

TÜP YAPILAR VE KAYMA ÇERÇEVELERİNİN MEKANİK AÇIDAN KARŞILAŞTIRILMASI

Ramazan BAĞDAT

YÜKSEK LİSANS TEZİ İNŞAAT MÜHENDİSLİĞİ ANA BİLİM DALI

GAZİ ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ

OCAK 2020

Ramazan BAĞDAT tarafından hazırlanan "TÜP YAPILAR VE KAYMA ÇERÇEVELERİNİN MEKANİK AÇIDAN KARŞILAŞTIRILMASI" adlı tez çalışması aşağıdaki jüri tarafından OY BİRLİĞİ ile Gazi Üniversitesi İnşaat Mühendisliği Ana Bilim Dalında YÜKSEK LİSANS TEZİ olarak kabul edilmiştir.

Danışman: Prof. Dr. Tekin GÜLTOP	
İnşaat Mühendisliği Ana Bilim Dalı, Gazi Üniversitesi	
Bu tezin, kapsam ve kalite olarak Yüksek Lisans Tezi olduğunu onaylıyorum.	
Başkan: Doç. Dr. Bahadır ALYAVUZ	
İnşaat Mühendisliği Ana Bilim Dalı, Gazi Üniversitesi	
Bu tezin, kapsam ve kalite olarak Yüksek Lisans Tezi olduğunu onaylıyorum.	
Üye: Dr. Öğr. Üyesi Mahmut Cem YILMAZ	
İnsaat Mühendisliği Ana Bilim Dalı, Ankara Yıldırım Beyazıt Üniversitesi	
Bu tezin, kapsam ve kalite olarak Yüksek Lisans Tezi olduğunu onaylıyorum.	

Tez Savunma Tarihi: 10/01/2020

Jüri tarafından kabul edilen bu tezin Yüksek Lisans Tezi olması için gerekli şartları yerine getirdiğini onaylıyorum.

Prof. Dr. Sena YAŞYERLİ Fen Bilimleri Enstitüsü Müdürü

ETİK BEYAN

Gazi Üniversitesi Fen Bilimleri Enstitüsü Tez Yazım Kurallarına uygun olarak hazırladığım bu tez çalışmasında;

- Tez içinde sunduğum verileri, bilgileri ve dokümanları akademik ve etik kurallar çerçevesinde elde ettiğimi,
- Tüm bilgi, belge, değerlendirme ve sonuçları bilimsel etik ve ahlak kurallarına uygun olarak sunduğumu,
- Tez çalışmasında yararlandığım eserlerin tümüne uygun atıfta bulunarak kaynak gösterdiğimi,
- Kullanılan verilerde herhangi bir değişiklik yapmadığımı,
- Bu tezde sunduğum çalışmanın özgün olduğunu,

bildirir, aksi bir durumda aleyhime doğabilecek tüm hak kayıplarını kabullendiğimi beyan ederim.

Ramazan BAĞDAT 10/01/2020

TÜP YAPILAR VE KAYMA ÇERÇEVELERİNİN MEKANİK AÇIDAN KARŞILAŞTIRILMASI

(Yüksek Lisans Tezