Şekil 4.16. BO-ÇKA metoduna ait en düşük mutlak yüzdesel hata değerleri

Çizelge 4.8'de toplam yatay güneş ışınım tahmini için geliştirilen tüm modellerin tahmin sonuçları yer almaktadır. Genel olarak değerlendirildiğinde, % 3,025'lik OMYH değeri ile hava sıcaklığı, bağıl nem ve difüz yatay güneş ışınımı parametrelerini ve sigmoid aktivasyon fonksiyonunu kullanan gri kurt optimizasyon algoritması tabanlı çok katmanlı algılayıcı modelinin en başarılı tahmin modeli olduğu görülmektedir.

No	Kullanılan Model	Aktivasyon Fonksiyonu	Çok Demetli Meteorolojik Girişler	\mathbb{R}^2	ОМН	OMYH (%)
1			S_{H}, N_{B}, GI_{DY}	0,9786	0,022	3,025
2		Sigmoid	S_{H}, N_{B}	0,9699	0,030	4,233
3	CVO	-	$S_{\rm H}, GI_{\rm DY}$	0,9721	0,056	9,335
4	GKU-		N_B, GI_{DY}	0,9723	0,057	7,954
5	Çка		S_{H} , N_{B} , GI_{DY}	0,9764	0,034	4,479
6		Sinüs	S_H, N_B	0,9671	0,037	5,970
7			$S_{\rm H}, GI_{\rm DY}$	0,9674	0,084	14,973
8			N_B, GI_{DY}	0,9466	0,103	15,721
9			S_{H} , N_{B} , GI_{DY}	0,9593	0,038	5,925
10		Sigmoid	S_H, N_B	0,9694	0,053	6,661
11	VAO		S_{H}, GI_{DY}	0,9787	0,045	5,524
12	CKA		N_B, GI_{DY}	0,9587	0,077	10,224
13	ÇКА		S_{H} , N_{B} , GI_{DY}	0,9799	0,037	6,199
14		Hiperbolik	S_{H}, N_{B}	0,9810	0,036	5,690
15		tanjant	$S_{\rm H}, GI_{\rm DY}$	0,9754	0,083	13,409
16			N_B, GI_{DY}	0,9801	0,100	15,813
17			S_{H} , N_{B} , GI_{DY}	0,9733	0,039	5,687
18		Sigmoid	S_H, N_B	0,9615	0,049	7,014
19			S_{H}, GI_{DY}	0,9747	0,056	6,975
20	BO-ÇKA		N_B, GI_{DY}	0,9937	0,048	8,665
21			S_{H}, N_{B}, GI_{DY}	0,9643	0,052	6,638
22		Sinüs	S_{H} , N_B	0,9638	0,040	5,040
23			$S_{\rm H}, GI_{\rm DY}$	0,9730	0,041	5,827
24			N_B, GI_{DY}	0,8660	0,073	11,949

Çizelge 4.8. Toplam yatay güneş ışınımı tahmini için geliştirilen tüm modellerin performansları

4.4. Metasezgisel Optimizasyon Tabanlı Çok Katmanlı Algılayıcı Kullanılarak Günlük Fotovoltaik Güç Tahmini

Bu bölümde gri kurt optimizasyonu, karınca aslanı optimizasyonu ve balina optimizasyonu tabanlı çok katmanlı algılayıcı modelleri kullanılarak günlük fotovoltaik güç tahmini yapılmıştır. Geliştirilen tahmin yöntemlerinin modelleme başarısını değerlendirmek için bir önceki bölümde verilen performans ölçekleri kullanılmıştır.

Günlük toplam yatay güneş ışınımı tahminine benzer şekilde, çok katmanlı algılayıcı algoritmasında sigmoid, sinüs ve hiperbolik tanjant aktivasyon fonksiyonları kullanılmıştır. Geliştirilen her bir hibrit tahmin modeli için en iyi tahmin performansını sağlayan 2 aktivasyon fonksiyonuna ait sonuçlar verilmiştir. Ayrıca, çok demetli giriş verileri olarak hava sıcaklığı (S_H), bağıl nem (N_B), toplam yatay güneş ışınımı (GI_{TY}) ve difüz yatay güneş ışınımı (GI_{DY}) meteorolojik parametrelerinden faydalanılmıştır.

Bunlara ek olarak, 4 demetli meteorolojik girişlerin kullanıldığı optimizasyon algoritmalarında arama ajanlarının sayısı 20, alt ve üst sınırlar -20 ile 20 olarak, 3 demetli meteorolojik girişlerin kullanıldığı optimizasyon algoritmalarında arama ajanlarının sayısı 20, alt ve üst sınırlar -10 ile 10 olarak ve 2 demetli meteorolojik girişlerin kullanıldığı optimizasyon algoritmalarında arama ajanlarının sayısı 20, alt ve üst sınırlar -15 ile 15 olarak alınmıştır. Tüm optimizasyon algoritmalarında maksimum iterasyon sayısı ise 250 olarak atanmıştır. Bahsedilen bu karakteristik değerler deneysel çalışmalar sonucunda belirlenmiştir. Geliştirilen hibrid modellerde; 2 demetli meteorolojik girişlerin kullanıldığı modellerde 5, 3 demetli meteorolojik girişlerin kullanıldığı modellerde 9 gizli katman kullanılmıştır. Ayrıca, beklenmedik (rastlantısal) durumları ortadan kaldırmak amacıyla her bir hibrit tahmin algoritması 30 defa bağımsız olarak çalıştırılmıştır.

Bunların dışında, geliştirilen hibrit tahmin modellerinin performansları süreklilik referans modeliyle de karşılaştırılmıştır. Süreklilik referans modelinin günlük fotovoltaik güç tahminindeki performansı belirlilik katsayısı açısından 0,1589 olarak, ortalama mutlak hata açısından 0,081 olarak ve ortalama mutlak yüzdesel hata açısından %15,702 olarak hesaplanmıştır.

4.4.1. Gri kurt optimizasyon algoritması tabanlı çok katmanlı algılayıcı kullanılarak günlük fotovoltaik güç tahmini

Sigmoid aktivasyon fonksiyonunu kullanan gri kurt optimizasyon algoritması tabanlı çok katmanlı algılayıcıya ait günlük fotovoltaik güç tahmini sonuçları Çizelge 4.9'da verilmiştir. Bu çizelgedeki hata değerleri incelendiğinde, hava sıcaklığı, bağıl nem, toplam yatay güneş ışınımı ve difüz yatay güneş ışınımı parametrelerini giriş olarak kullanan GKO-ÇKA metodu için R² değeri 0,9791, OMH değeri 0,017 ve OMYH değeri % 2,598 olarak bulunmuştur. 3-demetli meteorolojik girişler içerisinde en iyi tahmin performansı hava sıcaklığı, toplam yatay güneş ışınımı ve difüz yatay güneş ışınımı parametrelerini kullanan GKO-ÇKA metodu için R² değeri 0,9841, OMH değeri 0,016 ve OMYH değeri % 2,632 olarak elde edilmiştir. 2-demetli meteorolojik girişler içerisinde en iyi tahmin performansı ise toplam yatay güneş ışınımı ve difüz yatay güneş ışınımı parametrelerini kullanan GKO-ÇKA metodu için R² değeri 0,9843, OMH değeri 0,016 ve OMYH değeri % 2,632 olarak elde edilmiştir.

No	Çok Demetli	Sigmoid Aktivasyon Fonksiyonu			
	Meteorolojik Girişler	\mathbb{R}^2	OMH	OMYH (%)	
1	$S_{H}, N_{B}, GI_{TY}, GI_{DY}$	0,9791	0,017	2,598	
2	N_B, GI_{TY}, GI_{DY}	0,9636	0,027	3,893	
3	S_{H}, GI_{TY}, GI_{DY}	0,9841	0,016	2,632	
4	$S_{\rm H}, N_{\rm B}, GI_{\rm DY}$	0,5548	0,071	11,421	
5	$S_{\rm H}, N_{\rm B}, GI_{\rm TY}$	0,9536	0,025	3,928	
6	$S_{\rm H}, N_{\rm B}$	0,3320	0,075	14,012	
7	$S_{\rm H}, GI_{\rm TY}$	0,9369	0,033	5,312	
8	$S_{\rm H}, GI_{\rm DY}$	0,4527	0,074	11,708	
9	N_B, GI_{TY}	0,8622	0,064	9,590	
10	N_B, GI_{DY}	0,4046	0,091	14,936	
11	GI_{TY}, GI_{DY}	0,9633	0,022	3,076	

Çizelge 4.9. Sigmoid aktivasyon fonksiyonunu kullanan GKO-ÇKA metoduna ait günlük fotovoltaik güç tahmini sonuçları

Dolayısıyla, sigmoid aktivasyon fonksiyonunun kullanıldığı hata sonuçları içerisinde en iyi tahmin performansını hava sıcaklığı, bağıl nem, toplam yatay güneş ışınımı ve difüz yatay güneş ışınımı parametrelerini giriş olarak kullanan GKO-ÇKA metodu başarmıştır. Bu hibrit metoda ait tahmini fotovoltaik güç değerleri Şekil 4.17'de sunulmuştur. Diğer taraftan, en kötü tahmin performansı ise bağıl nem ve difüz yatay güneş ışınımı parametrelerini giriş olarak kullanan GKO-ÇKA metodu tarafından 0,4046'lık R², 0,091'lük OMH ve % 14,936'lık OMYH değerleriyle ortaya çıkmıştır.

Şekil 4.17. SH, NB, GITY ve GIDY girişlerini kullanan GKO-ÇKA metoduna ait tahmini fotovoltaik güç değerleri

Hiperbolik tanjant aktivasyon fonksiyonunu kullanan gri kurt optimizasyon algoritması tabanlı çok katmanlı algılayıcıya ait günlük fotovoltaik güç tahmini sonuçları Çizelge 4.10'da verilmiştir. Bu çizelgedeki hata değerleri incelendiğinde, hava sıcaklığı, bağıl nem, toplam yatay güneş ışınımı ve difüz yatay güneş ışınımı parametrelerini giriş olarak kullanan GKO-ÇKA metodu için R² değeri 0,4423, OMH değeri 0,066 ve OMYH değeri % 11,614 olarak bulunmuştur. 3-demetli meteorolojik girişler içerisinde en iyi tahmin performansı hava sıcaklığı, bağıl nem ve toplam yatay güneş ışınımı parametrelerini kullanan GKO-ÇKA metodu için R² değeri 0,9003, OMH değeri 0,032 ve OMYH değeri % 5,208 olarak elde edilmiştir. 2-demetli meteorolojik girişler içerisinde en iyi tahmin performansı ise hava sıcaklığı ve toplam yatay güneş ışınımı parametrelerini kullanan GKO-ÇKA metodu için R² değeri 0,9508, OMH değeri 0,027 ve OMYH değeri % 4,248 olarak elde edilmiştir.

Dolayısıyla, hiperbolik tanjant aktivasyon fonksiyonunun kullanıldığı hata sonuçları içerisinde en iyi tahmin performansını hava sıcaklığı ve toplam yatay güneş ışınımı parametrelerini giriş olarak kullanan GKO-ÇKA metodu başarmıştır. Bu hibrit metoda ait tahmini fotovoltaik güç değerleri Şekil 4.18'de sunulmuştur. Diğer taraftan, en kötü tahmin performansı ise bağıl nem ve difüz yatay güneş ışınımı parametrelerini giriş olarak kullanan GKO-ÇKA metodu tarafından 0,0714'lük R², 0,151'lık OMH ve % 22,291'lik OMYH değerleriyle ortaya çıkmıştır.
No	Çok Demetli	Hiperbolik Tanjant Aktivasyon Fonksiyonu			
NO	Meteorolojik Girişler	\mathbb{R}^2	OMH	OMYH (%)	
1	$S_{H}, N_{B}, GI_{TY}, GI_{DY}$	0,4423	0,066	11,614	
2	N_B, GI_{TY}, GI_{DY}	0,5969	0,080	13,453	
3	$S_{\rm H}, GI_{\rm TY}, GI_{\rm DY}$	0,8798	0,044	6,967	
4	S_{H} , N_{B} , GI_{DY}	0,3249	0,124	18,560	
5	S_{H}, N_{B}, GI_{TY}	0,9003	0,032	5,208	
6	S _H , N _B	0,2423	0,086	15,860	
7	S_{H}, GI_{TY}	0,9508	0,027	4,248	
8	$S_{\rm H}, GI_{\rm DY}$	0,6104	0,061	9,614	
9	N_B, GI_{TY}	0,4310	0,086	13,418	
10	N_B, GI_{DY}	0,0714	0,151	22,291	
11	GI _{TY} , GI _{DY}	0,8881	0,044	6,654	

Çizelge 4.10. Hiperbolik tanjant aktivasyon fonksiyonunu kullanan GKO-ÇKA metoduna ait günlük fotovoltaik güç tahmini sonuçları

Şekil 4.18. SH ve GITY girişlerini kullanan GKO-ÇKA metoduna ait tahmini fotovoltaik güç değerleri

Tahmin sonuçları genel olarak değerlendirildiğinde, sigmoid aktivasyon fonksiyonunu kullanan GKO-ÇKA metodu hiperbolik tanjant aktivasyon fonksiyonunu kullanan GKO-ÇKA metodundan daha iyi tahmin performansı gerçekleştirmiştir. GKO-ÇKA metodu tarafından gerçekleştirilen en iyi günlük fotovoltaik güç tahmini, süreklilik referans modeli ile karşılaştırıldığında R² değeri açısından % 80,62'lik, OMH değeri açısından % 79,01'lik ve OMYH değeri açısından % 83,45'lik iyileştirmeler ortaya çıkmıştır. Son olarak, GKO-ÇKA metoduna ait en düşük mutlak yüzdesel hata değerleri Şekil 4.19'da sunulmuştur.

Şekil 4.19. GKO-ÇKA metoduna ait en düşük mutlak yüzdesel hata değerleri

4.4.2. Karınca aslanı optimizasyon algoritması tabanlı çok katmanlı algılayıcı kullanılarak günlük fotovoltaik güç tahmini

Sigmoid aktivasyon fonksiyonunu kullanan karınca aslanı optimizasyon algoritması tabanlı çok katmanlı algılayıcıya ait günlük fotovoltaik güç tahmini sonuçları Çizelge 4.11'de verilmiştir. Bu çizelgedeki hata değerleri incelendiğinde, hava sıcaklığı, bağıl nem, toplam yatay güneş ışınımı ve difüz yatay güneş ışınımı parametrelerini giriş olarak kullanan KAO-ÇKA metodu için R² değeri 0,7101, OMH değeri 0,068 ve OMYH değeri % 12,106 olarak bulunmuştur. 3-demetli meteorolojik girişler içerisinde en iyi tahmin performansı bağıl nem, toplam yatay güneş ışınımı ve difüz yatay güneş ışınımı parametrelerini kullanan KAO-ÇKA metodu için R² değeri 0,9334, OMH değeri 0,029 ve OMYH değeri % 4,702 olarak elde edilmiştir. 2-demetli meteorolojik girişler içerisinde en iyi tahmin performansı ise toplam yatay güneş ışınımı ve difüz yatay güneş ışınımı parametrelerini kullanan KAO-ÇKA metodu için R² değeri 0,9304, OMH değeri 0,029 ve OMYH değeri % 5,959 olarak elde edilmiştir.

Dolayısıyla, sigmoid aktivasyon fonksiyonunun kullanıldığı hata sonuçları içerisinde en iyi tahmin performansını bağıl nem, toplam yatay güneş ışınımı ve difüz yatay güneş ışınımı parametrelerini giriş olarak kullanan KAO-ÇKA metodu başarmıştır. Bu hibrit metoda ait tahmini fotovoltaik güç değerleri Şekil 4.20'de sunulmuştur. Diğer taraftan, en kötü tahmin performansı ise bağıl nem ve difüz yatay güneş ışınımı parametrelerini giriş olarak

kullanan KAO-ÇKA metodu tarafından 0,2274'lük R², 0,117'lik OMH ve % 17,785'lik OMYH değerleriyle ortaya çıkmıştır.

No	Çok Demetli	Sigmoid Aktivasyon Fonksiyonu			
INO	Meteorolojik Girişler	\mathbb{R}^2	OMH	OMYH (%)	
1	S_{H} , N_{B} , GI_{TY} , GI_{DY}	0,7101	0,068	12,106	
2	N_{B}, GI_{TY}, GI_{DY}	0,9334	0,029	4,702	
3	S_{H}, GI_{TY}, GI_{DY}	0,9111	0,057	7,693	
4	S_H, N_B, GI_{DY}	0,5297	0,072	11,548	
5	S_{H} , N_{B} , GI_{TY}	0,8648	0,041	7,586	
6	S_{H}, N_{B}	0,0081	0,097	17,624	
7	S_{H}, GI_{TY}	0,7852	0,060	8,509	
8	S_{H}, GI_{DY}	0,5179	0,078	11,859	
9	N_B, GI_{TY}	0,8556	0,062	9,369	
10	N_B, GI_{DY}	0,2274	0,117	17,785	
11	GI_{TY}, GI_{DY}	0,9600	0,037	5,959	

Çizelge 4.11. Sigmoid aktivasyon fonksiyonunu kullanan KAO-ÇKA metoduna ait günlük fotovoltaik güç tahmini sonuçları

Şekil 4.20. NB, GITY ve GIDY girişlerini kullanan KAO-ÇKA metoduna ait tahmini fotovoltaik güç değerleri

Hiperbolik tanjant aktivasyon fonksiyonunu kullanan karınca aslanı optimizasyon algoritması tabanlı çok katmanlı algılayıcıya ait günlük fotovoltaik güç tahmini sonuçları Çizelge 4.12'de verilmiştir. Bu çizelgedeki hata değerleri incelendiğinde, hava sıcaklığı, bağıl nem, toplam yatay güneş ışınımı ve difüz yatay güneş ışınımı parametrelerini giriş olarak kullanan KAO-ÇKA metodu için R² değeri 0,3179, OMH değeri 0,129 ve OMYH değeri % 18,232 olarak bulunmuştur. 3-demetli meteorolojik girişler içerisinde en iyi

tahmin performansı hava sıcaklığı, toplam yatay güneş ışınımı ve difüz yatay güneş ışınımı parametrelerini kullanan KAO-ÇKA metodu için R² değeri 0,8113, OMH değeri 0,048 ve OMYH değeri % 6,738 olarak elde edilmiştir. 2-demetli meteorolojik girişler içerisinde en iyi tahmin performansı ise bağıl nem ve toplam yatay güneş ışınımı parametrelerini kullanan KAO-ÇKA metodu için R² değeri 0,8139, OMH değeri 0,071 ve OMYH değeri % 10,430 olarak elde edilmiştir.

Dolayısıyla, hiperbolik tanjant aktivasyon fonksiyonunun kullanıldığı hata sonuçları içerisinde en iyi tahmin performansını hava sıcaklığı, toplam yatay güneş ışınımı ve difüz yatay güneş ışınımı parametrelerini giriş olarak kullanan KAO-ÇKA metodu başarmıştır. Bu hibrit metoda ait tahmini fotovoltaik güç değerleri Şekil 4.21'de sunulmuştur. Diğer taraftan, en kötü tahmin performansı ise bağıl nem ve difüz yatay güneş ışınımı parametrelerini giriş olarak kullanan KAO-ÇKA metodu tarafından 0,0117'lik R², 0,137'lık OMH ve % 21,296'lık OMYH değerleriyle ortaya çıkmıştır.

Çizelge 4.12. Hiperbolik tanjant aktivasyon fonksiyonunu kullanan KAO-ÇKA metoduna ait günlük fotovoltaik güç tahmini sonuçları

No	Çok Demetli	Hiperbolik Tanjant Aktivasyon Fonksiyonu			
INO	Meteorolojik Girişler	\mathbb{R}^2	OMH	OMYH (%)	
1	S_{H} , N_{B} , GI_{TY} , GI_{DY}	0,3179	0,129	18,232	
2	N_B, GI_{TY}, GI_{DY}	0,6194	0,133	19,447	
3	S_{H}, GI_{TY}, GI_{DY}	0,8113	0,048	6,738	
4	S_{H}, N_{B}, GI_{DY}	0,5849	0,072	11,291	
5	S_{H}, N_{B}, GI_{TY}	0,2591	0,108	17,163	
6	$\mathrm{S}_\mathrm{H}, \mathrm{N}_\mathrm{B}$	0,0010	0,097	17,649	
7	S_{H}, GI_{TY}	0,1548	0,095	17,217	
8	S_{H}, GI_{DY}	0,0661	0,098	17,655	
9	N_{B}, GI_{TY}	0,8139	0,071	10,430	
10	N_B, GI_{DY}	0,0117	0,137	21,296	
11	GI_{TY}, GI_{DY}	0,6466	0,101	15,622	

Şekil 4.21. S_H, GI_{TY} ve GI_{DY} girişlerini kullanan KAO-ÇKA metoduna ait tahmini fotovoltaik güç değerleri

Tahmin sonuçları genel olarak değerlendirildiğinde, sigmoid aktivasyon fonksiyonunu kullanan KAO-ÇKA metodu hiperbolik tanjant aktivasyon fonksiyonunu kullanan KAO-ÇKA metodundan daha iyi tahmin performansı gerçekleştirmiştir. KAO-ÇKA metodu tarafından gerçekleştirilen en iyi günlük fotovoltaik güç tahmini, süreklilik referans modeli ile karşılaştırıldığında R² değeri açısından % 79,48'lik, OMH değeri açısından % 64,19'luk ve OMYH değeri açısından % 70,05'lik iyileştirmeler ortaya çıkmıştır. Son olarak, KAO-ÇKA metoduna ait en düşük mutlak yüzdesel hata değerleri Şekil 4.22'de sunulmuştur.

Şekil 4.22. KAO-ÇKA metoduna ait en düşük mutlak yüzdesel hata değerleri

4.4.3. Balina optimizasyon algoritması tabanlı çok katmanlı algılayıcı kullanılarak günlük fotovoltaik güç tahmini

Sigmoid aktivasyon fonksiyonunu kullanan balina optimizasyon algoritması tabanlı çok katmanlı algılayıcıya ait günlük fotovoltaik güç tahmini sonuçları Çizelge 4.13'de verilmiştir. Bu çizelgedeki hata değerleri incelendiğinde, hava sıcaklığı, bağıl nem, toplam yatay güneş ışınımı ve difüz yatay güneş ışınımı parametrelerini giriş olarak kullanan BO-ÇKA metodu için R² değeri 0,8362, OMH değeri 0,050 ve OMYH değeri % 7,316 olarak bulunmuştur. 3-demetli meteorolojik girişler içerisinde en iyi tahmin performansı hava sıcaklığı, bağıl nem ve toplam yatay güneş ışınımı parametrelerini kullanan BO-ÇKA metodu için R² değeri 0,8985, OMH değeri 0,040 ve OMYH değeri % 6,187 olarak elde edilmiştir. 2-demetli meteorolojik girişler içerisinde en iyi tahmin performansı ise toplam yatay güneş ışınımı parametrelerini kullanan BO-ÇKA metodu için R² değeri 0,8959, OMH değeri 0,034 ve OMYH değeri % 5,514 olarak elde edilmiştir.

No	Çok Demetli	Sigmoid Aktivasyon Fonksiyonu			
INO	Meteorolojik Girişler	\mathbb{R}^2	OMH	OMYH (%)	
1	$S_{H}, N_{B}, GI_{TY}, GI_{DY}$	0,8362	0,050	7,316	
2	N_B, GI_{TY}, GI_{DY}	0,9472	0,060	9,013	
3	S_{H}, GI_{TY}, GI_{DY}	0,5247	0,121	19,102	
4	S_{H}, N_{B}, GI_{DY}	0,5205	0,074	11,889	
5	S_{H}, N_{B}, GI_{TY}	0,8985	0,040	6,187	
6	S_{H}, N_{B}	0,2313	0,083	15,273	
7	S_{H}, GI_{TY}	0,8531	0,037	6,105	
8	S_{H}, GI_{DY}	0,5288	0,077	11,715	
9	N_B, GI_{TY}	0,8583	0,056	10,134	
10	N_B, GI_{DY}	0,0085	0,156	24,905	
11	GI_{TY}, GI_{DY}	0,8959	0,034	5,514	

Çizelge 4.13. Sigmoid aktivasyon fonksiyonunu kullanan BO-ÇKA metoduna ait günlük fotovoltaik güç tahmini sonuçları

Dolayısıyla, sigmoid aktivasyon fonksiyonunun kullanıldığı hata sonuçları içerisinde en iyi tahmin performansını toplam yatay güneş ışınımı ve difüz yatay güneş ışınımı parametrelerini giriş olarak kullanan BO-ÇKA metodu başarmıştır. Bu hibrit metoda ait tahmini fotovoltaik güç değerleri Şekil 4.23'de sunulmuştur. Diğer taraftan, en kötü tahmin performansı ise bağıl nem ve difüz yatay güneş ışınımı parametrelerini giriş olarak kullanan BO-ÇKA metodu başarmıştır. Oliğer taraftan, en kötü tahmin performansı ise bağıl nem ve difüz yatay güneş ışınımı parametrelerini giriş olarak kullanan BO-ÇKA metodu tarafından 0,0085'lik R², 0,156'lık OMH ve % 24,905'lik OMYH değerleriyle ortaya çıkmıştır.

Şekil 4.23. GI_{TY} ve GI_{DY} girişlerini kullanan BO-ÇKA metoduna ait tahmini fotovoltaik güç değerleri

Sinüs aktivasyon fonksiyonunu kullanan balina optimizasyon algoritması tabanlı çok katmanlı algılayıcıya ait günlük fotovoltaik güç tahmini sonuçları Çizelge 4.14'de sunulmuştur. Bu çizelgedeki hata değerleri incelendiğinde, hava sıcaklığı, bağıl nem, toplam yatay güneş ışınımı ve difüz yatay güneş ışınımı parametrelerini giriş olarak kullanan BO-ÇKA metodu için R² değeri 0,4817, OMH değeri 0,086 ve OMYH değeri % 13,394 olarak elde edilmiştir. 3-demetli meteorolojik girişler içerisinde en iyi tahmin performansı hava sıcaklığı, toplam yatay güneş ışınımı ve difüz yatay güneş ışınımı ve difüz yatay güneş ışınımı parametrelerini kullanan BO-ÇKA metodu için R² değeri 0,8242, OMH değeri 0,045 ve OMYH değeri % 7,028 olarak elde edilmiştir. 2-demetli meteorolojik girişler içerisinde en iyi tahmin parametrelerini kullanan BO-ÇKA metodu için R² değeri 0,7009, OMH değeri 0,075 ve OMYH değeri % 11,892 olarak bulunmuştur.

Dolayısıyla, sinüs aktivasyon fonksiyonunun kullanıldığı hata sonuçları içerisinde en iyi tahmin performansını hava sıcaklığı, toplam yatay güneş ışınımı ve difüz yatay güneş ışınımı parametrelerini giriş olarak kullanan BO-ÇKA metodu başarmıştır. Bu hibrit metoda ait tahmini fotovoltaik güç değerleri Şekil 4.24'de sunulmuştur. Diğer taraftan, en kötü tahmin performansı ise hava sıcaklığı ve toplam yatay güneş ışınımı parametrelerini giriş olarak kullanan 0,2667'lik R², 0,186'lık OMH ve % 25,967'lik OMYH değerleriyle ortaya çıkmıştır.

No	Çok Demetli	Sinüs Aktivasyon Fonksiyonu			
INO	Meteorolojik Girişler	\mathbb{R}^2	OMH	OMYH (%)	
1	$S_{H}, N_{B}, GI_{TY}, GI_{DY}$	0,4817	0,086	13,394	
2	N_B, GI_{TY}, GI_{DY}	0,8490	0,051	8,068	
3	S_{H}, GI_{TY}, GI_{DY}	0,8242	0,045	7,028	
4	S_{H} , N_{B} , GI_{DY}	0,5835	0,075	11,546	
5	S_{H} , N_{B} , GI_{TY}	0,6699	0,101	14,553	
6	$S_{\rm H}, N_{\rm B}$	0,1560	0,118	19,798	
7	$S_{\rm H}, GI_{\rm TY}$	0,2667	0,186	25,967	
8	S_{H}, GI_{DY}	0,2987	0,098	15,763	
9	N_B, GI_{TY}	0,6100	0,129	18,069	
10	N_B, GI_{DY}	0,3353	0,097	15,471	
11	GI_{TY}, GI_{DY}	0,7009	0,075	11,892	

Çizelge 4.14. Sinüs aktivasyon fonksiyonunu kullanan BO-ÇKA metoduna ait günlük fotovoltaik güç tahmini sonuçları

Şekil 4.24. S_H, GI_{TY}, ve GI_{DY} girişlerini kullanan BO-ÇKA metoduna ait tahmini fotovoltaik güç değerleri

Tahmin sonuçları genel olarak değerlendirildiğinde, sigmoid aktivasyon fonksiyonunu kullanan BO-ÇKA metodu sinüs aktivasyon fonksiyonunu kullanan BO-ÇKA metodundan daha iyi tahmin performansı gerçekleştirmiştir. BO-ÇKA metodu tarafından gerçekleştirilen en iyi günlük fotovoltaik güç tahmini, süreklilik referans modeli ile karşılaştırıldığında ise R² değeri açısından % 78,43'lük, OMH değeri açısından % 58,02'lik ve OMYH değeri açısından % 64,88'lik iyileştirmeler ortaya çıkmıştır. Son olarak, BO-ÇKA metoduna ait en düşük mutlak yüzdesel hata değerleri Şekil 4.25'de verilmiştir.

Şekil 4.25. BO-ÇKA metoduna ait en düşük mutlak yüzdesel hata değerleri

Çizelge 4.15'de fotovoltaik güç tahmini için geliştirilen tüm modellerin tahmin sonuçları yer almaktadır. Genel olarak değerlendirildiğinde, % 2,598'lik OMYH değeri ile hava sıcaklığı, bağıl nem, toplam yatay güneş ışınımı ve difüz yatay güneş ışınımı parametrelerini ve sigmoid aktivasyon fonksiyonunu kullanan gri kurt optimizasyon algoritması tabanlı çok katmanlı algılayıcı modelinin en başarılı tahmin modeli olduğu görülmektedir.

No	Kullanılan	Aktivasyon	Çok Demetli	\mathbf{D}^2	OMH	OMYH (%)
INO	Model	Fonksiyonu	Meteorolojik Girişler	К	ОМП	
1			S_{H} , N_{B} , GI_{TY} , GI_{DY}	0,9791	0,017	2,598
2			N_B, GI_{TY}, GI_{DY}	0,9636	0,027	3,893
3			S_H, GI_{TY}, GI_{DY}	0,9841	0,016	2,632
4			S_H, N_B, GI_{DY}	0,5548	0,071	11,421
5		Ciana i d	S_H , N_B , GI_{TY}	0,9536	0,025	3,928
6		Sigmoid	$S_{\rm H}, N_{\rm B}$	0,3320	0,075	14,012
7			S_{H}, GI_{TY}	0,9369	0,033	5,312
8			S_{H}, GI_{DY}	0,4527	0,074	11,708
9	avo av i		N_B, GI_{TY}	0,8622	0,064	9,590
10	GKO-ÇKA		N_B, GI_{DY}	0,4046	0,091	14,936
11			GI_{TY}, GI_{DY}	0,9633	0,022	3,076
12			S_H , N_B , GI_{TY} , GI_{DY}	0,4423	0,066	11,614
13			N_B, GI_{TY}, GI_{DY}	0,5969	0,080	13,453
14			S_H, GI_{TY}, GI_{DY}	0,8798	0,044	6,967
15		Hiperbolik	S_H , N_B , GI_{DY}	0,3249	0,124	18,560
16		tanjant	S_H , N_B , GI_{TY}	0,9003	0,032	5,208
17			S_{H}, N_{B}	0,2423	0,086	15,860
18			S_{H}, GI_{TY}	0,9508	0,027	4,248
19			$S_{\rm H}, GI_{\rm DY}$	0,6104	0,061	9,614

Çizelge 4.15. Fotovoltaik güç tahmini için geliştirilen tüm modellerin performansları

20	GKO-	Hinarhalik	N_B, GI_{TY}	0,4310	0,086	13,418
21	ÇKA	topiont	N _B , GI _{DY}	0,0714	0,151	22,291
22		tanjant	GI _{TY} , GI _{DY}	0,8881	0,044	6,654
23			S_H , N_B , GI_{TY} , GI_{DY}	0,7101	0,068	12,106
24			N _B , GI _{TY} , GI _{DY}	0,9334	0,029	4,702
25			S_{H}, GI_{TY}, GI_{DY}	0,9111	0,057	7,693
26			$S_{\rm H}, N_{\rm B}, GI_{\rm DY}$	0,5297	0,072	11,548
27		Sigmoid	S_H , N_B , GI_{TY}	0,8648	0,041	7,586
28		Signoid	S_{H}, N_{B}	0,0081	0,097	17,624
29			$S_{\rm H}, GI_{\rm TY}$	0,7852	0,060	8,509
30			$S_{\rm H}, GI_{\rm DY}$	0,5179	0,078	11,859
31			N_B, GI_{TY}	0,8556	0,062	9,369
32	KAO		N _B , GI _{DY}	0,2274	0,117	17,785
33	KAU-		GI _{TY} , GI _{DY}	0,9600	0,037	5,959
34	ÇКА		S _H , N _B , GI _{TY} , GI _{DY}	0,3179	0,129	18,232
35			N _B , GI _{TY} , GI _{DY}	0,6194	0,133	19,447
36			S _H , GI _{TY} , GI _{DY}	0,8113	0,048	6,738
37			$S_{\rm H}, N_{\rm B}, GI_{\rm DY}$	0,5849	0,072	11,291
38		Hiperbolik	$S_{\rm H}, N_{\rm B}, GI_{\rm TY}$	0,2591	0,108	17,163
39		tanjant	S _H , N _B	0,0010	0,097	17,649
40			$S_{\rm H}, GI_{\rm TY}$	0,1548	0,095	17,217
41			$S_{\rm H}, GI_{\rm DY}$	0,0661	0,098	17,655
42			N_B, GI_{TY}	0,8139	0,071	10,430
43			N_B, GI_{DY}	0,0117	0,137	21,296
44			GI_{TY}, GI_{DY}	0,6466	0,101	15,622
45			S_H , N_B , GI_{TY} , GI_{DY}	0,8362	0,050	7,316
46			N_B, GI_{TY}, GI_{DY}	0,9472	0,060	9,013
47			S_H, GI_{TY}, GI_{DY}	0,5247	0,121	19,102
48			$S_{\rm H}, N_{\rm B}, GI_{\rm DY}$	0,5205	0,074	11,889
49		Ciarra i d	S_H , N_B , GI_{TY}	0,8985	0,040	6,187
50		Signoid	S_{H}, N_{B}	0,2313	0,083	15,273
51			S_{H}, GI_{TY}	0,8531	0,037	6,105
52			S_{H}, GI_{DY}	0,5288	0,077	11,715
53			N_B, GI_{TY}	0,8583	0,056	10,134
54			N_B, GI_{DY}	0,0085	0,156	24,905
55	BO-ÇKA		GI_{TY}, GI_{DY}	0,8959	0,034	5,514
56			$S_H, N_B, GI_{TY}, GI_{DY}$	0,4817	0,086	13,394
57			N_B, GI_{TY}, GI_{DY}	0,8490	0,051	8,068
58			S_H, GI_{TY}, GI_{DY}	0,8242	0,045	7,028
59			S_H, N_B, GI_{DY}	0,5835	0,075	11,546
60		Siniia	S_H, N_B, GI_{TY}	0,6699	0,101	14,553
61		Sillus	S _H , N _B	0,1560	0,118	19,798
62			$S_{\rm H}, GI_{\rm TY}$	0,2667	0,186	25,967
63			$S_{\rm H}, GI_{\rm DY}$	0,2987	0,098	15,763
64			N_B, GI_{TY}	0,6100	0,129	18,069
65			N _B , GI _{DY}	0,3353	0,097	15,471
66			GI_{TY}, GI_{DY}	0,7009	0,075	11,892

Çizelge 4.15. (devam) Fotovoltaik güç tahmini için geliştirilen tüm modellerin performansları

5. SONUÇLAR VE DEĞERLENDİRMELER

Bu doktora tezi kapsamında, öncelikle, literatürde güneş ışınımı şiddeti ve fotovoltaik güç tahmininde kullanılan yöntemler çok kısa, kısa, orta ve uzun dönem periyotlar göz önüne alınarak incelenmiştir. Bu literatür taramasında, özellikle, en çok tercih edilen tahmin modelleri, tahmin aşamasında kullanılan giriş parametreleri ve modellerin başarısını test etmek için faydalanılan hata ölçekleri değerlendirilmiştir. Sonrasında, Ankara ilinin 2007 ve 2016 yılları arasındaki aylık toplam global güneş ışınım şiddeti, aylık toplam güneşlenme süresi ve aylık ortalama hava sıcaklığı verileri detaylı olarak analiz edilmiştir. Bu analizlerde, Polinom, Gauss ve Fourier eğri uydurma yöntemleri kullanılarak uzun yıllar bazında modellelemeler yapılmıştır. Son olarak, gri kurt optimizasyonu, karınca aslanı optimizasyonu ve balina optimizasyonu tabanlı çok katmanlı algılayıcı modelleri geliştirilmiştir. Tasarlanan bu hibrit modeller aracılığıyla günlük toplam yatay güneş ışınımı ve günlük fotovoltaik güç tahminleri yapılmıştır.

Ankara ilinin 2007 ve 2016 yılları arasındaki meteorolojik verilerinin uzun yıllar analizi ve modellemesi sonucunda;

- Aylık ortalama hava sıcaklığı, aylık toplam güneşlenme süresi ve aylık toplam global güneş ışınım şiddeti parametrelerinin maksimum değerleri, sırasıyla, 2010 yılının Ağustos ayında 28,10 °C, 2008 yılının Temmuz ayında 341,60 saat ve 2007 yılının Temmuz ayında 14451,31 kW/m² olarak görülmüştür.
- Aylık ortalama hava sıcaklığı, aylık toplam güneşlenme süresi ve aylık toplam global güneş ışınım şiddeti parametrelerinin minimum değerleri, sırasıyla, 2008 yılının Ocak ayında 4,00 °C, 2013 yılının Ocak ayında 42,40 saat ve 2014 yılının Aralık ayında 2372,83 kW/m² olarak tespit edilmiştir.
- Aylık toplam global güneş ışınım şiddeti verilerinin uzun yıllar modellemesinde 3 terimli Gauss modeli 0,9992'lik belirlilik katsayısıyla en iyi performansı göstermiştir. Diğer taraftan, aylık toplam güneşlenme süresi ve aylık ortalama hava sıcaklığı verilerinin uzun yıllar modellemesinde sırasıyla 0,9990 ve 0,9999'luk belirlilik katsayılarıyla 4 terimli Fourier modelleri en iyi kararlılığı sergilemiştir.

Aylık toplam global güneş ışınım şiddeti, aylık toplam güneşlenme süresi ve aylık ortalama hava sıcaklığı verilerinin uzun yıllar modellemesinde, genel olarak, 7. dereceden polinom modeli, 3 terimli Gauss ve 4 terimli Fourier modellerine göre daha düşük belirlilik katsayıları sağlamıştır.

Gri kurt, karınca aslanı ve balina optimizasyon algoritmaları tabanlı çok katmanlı algılayıcı modelleri kullanılarak günlük toplam yatay güneş ışınımının tahmini sonucunda;

- Gri kurt optimizasyon algoritması tabanlı çok katmanlı algılayıcı modeli, karınca aslanı ve balina optimizasyon algoritmaları tabanlı çok katmanlı algılayıcı modellerinden daha başarılı tahmin sonuçları sağlamıştır.
- Gri kurt ve karınca aslanı optimizasyon algoritmaları tabanlı çok katmanlı algılayıcı modellerinde sigmoid aktivasyon fonksiyonu en başarılı sonucu sergilerken, balina optimizasyon algoritmasi tabanlı çok katmanlı algılayıcı modelinde sinus aktivasyon fonksiyonu en başarılı sonucu sergilemiştir.
- En iyi günlük toplam yatay güneş ışınımı tahmini, % 3,025'lik OMYH değeriyle hava sıcaklığı, bağıl nem ve difüz yatay güneş ışınımı parametrelerini ve sigmoid aktivasyon fonksiyonunu kullanan gri kurt optimizasyon algoritması tabanlı çok katmanlı algılayıcı modeli tarafından elde edilmiştir. Ayrıca, geliştirilen bu tahmin modeli, süreklilik referans modeline göre OMYH açısından % 79,485 oranında daha iyi sonuçlar vermiştir.
- En iyi tahmin sonuçlarını sağlayan gri kurt, karınca aslanı ve balina optimizasyon algoritmaları tabanlı çok katmanlı algılayıcı modellerinin tümünde,
- Hava sıcaklığı ve beğil nem parametreleri en uygun 2 demetli meteorolojik giriş kombinasyonu olarak ön plana çıkmaktadır.
- Hava sıcaklığı ve beğil nem parametrelerine entegre edilecek difüz yatay güneş ışınımı parametresi 3 demetli meteorolojik giriş kombinasyonunda ön plana çıkmaktadır.

100

- En kötü günlük toplam yatay güneş ışınımı, % 15,813'lük OMYH değeriyle bağıl nem ve difüz yatay güneş ışınımı parametrelerini ve hiperbolik tanjant aktivasyon fonksiyonunu kullanan karınca aslanı optimizasyonu algoritması tabanlı çok katmanlı algılayıcı modeli tarafından elde edilmiştir.
- En kötü tahmin sonuçlarını sağlayan gri kurt, karınca aslanı ve balina optimizasyon algoritmaları tabanlı çok katmanlı algılayıcı modellerinin çoğunluğunda bağıl nem ve difüz yatay güneş ışınımı parametrelerinin 2-demetli meteorolojik giriş olarak kullanımı dikkat çekmektedir.

Gri kurt, karınca aslanı ve balina optimizasyon algoritmaları tabanlı çok katmanlı algılayıcı modelleri kullanılarak günlük fotovoltaik güç tahmini sonucunda;

- Gri kurt optimizasyon algoritması tabanlı çok katmanlı algılayıcı modeli, karınca aslanı ve balina optimizasyon algoritmaları tabanlı çok katmanlı algılayıcı modellerinden daha başarılı tahmin sonuçları göstermiştir. Diğer taraftan, karınca aslanı optimizasyon algoritması tabanlı çok katmanlı algılayıcı modelinin, balina optimizasyonu algoritma tabanlı çok katmanlı algılayıcı modelinden daha iyi tahmin sonuçları verdiği tespit edilmiştir.
- Gri kurt, karınca aslanı ve balina optimizasyon algoritmaları tabanlı çok katmanlı algılayıcı modellerinin tümünde sigmoid aktivasyon fonksiyonu, hiperbolik tanjant ve sinüs aktivasyon fonksiyonlarına kıyasla daha düşük tahmin hataları sağlamıştır.
- En iyi günlük fotovoltaik güç tahmini; hava sıcaklığı, bağıl nem, toplam yatay güneş ışınımı ve difüz yatay güneş ışınımı parametrelerini ve sigmoid aktivasyon fonksiyonunu kullanan gri kurt optimizasyon algoritması tabanlı çok katmanlı algılayıcı modeli tarafından % 2,598'lik OMYH değeriyle elde edilmiştir. Ayrıca, geliştirilen bu tahmin modeli süreklilik referans modeline göre % 83,45 oranında daha iyi sonuçlar vermiştir.
- En doğru tahmin sonuçlarını sağlayan gri kurt, karınca aslanı ve balina optimizasyon algoritmalarına dayanan çok katmanlı algılayıcı modellerinin tümünde,

- Toplam yatay güneş ışınımı ve difüz yatay güneş ışınımı parametreleri en uygun 2 demetli meteorolojik giriş kombinasyonu olarak ön plana çıkmaktadır.
- Toplam yatay güneş ışınımı ve difüz yatay güneş ışınımı parametrelerine entegre edilecek hava sıcaklığı parametresi 3 demetli meteorolojik giriş kombinasyonunda ön plana çıkmaktadır.
- En kötü günlük fotovoltaik güç tahmini; hava sıcaklığı ve toplam yatay güneş ışınımı parametrelerini ve sinüs aktivasyon fonksiyonunu kullanan balina optimizasyon algoritması tabanlı çok katmanlı algılayıcı modeli tarafından % 25,967'lik OMYH değeriyle elde edilmiştir.
- En kötü tahmin sonuçlarını sağlayan gri kurt, karınca aslanı ve balina optimizasyon algoritmaları tabanlı çok katmanlı algılayıcı modellerinin genelinde bağıl nem parametresinin meteorolojik giriş olarak kullanımı dikkat çekmektedir.
- Geliştirilen gri kurt, karınca aslanı ve balina optimizasyon algoritmaları tabanlı çok katmanlı algılayıcı modelleri, literatürde günlük fotovoltaik güç tahmini için sıklıkla kullanılan yapay sinir ağları ve destek vektör makineleri tabanlı modellerden daha düşük hata sonuçları vermektedir.

Geliştirilen tahmin modellerinin performansları başarılı bulunmuş olup, bu modeller, fotovoltaik güç santrallerinin güç kalitesi, yedek kapasite planlaması, temel yük planlaması ve yük takibi açılarından verimli olmalarına ve santralle ilgili geleceğe yönelik yatırım, bakım, üretim ve satış gibi konularda politikalar ve planlar oluşturulmasına katkı sağlayacaktır.

Gelecek çalışmalarda, öncelikle, eğri uydurma metotlarının günlük toplam global güneş ışınım şiddeti, günlük toplam güneşlenme süresi ve günlük ortalama hava sıcaklığı verilerinin modellenmesindeki performansları kıyaslanabilir. Sonrasında, geliştirilen hibrit modellerin performansları dakikalık, saatlik ve haftalık toplam yatay güneş ışınımı ve fotovoltaik güç tahminleri için de test edilebilir. Ayrıca, toplam yatay güneş ışınımı ve fotovoltaik güç tahminlerini etkileyen diğer meteorolojik faktörlerin çok demetli giriş yapısında kullanımı da detaylı olarak analiz edilebilir.

KAYNAKLAR

- 1. İnternet : Renewables 2019 Global Status Report. URL: https://www.ren21.net/ gsr-2019, Son Erişim Tarihi: 04.09.2019.
- 2. Despotovic, M., Nedic, V., Despotovic, D. and Cvetanovic, S. (2016). Evaluation of empirical models for predicting monthly mean horizontal diffuse solar radiation. *Renewable and Sustainable Energy Reviews*, 56, 246-260.
- 3. Jamil, B. and Akhtar, N. (2017). Comparison of empirical models to estimate monthly mean diffuse solar radiation from measured data: Case study for humid-subtropical climatic region of India. *Renewable and Sustainable Energy Reviews*, 77, 1326-1342.
- 4. Filho, E. P. M., Oliveira, A. P., Vita, W. A., Mesquita F. L. L., Codato, G., Escobedo, J. F., Cassol, M. and Franca, J. R. A. (2016). Global, diffuse and direct solar radiation at the surface in the city of Rio de Janeiro: Observational characterization and empirical modeling. *Renewable Energy*, 91, 64-74.
- 5. Liao, W., Wang, X., Fan, Q., Zhou, S., Chang, M., Wang, Z., Wang, Y. and Tu, Q. (2015). Long-term atmospheric visibility, sunshine duration and precipitation trends in South China. *Atmospheric Environment*, 107, 204-216.
- 6. Chelbi, M., Gagnon, Y. and Waewsak, J. (2015). Solar radiation mapping using sunshine duration-based models and interpolation techniques: Application to Tunisia. *Energy Conversion and Management*, 101, 203-215.
- 7. Zhu, W., Lu, A., Jia, S., Yan, J. and Mahmood, R. (2017). Retrievals of all-weather daytime air temperature from MODIS products. *Remote Sensing of Environment*, 189, 152-163.
- 8. Ho, H. C., Knudby, A., Xu, Y., Hodul, M. And Aminipouri, M. (2016). A comparison of urban heat islands mapped using skin temperature, air temperature, and apparent temperature (Humidex), for the greater Vancouver area. *Science of the Total Environment*, 544, 929-938.
- 9. Wenbin, Z., Aifeng, L. and Shaofeng, J. (2013). Estimation of daily maximum and minimum air temperature using MODIS land surface temperature products. *Remote Sensing of Environment*, 130, 62-73.
- 10. Chang, K. and Zhang, Q. (2019). Improvement of the hourly global solar model and solar radiation for air-conditioning design in China. *Renewable Energy*, 138, 1232-1238.
- 11. Jiang, H., Lu, N., Qin, J., Tang, W. and Yao, L. (2019). A deep learning algorithm to estimate hourly global solar radiation from geostationary satellite data. *Renewable and Sustainable Energy Reviews*, 114, 1-13.
- 12. Li, D. H. W., Chen, W., Li, S. and Lou, S. (2019). Estimation of hourly global solar radiation using Multivariate Adaptive Regression Spline (MARS) A case study of Hong Kong. *Energy*, 186, 1-14.

- Cornejo-Bueno, L., Casanova-Mateo, C., Sanz-Justo, J. and Salcedo-Sanz, S. (2019). Machine learning regressors for solar radiation estimation from satellite data. *Solar Energy*, 183, 768-775.
- 14. Manju, S. and Sandeep, M. (2019). Prediction and performance assessment of global solar radiation in Indian cities: A comparison of satellite and surface measured data. *Journal of Cleaner Production*, 230, 116-128.
- 15. Gouda, S. G., Hussein, Z., Luo, S. and Yuan, Q. (2019). Model selection for accurate daily global solar radiation prediction in China. *Journal of Cleaner Production*, 221, 132-144.
- 16. Guermoui, M., Melgani, F. and Danilo, C. (2018). Multi-step ahead forecasting of daily global and direct solar radiation: A review and case study of Ghardaia region. *Journal of Cleaner Production*, 201, 716-734.
- 17. Feng, Y., Gong, D., Zhang, Q., Jiang, S., Zhao, L. and Cui, N. (2019). Evaluation of temperature-based machine learning and empirical models for predicting daily global solar radiation. *Energy Conversion and Management*, 198, 111780.
- 18. Makade, R.G., Chakrabarti, S., Jamil, B. And Sakhale, C.N. (2020). Estimation of global solar radiation for the tropical wet climatic region of India: A theory of experimentation approach. *Renewable Energy*, 146, 2044-2059.
- 19. Kisi, O., Heddam, S. and Yaseen, Z. M. (2019). The implementation of univariable scheme-based air temperature for solar radiation prediction: New development of dynamic evolving neural-fuzzy inference system model. *Applied Energy*, 241, 184-195.
- 20. Kaplan, A. G. and Kaplan, Y. A. (2020). Developing of the new models in solar radiation estimation with curve fitting based on moving least-squares approximation. *Renewable Energy*, 146, 2462-2471.
- 21. Anis, M. S., Jamil, B., Ansari, M. A. and Bellos, E. (2019). Generalized models for estimation of global solar radiation based on sunshine duration and detailed comparison with the existing: A case study for India. *Sustainable Energy Technologies and Assessments*, 31, 179-198.
- 22. Gürel, A. E., Ağbulut, U. and Biçen Y. (2020). Assessment of machine learning, time series, response surface methodology and empirical models in prediction of global solar radiation. *Journal of Cleaner Production*, 122353, 1–32.
- 23. Li, L. L., Wen, S. Y., Tseng, M. L. and Wang, C. S. (2019). Renewable energy prediction: A novel short-term prediction model of photovoltaic output power. *Journal of Cleaner Production*, 228, 359-375.
- 24. Behera, M. K., Majumder, I. and Nayak, N. (2018). Solar photovoltaic power forecasting using optimized modified extreme learning machine technique. *Engineering Science and Technology*, 21, 428-438.

- 25. Eseye, A. T., Zhang, J. and Zheng, D. (2018). Short-term photovoltaic solar power forecasting using a hybrid Wavelet-PSOSVM model based on SCADA and meteorological information. *Renewable Energy*, 118, 357-367.
- 26. Koster, D., Minette, F., Braun, C. and O'Nagy, O. (2019). Short-term and regionalized photovoltaic power forecasting, enhanced by reference systems, on the example of Luxembourg. *Renewable Energy*, 132, 455-470.
- 27. Douiri, M. R. (2019). Particle swarm optimized neuro-fuzzy system for photovoltaic power forecasting model. *Solar Energy*, 184, 91-104.
- 28. Larson, D. P., Nonnenmacher, L. and Coimbra, C. F. M. (2016). Day-ahead forecasting of solar power output from photovoltaic plants in the American Southwest. *Renewable Energy*, 91, 11-20.
- 29. El-Baz, W., Tzscheutschler, P. and Wagner, U. (2018). Day-ahead probabilistic PV generation forecast for buildings energy management systems. *Solar Energy*, 171, 478-490.
- 30. Hu, K., Cao, S., Wang, L., Li, W. and Lv, M. (2018). A new ultra-short-term photovoltaic power prediction model based on ground-based cloud images. *Journal of Cleaner Production*, 200, 731-745.
- VanDeventer, W., Jamei, E., Thirunavukkarasu, G.S., Seyedmahmoudian, M., Soon, T. K., Horan, B.; Mekhilef, S. and Stojcevski, A. (2019). Short-term PV power forecasting using hybrid GASVM technique. *Renewable Energy*, 140, 367-379.
- 32. Dong, J., Olama, M. M., Kuruganti, T., Melin, A. M., Djouadi, S. M., Zhang, Y. and Xue, Y. (2020). Novel stochastic methods to predict short-term solar radiation and photovoltaic power. *Renewable Energy*, 145, 333-346.
- 33. Gao, M., Li, J., Hong, F. and Long, D.(2019). Day-ahead power forecasting in a large-scale photovoltaic plant based on weather classification using LSTM. *Energy*, 187, 115838.
- 34. Gulin, M., Pavlovic, T. and Vašak, M. (2017). A one-day-ahead photovoltaic array power production prediction with combined static and dynamic on-line correction. *Solar Energy*, 142, 49-60.
- 35. Wang, K, Qi, X. and Liu, H. (2019). A comparison of day-ahead photovoltaic power forecasting models based on deep learning neural network. *Applied Energy*, 251, 1-14.
- 36. Wang, G., Su, Y. and Shu, L. (2016). One-day-ahead daily power forecasting of photovoltaic systems based on partial functional linear regression models. *Renewable Energy*, 96, 469-478.
- 37. Han, S., Qiaoa, Y. H., Yan, J., Liu, Y. Q., Li, L. and Wang, Z. (2019). Mid-to-long term wind and photovoltaic power generation prediction based on copula function and long short term memory network. *Applied Energy*, 239, 181-191.

- 38. Yang, X., Xu, M., Xu, S. and Han, X. (2017). Day-ahead forecasting of photovoltaic output power with similar cloud space fusion based on incomplete historical data mining. *Applied Energy*, 206, 683-696.
- 39. Wang, H., Yi, H., Peng, J., Wang, G., Liu, Y., Jiang, H. and Liu, W. (2017). Deterministic and probabilistic forecasting of photovoltaic power based on deep convolutional neural network. *Energy Conversion and Management*, 153, 409-422.
- 40. He Y., Yan Y. and Xu Q. (2019). Wind and solar power probability density prediction via fuzzy information granulation and support vector quantile regression. *Electrical Power and Energy Systems*, 113, 515-527.
- 41. Ogawa S. and Mori H. (2019). A Gaussian-Gaussian-Restricted-Boltzmann-Machine-based Deep Neural Network Technique for Photovoltaic System Generation Forecasting. *IFAC-PapersOnLine*, 87-92.
- 42. Sharifzadeh, M., Sikinioti-Locka A. and Shah, N. (2019). Machine-learning methods for integrated renewable power generation: A comparative study of artificial neural networks, support vector regression, and Gaussian Process Regression. *Renewable and Sustainable Energy Reviews*, 108, 513-538.
- 43. Wood, D. A. (2019). German solar power generation data mining and prediction with transparent open box learning network integrating weather, environmental and market variables. *Energy Conversion and Management*, 196, 354-369.
- 44. Heydari, A., Garcia, D. A., Keynia, F., Bisegna, F. and Santoli, L.D. (2019). A novel composite neural network based method for wind and solar power forecasting in microgrids. *Applied Energy*, 251, 1-17.
- 45. Dewangan, C.L., Singh S.N. and Chakrabarti S. (2020). Combining forecasts of dayahead solar power. *Energy*, 202, 1–11.
- 46. Beher, M. K. and Niranjan, N. (2020). A comparative study on short-term PV power forecasting using decomposition based optimized extreme learning machine algorithm. *Engineering Science and Technology, an International Journal*, 23(1), 156–167.
- 47. Vignola, F., Michalsky, J. and Stoffel, T. (2019). Solar and Infrared Radiation Measurements, CRC Press, Boca Raton, 103-110.
- 48. Messenger, R. A. and Abtahi, A. (2018). *Photovoltaic Systems Engineering*, CRC Press, Boca Raton, 47-67.
- 49. Kalani, H., Sardarabadi, M. and Passandideh-Fard, M. (2017). Using artificial neural network models and particle swarm optimization for manner prediction of a photovoltaic thermal nanofluid based collector. *Applied Thermal Engineering*, 113, 1170-1177.
- 50. Assouline, D., Mohajeri, N. and Scartezzini, J. L. (2017). Quantifying rooftop photovoltaic solar energy potential: A machine learning approach. *Solar Energy*, 141, 278-296.

- 51. Persson, C., Bacher P., Shiga, T. and Madsen, H. (2017). Multi-site solar power forecasting using gradient boosted regression trees. *Solar Energy*, 150, 423-436.
- 52. Akarslan, E. and Hocaoglu, F. O. (2017). A novel method based on similarity for hourly solar irradiance forecasting. *Renewable Energy*, 112, 337-346.
- 53. Boukelia, T. E., Arslan, O. and Mecibah, M. S. (2017). Potential assessment of a parabolic trough solar thermal power plant considering hourly analysis: ANN-based approach. *Renewable Energy*, 105, 324-333.
- 54. Chaouachi, A., R. Kamel, M. and Nagasaka, K. (2010). A novel multi-model neurofuzzy-based MPPT for three-phase grid-connected photovoltaic system. *Solar Energy*, 84(12), 2219-2229.
- 55. Messaltia, S., Harraga, A. and Loukriz, A. (2017). A new variable step size neural networks MPPT controller: Review, simulation and hardware implementation. *Renewable and Sustainable Energy*, 68(1), 221-233.
- 56. Chang, T. P., Liu, F. J., Ko, H. H. and Huang, M. C. (2017). Oscillation characteristic study of wind speed, global solar radiation and air temperature using wavelet analysis. *Applied Energy*, 190(C), 650-657.
- 57. Elsinga, B. and Van Sark, W. G. J. H. M., (2017). Short-term peer-to- peer solar forecasting in a network of photovoltaic systems. *Applied Energy*, 206(C), 1464-1483.
- 58. Kleissl, J. (2013). Solar Energy Forecasting and Resource Assessment. Academic Press, Waltham, MA, USA, 1-20.
- 59. Chen, S. X., Gooi, H. B. and Wang, M. Q. (2013). Solar radiation forecast based on fuzzy logic and neural networks. *Renewable Energy*, 60, 195-201.
- 60. Priya, S. S. and Iqbal, M. H. (2015). Solar radiation prediction using artificial neural network. *International Journal of Computer Applications*, 116, 28-31.
- 61. Ramedani, Z., Omid, M., Keyhani, A., Khoshnevisan, B., Saboohi, H. (2014). A comparative study between fuzzy linear regression and support vector regression for global solar radiation prediction in Iran. *Solar Energy*, 109, 135-143.
- 62. Liu, Q., Mak, T., Zhang, T., Niu, X., Luk, W. and Yakovlev, A. (2015). Power-Adaptive computing system design for solar-energy-powered embedded systems. *IEEE Transactions on Very Large Scale Integration Systems*, 23, 1402-1414.
- Sanfilippo, A., Martin-Pomares, L., Mohandes, N., Perez-Astudillo, D. and Bachour, D. (2016). An adaptive multi- modeling approach to solar nowcasting. *Solar Energy*, 125, 77-85.
- 64. Chu, Y., Li, M., Pedro, H. T. C. and Coimbra, C. F. M. (2015). Real-time prediction intervals for intra-hour DNI forecasts. *Renewable Energy*, 83, 234-244.
- 65. Chu, Y. and Coimbra, C. F. M. (2017). Short-term probabilistic forecasts for direct normal irradiance. *Renewable Energy*, 101, 526-536.

- 66. Chow, S. K. H., Lee, E. W. M. and Li, D. H. W. (2012). Short-term prediction of photovoltaic energy generation by intelligent approach. *Energy and Buildings*, 55, 660-667.
- 67. Pedro, H. T. C. and Coimbra, C. F. M. (2015). Short-term irradiance forecastability for various solar micro-climates. *Solar Energy*, 122, 587-602.
- 68. Grantham, A., Gel, Y. R. and Boland, J. (2016). Nonparametric short-term probabilistic forecasting for solar radiation. *Renewable Energy*, 133, 465-475.
- 69. Yaici, W. and Entchev, E. (2016). Adaptive neuro-fuzzy inference system modelling for performance prediction of solar thermal energy system. *Renewable Energy*, 86, 302-315.
- 70. Wu, J. and Chan, C. K. (2011). Prediction of hourly solar radiation using a novel hybrid model of ARMA and TDNN. *Solar Energy*, 85, 808-817.
- 71. Mori, H. (2015). Application of Graphical Modelling to Selecting Input Variables for Solar Radiation Forecasting. *IFAC-PapersOnLine*, 48(30), 137-142.
- Tapakis, R., Michaelides, S. and Charalambides, A. G. (2016). Computations of diffuse fraction of global irradiance: Part 2 – Neural networks. Solar Energy, 139, 723-732.
- 73. Akarslan, E. and Hocaoglu, F. O. (2016). A novel adaptive approach for hourly solar radiation forecasting. *Renewable Energy*, 87, 628-633.
- 74. Benmouiza, K. and Cheknane, A. (2013). Forecasting hourly global solar radiation using hybrid k-means and nonlinear autoregressive neural network models. *Energy Conversion and Management*, 75, 561-569.
- 75. Huang, J., Korolkiewicz, M., Agrawal, M. and Boland, J. (2013). Forecasting solar radiation on an hourly time scale using a Coupled AutoRegressive and Dynamical System (CARDS) model. *Solar Energy*, 87, 136-149.
- 76. Ghofrania, M., Ghayekhloob, M. and Azimi, R. (2016). A novel soft computing framework for solar radiation forecasting. *Applied Soft Computing*, 48, 207-216.
- 77. Marquez, R., Pedro, H. T. C. and Coimbra, C. F. M. (2013). Hybrid solar forecasting method uses satellite imaging and ground telemetry as inputs to ANNs. *Solar Energy*, 92, 176-188.
- 78. McCandless, T. C., Haupt, S. E. and Young, G. S. (2016). A regime- dependent artificial neural network technique for shortrange solar irradiance forecasting. *Renewable Energy*, 89, 351-359.
- Aybar-Ruiz, A., Jimenez-Fernandez, S., Cornejo- Bueno, L., Casanova-Mateo, C., Sanz-Justo, J., Salvador- Gonzalez, P. and Salcedo-Sanz, S. (2016). A novel grouping genetic algorithm–extreme learning machine approach for global solar radiation prediction from numerical weather models inputs. *Solar Energy*, 132, 129-142.

- 80. Hocaoglu, F. O. and Serttas, F. (2016). A novel hybrid (Mycielski- Markov) model for hourly solar radiation forecasting. *Renewable Energy*, 108, 635-643.
- 81. Zhang, G., Wang, X. and Du, Z. (2015). Research on the prediction of solar energy generation based on measured environmental data. *International Journal of u-and e-Service, Science and Technology*, 8, 385-402.
- 82. Voyant, C., Motte, F., Fouilloy, A., Notton, G., Paoli, C. and Nivet, M.L. (2017). Forecasting method for global radiation time series without training phase: Comparison with other well-known prediction methodologies. *Energy*, 120, 199-208.
- 83. Wu, Y. and Wang, J. (2016). A novel hybrid model based on artificial neural networks for solar radiation prediction. *Renewable Energy*, 89, 268-284.
- 84. Zeng, J. and Qiao, W. (2013). Short-term solar power prediction using a support vector machine. *Renewable Energy*, 52, 118-127.
- 85. Ibrahim, I. A. and Khatib, T. (2017). A novel hybrid model for hourly global solar radiation prediction using random forests technique and firefly algorithm. *Energy Conversion and Management*, 138, 413-425.
- 86. Azimi, R., Ghayekhloo, M. and Ghofrani M. (2016). A hybrid method based on a new clustering technique and multilayer perceptron neural networks for hourly solar radiation forecasting. *Energy Conversion and Management*, 118, 331-344.
- 87. Jiang, H., Dong, Y. and Xiao, L. (2017). A multi-stage intelligent approach based on an ensemble of two-way interaction model for forecasting the global horizontal radiation of India. *Energy Conversion and Management*, 137, 142-154.
- 88. Monjoly, S., Andrie, M., Calif R. and Soubdhan, T. (2017). Hourly forecasting of global solar radiation based on multiscale decomposition methods: A hybrid approach. *Energy*, 119, 288-298.
- 89. Jiménez-Pérez, P. F. and Mora-López, L. (2016). Modeling and forecasting hourly global solar radiation using clustering and classification techniques. *Solar Energy*, 135, 682-691.
- 90. Aguiar, L. M., Pereira, B., Lauret, P., Díaz, F. and David, M. (2016). Combining solar irradiance measurements, satellite- derived data and a numerical weather prediction model to improve intra-day solar forecasting. *Renewable Energy*, 97, 599-610.
- 91. Ghayekhloo, M., Ghofrani, M., Menhaj, M. B. and Azimi, R. (2015). A novel clustering approach for short-term solar radiation forecasting. *Solar Energy*, 122, 1371-1383.
- 92. Salcedo-Sanz, S., Casanova-Mateo, C., Muñoz-Marí, J. and Camps-Valls, G. (2014). Prediction of daily global solar irradiation using temporal gaussian processes. *IEEE Geoscience and Remote Sensing Letters*, 11(11), 1936-1940.
- 93. Amrouche, B. and Pivert, X. L. (2014). Artificial neural network based daily local forecasting for global solar radiation. *Applied Energy*, 130, 333-341.

- 94. Abbas H. H. and Khashman, A. (2016). Evaluation of geographical information system and intelligent prediction of solar energy. *International Journal of Control Systems and Robotics*, 1, 106-112.
- 95. Chiteka, K. and Enweremadu, C. C. (2016). Prediction of global horizontal solar irradiance in Zimbabwe using artificial neural networks. *Journal of Cleaner Production*, 1- 31.
- 96. Alsina, E. F., Bortolini, M., Gamberi, M. and Regattieri, A. (2016). Artificial neural network optimization for monthly average daily global solar radiation prediction. *Energy Conversion and Management*, 120, 320-329.
- 97. Vakilia, M., Sabbagh-Yazdib, S. R., Kalhorb, K. and Khosrojerdic, S. (2015). Using artificial neural networks for prediction of global solar radiation in Tehran considering particulate matter air pollution. *Energy Procedia*, 74, 1205-1212.
- 98. Kumar, N., Sharma, S. P., Sinha, U. K. and Nayak, Y. (2016). Prediction of solar energy based on intelligent and modeling. *International Journal of Renewable Energy Research*, 6(1), 183-188.
- 99. Prema, V. and Rao, K. U. (2015). Development of statistical time series models for solar power prediction. *Renewable Energy*, 83, 100-109.
- Aggarwal, S. K. and Saini, L. M. (2014). Solar energy prediction using linear and non-linear regularization models: A study on AMS (American Meteorological Society) 2013-14 Solar Energy Prediction Contest. *Energy*, 78, 247-256.
- Liu, Q. and Zhang, Q. J. (2014). Accuracy improvement of energy prediction for solar-energy-powered embedded systems. *IEEE Transactions on Very Large Scale Integration Systems*, 24, 2062-2074.
- 102. Bou-Rabeea, M., Sulaimanb, S. A., Salehc, M. S. and Marafid, S. (2017). Using artificial neural networks to estimate solar radiation in Kuwait. *Renewable and Sustainable Energy Reviews*, 72, 434-438.
- 103. Salcedo-Sanz, S., Casanova-Mateo, C., Pastor-Sanchez, A. and Sanchez-Giron, M. (2014). Daily global solar radiation prediction based on a hybrid Coral Reefs Optimization – Extreme learning machine approach. *Solar Energy*, 105, 91-98.
- 104. Hussain, S. and Alili, A. A. (2017). A pruning approach to optimize synaptic connections and select relevant input parameters for neural network modelling of solar radiation. *Applied Soft Computing*, 52, 898-908.
- 105. Olatomiwa, L., Mekhilef, S., Shamshirband, S., Mohammadi, K., Petkovic, D. and Sudheer, C. (2015). A support vector machine–firefly algorithm-based model for global solar radiation prediction. *Solar Energy*, 115, 632-644.
- 106. Yadav, A. K., Malik, H. and Chandel, S. S. (2015). Application of rapid miner in ANN based prediction of solar radiation for assessment of solar energy resource potential of 76 sites in Northwestern India. *Renewable and Sustainable Energy Reviews*, 52, 1093-1106.

- 107. Deo, R. C. and Şahin, M. (2017). Forecasting long-term global solar radiation with an ANN algorithm coupled with satellite-derived (MODIS) land surface temperature (LST) for regional locations in Queensland. *Renewable and Sustainable Energy*, 72, 828-848.
- 108. Neelamegama, P. and Amirthamba, V. A. (2016). Prediction of solar radiation for solar systems by using ANN models withdifferent back propagation algorithms. *Journal of Applied Research and Technology*, 14, 206-214.
- 109. Mellit, A., Pavan, A. M. and Lughi, V. (2014). Short-term forecasting of power production in a large-scale photovoltaic plant. *Solar Energy*, 105, 401-413.
- Bouzerdoum, M., Mellit, A. and Pavan, A. M. (2013). A hybrid model (SARIMA-SVM) for short-term power forecasting of a small-scale grid-connected photovoltaic plant. *Solar Energy*, 98, 226-235.
- 111. Khademi, M., Moadel, M. and Khosravi, A. (2016). Power prediction and technoeconomic analysis of a solar pv power plant by mlp-abc and comfar 111, considering cloudy weather conditions. *International Journal of Chemical Engineering*, 6, 1-8.
- 112. Izgi, E., Oztopal, A., Yerli, B., Kaymak, M. K. and Sahin, A. D. (2012). Short-midterm solar power prediction by using artificial neural networks. *Solar Energy*, 86, 725-733.
- 113. Chu, Y., Urquhart, B., Gohari, S. M. I., Pedro, H. T. C., Kleissl J. and Coimbra C. F. M. (2015). Short-term reforecasting of power output from a 48 MWe solar PV plant. *Solar Energy*, 112, 68-77.
- 114. Rana, M., Koprinska, I. and Agelidis, V. G. (2016). Univariate and multivariate methods for very short-term solar photovoltaic power forecasting. *Energy Conversion and Management*, 121, 380-390.
- 115. Russo, M., Leotta, G., Pugliatti, P. M. and Gigliucci, G. (2014). Genetic programming for photovoltaic plant output forecasting. *Solar Energy*, 105, 264-273.
- 116. Vaz, A. G. R., Elsinga, B., Van Sark, W. G. J. H. M. and Brito, M. C. (2016). An artificial neural network to assess the impact of neighbouring photovoltaic systems in power forecasting in Utrecht, the Netherlands. *Renewable Energy*, 85, 631-641.
- 117. Munshi, A. A. and Mohamed, Y. A. R. I. (2017). Comparisons among Bat algorithms with various objective functions on grouping photovoltaic power patterns. *Solar Energy*, 144, 254-266.
- 118. Kim, S. G., Juang J. Y. and Sim, K. (2019). A two-step approach to solar power generation prediction based on weather data using machine learning. *Sustainability*, 11(5), 1-16.
- 119. Liu, J., Fang, W., Zhang, X. and Yang, C. (2015). An improved photovoltaic power forecasting model with the assistance of aerosol index data. *IEEE Transactions on Sustainable Energy*, 6, 434-442.

- 120. Bacher, P., Madsen, H. and Nielsen, H. A. (2009). Online short- term solar power forecasting. *Solar Energy*, 83, 1772-1783.
- 121. Pedro, H. T. C. and Coimbra, C. F. M. (2012). Assessment of forecasting techniques for solar power production with no exogenous inputs. *Solar Energy*, 86, 2017-2028.
- 122. Sperati, S., Alessandrini, S. and Monache, L. D. (2016). An application of the ECMWF Ensemble Prediction System for short-term solar power forecasting. *Solar Energy*, 133, 437-450.
- 123. Paulescu, M., Brabec, M., Boata, R. and Badescu, V. (2017). Structured, physically inspired (gray box) models versus black box modeling for forecasting the output power of photovoltaic plants. *Energy*, 121, 792-802.
- 124. Zhifeng, Z., Jianjun, T., Tianjin, Z. and Linlin, Z. (2015). PV power short-term forecasting model based on the data gathered from monitoring network. *China Communications*, 11(14), 61-69.
- 125. Chen, C., Duan, S., Cai, T. and Liu, B. (2011). Online 24-h solar power forecasting based on weather type classification using artificial neural network. *Solar Energy*, 85, 2856-2870.
- 126. Yona, A., Senjyu, T., Funabashi, T. and Kim, C. H. (2013). Determination method of insolation prediction with fuzzy and applying neural network for long-term ahead PV power output correction. *IEEE Transactions on Sustainable Energy*, 4, 527-533.
- 127. Long, H., Zhang, Z. and Su, Y. (2014). Analysis of daily solar power prediction with data-driven approaches. *Applied Energy*, 126, 29-37.
- 128. Li, Y., He, Y., Su, Y. and Shu, L. (2016). Forecasting the daily power output of a grid-connected photovoltaic system based on multivariate adaptive regression splines. *Applied Energy*, 180, 392-401.
- 129. Yang, H. T., Huang, C. M., Huang, Y.C. and Pai, Y. S. (2014). A weather-based hybrid method for 1-day ahead hourly forecasting of PV power output. *IEEE Transactions on Sustainable Energy*, 5(3), 917-926.
- 130. Felice, M. D., Petitta, M. and Ruti, P. M. (2015). Short-term predictability of photovoltaic production over Italy. *Renewable Energy*, 80, 197-204.
- 131. Huang, J. and Perry, M. (2016). A semi-empirical approach using gradient boosting and k-nearest neighbors regression for GEFCom2014 probabilistic solar power forecasting. *International Journal of Forecasting*, 32(3), 1081-1086.
- 132. Lin, K. P. and Pai, P. F., (2016). Solar power output forecasting using evolutionary seasonal decomposition least-square support vector regression. *Journal of Cleaner Production*, 134, 456-462.
- 133. Priyadarshi, N., Anand, A., Sharma, A. K, Azam, F., Singh, V. K. and Sinha, R. K. (2017). An experimental implementation and testing of GA based maximum power point tracking for PV system under varying ambient conditions using dSPACE DS

1104 controller. International Journal of Renewable Energy Research, 7(1), 255-265.

- 134. Bharath, K. R. and Suresh, E., (2017). Design and implementation of improved fractional open circuit voltage based maximum power point tracking algorithm for photovoltaic applications. *International Journal of Renewable Energy Research*, 7(3), 1108-1113.
- 135. Veerasamy, B., Kitagawa, W. and Takeshita, T. (2014). *MPPT method for PV modules using current control-based partial shading detection*. 3rd International Conference on Renewable Energy Research and Applications, Milwaukee, 359-364.
- Veerasamy, B., Thelkar, A. R., Ramu, G. and Takeshita, T., (2016). *Efficient MPPT control for fast irradiation changes and partial shading conditions on PV systems*. 5th International Conference on Renewable Energy Research and Applications, Birmingham, 358-363.
- 137. Rameshkumar, K., Indragandhi, V., Palanisamy, K. and Kannan, R. (2017). A novel current control technique for photo voltaic integrated single phase shunt active power filter. *International Journal of Renewable Energy Research*, 7(4), 1709-1722.
- 138. Cunha, R. B. A., Santo, S. G. D., Filho, A. J. S. and Costa, F. F. (2017). *Finite* control set applied to the current control of interleaved boost converter of PV systems. 6th International Conference on Renewable Energy Research and Applications, CA, 580-584.
- 139. Adolfo, D., Andrea, D. P., Pio, D. N. L. and Santolo, M. (2017). *PSO-PR power flow* control of a single-stage gridconnected PV inverter. 6th International Conference on Renewable Energy Research and Applications, CA, 788-792.
- 140. Chiandone, M., Feste, M. D., Colavitto, S., Campaner, R. and Sulligoi, G. (2017). *Automatic system for voltage control of large photovoltaic systems: Interactions with the transmission grid.* 6th International Conference on Renewable Energy Research and Applications, CA, 943-948.
- 141. Naick, B. K., Chatterjee, T. K. and Chatterjee, K. (2017). Fuzzy logic controller based pv system connected in standalone and grid connected mode of operation with variation of load. *International Journal of Renewable Energy Research*, 7(1), 311-322.
- 142. İnternet: Mathworks Documentation, "Curve Fitting Toolbox ". URL: https://www.mathworks.com/help/pdf_doc/curvefit/curvefit.pdf, Son Erişim Tarihi: 01.05.2020.
- 143. İnternet: Mathworks Documentation, "Polynomial Models". URL: https://www.mathworks.com/help/curvefit/polynomial.html, Son Erişim Tarihi: 01.05.2020.
- 144. Bishop, C. M., Roach, C. M., (1992). Fast curve fitting using neural networks, *Review of Scientific Instruments*, 63(10), 4450-4456.

- 145. İnternet: Mathworks Documentation, "Fourier Models". URL: https://ch.mathworks.com/help/symbolic/fourier.html, Son Erişim Tarihi: 01.05.2020.
- 146. Sağıroğlu, Ş., Beşdok, E. ve Erler, M. (2003). *Mühendislikte Yapay Zekâ* Uygulamaları-1:Yapay Sinir Ağları, Ufuk Kitap Evi, Kayseri, 10-100.
- 147. Hristev, R.M. (1998). The Ann Book, 1-392.
- 148. Gurney, K. (1997). An Introduction to Neural Networks, London and New York, 10-100.
- 149. Anderson, J. W. (1999). Trigonometry in the Hyperbolic Plane, Springer-Verlag, New York, 1-187.
- 150. Mirjalili, S. and Lewis, A. (2016). The whale optimization algorithm, *Advances in Engineering Software*, 95, 51-67.
- 151. Holland, J. H. (1975). Adaptation in Natural and Artificial Systems, The University of Michigan Press, Ann Arbor, Mich, USA.
- 152. Rechenberg, I. (1978). Evolutions Strategien, Springer Berlin Heidelberg, 83-114.
- 153. Baluja, S. (1994). "Population-based incremental learning: A method for integrating genetic search based function optimization and competitive learning," Computer Science Dept., Carnegie Mellon Univ., Pittsburgh, PA, USA, Tech. Rep. CMU-CS-94-163.
- 154. Koza, J., Genetic Programming II: Automatic Discovery of Reuseable Programs, MIT Press, Cambridge, USA.
- 155. Simon, D. (2008). Biogeography-based optimization. *IEEE Transactions on Evolutionary Computation*, 12(6), 702-713.
- 156. Kirkpatrick, S., Gelatt, C. D. and Vecchi, M. P. (1983). Optimization by simmulated annealing, *PubMed*, 220(4598), 671-680.
- 157. Webster, B. and Bernhard P. J. (2003). *A local search optimization algorithm based on natural principles of gravitation*. Proceedings of the International Conference on Information and Knowledge Engineering, Las Vegas, 255-261.
- 158. Erol, O. K. and Eksin I. (2006). A new optimization method: big bang-big crunch. *Advances in Engineering Software*, 37(2), 106-111.
- 159. Rashedi, E., Nezamabadi-Pour, H. and Saryazdi, S. (2019). GSA: A gravitational search algorithm. *Information Sciences*, 179(13), 2232–2248.
- 160. Kaveh, A. and Talatahari, S. (2010). A novel heuristic optimization method: charged system search, *Acta Mechanica*, 213, 267–289.

- 161. Formato, R. A. (2007). Central force optimization: A new metaheuristic with applications in applied electromagnetics. *Progress In Electromagnetics Research*, 77, 425–491.
- 162. Alatas, B. (2011). ACROA: Artificial Chemical Reaction Optimization Algorithm for global optimization. *Expert Systems with Applications*, 38, 13170–13180.
- 163. Hatamlou, A. (2013). Black hole: A new heuristic optimization approach for data clustering. *Information Sciences*, 222, 175–184.
- 164. Kaveh, A. and Khayatazad, M. (2012). A new meta-heuristic method: Ray optimization. *Computers and Structures*, 112, 283–294.
- 165. Du, H., Wu, X. and Zhuang, J. (2006). *Small-world optimization algorithm for function optimization*. Proceedings of the Second international conference on Advances in Natural Computation, Berlin, 264–73.
- 166. Shah-Hosseini, H. (2011). Principal components analysis by the galaxy-based search algorithm: a novel metaheuristic for continuous optimization. *International Journal of Intelligent Systems Engineering*, 6, 132–140.
- 167. Moghaddam, F. F., Moghaddam, R. F. and Cheriet, M. (2012). Curved space optimization: A random search based on general relativity theory. arXiv:1208.2214.
- 168. Kennedy J. and Eberhart, R. (1995). *Particle swarm optimization*. Proceedings of the IEEE International Conference on Neural Networks, 4, Perth, 1942–1948.
- 169. Abbass, H. A. (2001). *MBO: Marriage in honey bees optimization a haplometrosis polygynous swarming approach*. Proceedings of the 2001 Congress on Evolutionary computation, Seoul, 207–214.
- 170. Li, X. L., Shao, Z. J., Qian, J. X. (2002). An optimizing method based on autonomous animats: fish-swarm algorithm. *Systems Engineering-Theory and Practice*, 22, 188–200.
- 171. Roth, M. and Stephen W. (2006). *Termite: A swarm intelligent routing algorithm for mobile wireless Ad-Hoc networks*. Stigmergic Optimization. Springer Berlin Heidelberg, 155–184.
- 172. Dorigo, M., Birattari, M. and Stutzle, T. (2006). Ant colony optimization. *IEEE Computational Intelligence Magazine*, 1, 28–39.
- 173. Basturk, B. and Karaboga, D. (2006). *An artificial bee colony (ABC) algorithm for numeric function optimization*. Proceedings of the IEEE Swarm Intelligence Symposium, Indianapolis, 12–14.
- 174. Pinto, P. C., Runkler, T. A. and Sousa J. M. (2007). Wasp swarm algorithm for dynamic MAX- SAT problems. *Adaptive and Natural Computing Algorithms*. Springer, 4431, 350–357.
- 175. Mucherino, A. and Seref, O. (2007). Monkey search: A novel metaheuristic search for global optimization. *AIP Conference Proceedings*, 953(1), 162-173.

- 176. Yang, C., Tu, X. and Chen, J. (2007). Algorithm of marriage in honey bees optimization based on the wolf pack search. Proceedings of the International Conference on Intelligent Pervasive Computing, IPC, Jeju City, 462–467.
- 177. Lu, X. and Zhou, Y. (2008). A novel global convergence algorithm: Bee collecting pollen algorithm. *Advanced intelligent computing theories and applications with aspects of artificial intelligence*. Springer, 5227, 518–525.
- 178. Yang, X-S and Deb, S. (2009). Cuckoo search via Lévy flights. Proceedings of The World Congress on Nature & Biologically Inspired Computing, NaBIC, Coimbatore, 210–214.
- 179. Shiqin, Y., Jianjun, J. and Guangxing, Y. (2009). *A dolphin partner optimization*. Proceedings of the WRI Global Congress on Intelligent Systems, Xiamen, 124–128.
- 180. Yang, X. S. (2010). A new metaheuristic bat-inspired algorithm. Nature Inspired Cooperative Strategies for Optimization , Springer, 65–74.
- 181. Yang, X. S. (2010). Firefly algorithm, stochastic test functions and design optimisation. *Journal of Bio-Inspired Computation*, 2(2), 78–84.
- 182. Oftadeh, R., Mahjoob, M. J. and Shariatpanahi, M. (2010). A novel meta-heuristic optimization algorithm inspired by group hunting of animals: hunting search. *Computers & with Mathematics Applications*, 60(7), 2087–2098.
- 183. Askarzadeh, A. and Rezazadeh, A. (2012). A new heuristic optimization algorithm for modeling of proton exchange membrane fuel cell: Bird mating optimizer. *International Journal of Energy Research*, 37(10), 1-9.
- 184. Gandomi, A. H. and Alavi, A. H. (2012). Krill Herd: A new bio-inspired optimization algorithm. *Communications in Nonlinear Science Numerical Simulation*,17(12), 4831–4845.
- 185. Pan, W-T. A new fruit fly optimization algorithm: Taking the financial distress model as an example. *Knowledge-Based Systems*, 26, 69–74.
- 186. Kaveh, A. and Farhoudi, N. (2013). A new optimization method: Dolphin echolocation. *Advances in Engineering Software*, 59, 53-70.
- 187. Rao, R. V., Savsani, V. J. and Vakharia, D. P. (2011). Teaching-learning-based optimization: A novel method for constrained mechanical design optimization problems. *Computer-Aided Design*, 43(3), 303–315.
- 188. Geem, Z. W., Kim, J. H. and Loganathan, G. (2001). A new heuristic optimization algorithm: harmony search. *Simulation*, 76(2), 60–68.
- 189. Gendreau, M. and Potvin, J.Y. (2010). *Tabu Search, Handbook of Meta-heuristics*, Springer US, 146, 41–59.
- 190. He S., Wu Q. and Saunders J. (2006). A novel group search optimizer inspired by animal behavioural ecology. Proceedings of the IEEE, Vancouver, 1272–1278.

- 191. Atashpaz-Gargari, E. and Lucas, C. (2007). *Imperialist competitive algorithm: an algorithm for optimization inspired by imperialistic competition*. IEEE Conference on Evolutionary Computation, Singapore, 4661–4667.
- 192. Kashan, A. H. (2009). *League championship algorithm: A new algorithm for numerical function optimization*. IEEE International Conference on Soft Computing and Pattern Recognition, Malacca, 43–48.
- 193. Tan, Y. and Zhu, Y. (2010). *Fireworks algorithm for optimization*. Advances in Swarm Intelligence. Springer, 355–364
- 194. Kaveh, A. and Mahdavi, V. (2014). Colliding bodies optimization: A novel metaheuristic method. *Computers&Structures*, 139(5), 18–27.
- 195. Gandomi, A. H. (2014). Interior search algorithm (ISA): A novel approach for global optimization. *ISA Transactions*, 53(4), 1168-1183.
- 196. Ali, E. S. and Elazim S. M. (2016). Mine blast algorithm for environmental economic load dispatch with valve loading effect. *Neural Computing and Applications*, 30, 261–270.
- 197. Moosavian, N. and Roodsari, B. K. (2013). Soccer league competition algorithm: A new method for solving systems of nonlinear equations. *International Journal of Intelligent Systems*, 4(1), 7-16.
- 198. Dai, C., Zhu, Y. and Chen, W. (2006). Seeker optimization algorithm. *Computational Intelligence and Security*, 167–176.
- 199. Ramezani, F. and Lotfi, S. (2013). Social-based algorithm. *Applied Soft Computing*, 13, 2837–2856.
- 200. Ghorbani, N. and Babaei, E. (2014). Exchange market algorithm. *Applied Soft Computing*, 19, 177-187.
- 201. Eita, M. A. and Fahmy, M. M. (2010). Group counseling optimization: A novel approach, *Research and Development in Intelligent Systems*, XXVI, 195-208.
- 202. Mirjalili, S., Mirjalili, S. M. and Lewis, A. (2014). Grey wolf optimizer, *Advances in Engineering Software*, 69, 46-61.
- 203. Muro, C., Escobedo, R., Spector, L. and Coppinger, R. (2011). Wolf-pack (Canis lupus) hunting strategies emerge from simple rules in computational simulations. *Behavioural Processes*, 88(3), 192–197.
- 204. Mirjalili, S. (2015). The Ant lion optimizer, *Advances in Engineering Software*, 83, 80-98.
- 205. Hof, P. R. and Van Der Gucht, E. (2007). Structure of the cerebral cortex of the humpback whale, Megaptera novaeangliae (Cetacea, Mysticeti, Balaenopteridae). *American Association for Anatomy Journals*, 290(1), 1–31.

- 206. Watkins, W. A. and Schevill, W. E. (1979). Aerial observation of feeding behavior in four baleen whales: Eubalaena glacialis, Balaenoptera borealis, Megaptera novaeangliae, and Balaenoptera physalus. *Journal of Mammal*, (60)1, 155–163.
- 207. İnternet: Meteoroloji genel müdürlüğü. URL: https://www. mgm.gov.tr, Son Erişim Tarihi: 04.09.2019.
- 208. İnternet: DKA Solar Centre. URL: http://dkasolarcentre.com.au, Son Erişim Tarihi: 10.02.2020
- 209. Haykin, S. (1999). Neural Networks: A Comprehensive Foundation, Prentice Hall: Upper Saddle River, NJ, USA (1-842).
- 210. Yesilbudak, M., Sagiroglu, S. and Colak, I. (2017). A novel implementation of kNN classifier based on multi-tupled meteorological input data for wind power prediction. *Energy Conversion and Management*, 135, 434–444.
- 211. Renani, E.T., Mohamad Elias, M. F. and Rahim, N. A. (2016). Using data-driven approach for wind power prediction: A comparative study. *Energy Conversion and Management*, 118, 193–203.
- 212. İnternet: Mathworks Documentation, "Evaluating Goodness of Fit". URL: https://www.mathworks.com/help/curvefit/evaluating-goodness-of-fit.html, Son Erişim Tarihi: 01.05.2020.
- 213. Botchkarev, A. (2019). A new typology design of performance metrics to measure errors in machine learning regression algorithms. *Interdisciplinary Journal of Information, Knowledge, and Management*, 14, 45–76.

ÖZGEÇMİŞ

Kişisel Bilgiler

Soyadı, adı	: Çolak, Medine
Uyruğu	: T.C.
Doğum tarihi ve yeri	: 31.07.1988, Ankara
Medeni hali	: Bekar
Telefon	: 0(505)319 23 27
E-Posta	: medinecolak@gmail.com

Eğitim

Derece	Eğitim Birimi	Mezuniyet Tarihi
Doktora	Gazi Üniversitesi/Elektrik Elektronik Mühendisliği	Devam ediyor
Yüksek Lisans	Gazi Üniversitesi/Bilgisayar Mühendisliği	2014
Lisans	Çankaya Üniversitesi/Bilgisayar Mühendisliği	2011
Lise	Bahçelievler Deneme Lisesi	2005

İş Deneyimi

Yıl	Çalıştığı Yer	Görev
2012-2013	Ankara Sanayi Odası 1. Organize Sanayi Bölgesi	Yazılım Uzmanı

Yabancı Dil

İngilizce

Yayınlar

- 1. Colak, M., Yesilbudak, M. and Bayindir, R. (2020). Daily photovoltaic power prediction enhanced by hybrid GWO-MLP, ALO-MLP and WOA-MLP models using meteorological information, *Energies*, 13(4), 1-19.
- 2. Çolak, M., Karaman, M., Eren, M. U., Çakır, S., Gokalp, A., B. (2014). Computer forensics in Turkey: A macro analysis, 2nd International Symposium on Digital Forensics and Security (ISDFS'14), Houston, USA, 1-7.

- 3. Yavanoğlu, U., Çolak, M., Çağlar, B., Çakır, S., Milletsever, Ö., Sağıroğlu, S. (2013). Intelligent approach for identifying political views over social networks, *Proceedings* of The 12th International Conference on Machine Learning and Applications (ICMLA'13), Miami, USA, 281-287.
- 4. Genc, N., Yesilbudak, M. and Colak, M. (2015). A case study on the investigation of solar regime in Van, Turkey, *4th International Conference on Renewable Energy Research and Applications (ICRERA)*, Palermo, Italy, 954-958.
- 5. Yesilbudak, M., Colak, M. and Bayindir, R. (2016). A review of data mining and solar power prediction. 5th International Conference on Renewable Energy Research and Applications (ICRERA), Birmingham, UK, 1117-1121.
- 6. Yesilbudak, M., Colak, M., Bayindir, R. and H.I. Bulbul (2017). Very-short term modeling of global solar radiation and air temperature data using curve fitting methods. 6th International Conference on Renewable Energy Research and Applications (ICRERA), SanDiego, CA, USA, 1144-1148.
- 7. Bayindir, R., Yesilbudak, M., Colak, M., and Genc, N. (2017). A novel application of naive bayes classifier in photovoltaic energy prediction, *16th IEEE International Conference on Machine Learning and Applications (ICMLA)*, Cancun, Mexico, 523-527.
- 8. Yesilbudak, M., Colak, M. and Bayindir, R. (2018). Very short-term estimation of global horizontal irradiance using data mining methods, *7th International Conference on Renewable Energy Research and Applications (ICRERA)*, Paris, France, 1472-1476.
- 9. Colak, M., Yesilbudak, M. and Bayindir, R. (2019). Forecasting of daily total horizontal solar radiation using grey wolf optimizer and multilayer perceptron algorithms. 8th International Conference on Renewable Energy Research and Applications (ICRERA), Brasov, Romania, 939-942.
- 10. Yesilbudak, M., Colak, M. and Bayindir, R. (2018). What are the current status and future prospects in solar irradiance and solar power forecasting?, *International Journal of Renewable Energy Research (IJRER)*, 8(1), 635-648.
- 11. Yesilbudak, M., Colak, M. and Bayindir, R. (2018). Ankara ilinin uzun dönem global güneş ışınım şiddeti, güneşlenme süresi ve hava sıcaklığı verilerinin analizi ve eğri uydurma metotlarıyla modellenmesi, *Gazi Üniversitesi Fen Bilimleri Dergisi Part C: Tasarım ve Teknoloji*, 6(1), 189-203.

Hobiler

Sinema, Tiyatro, Kitap Okumak, Müzik.

GAZİ GELECEKTİR...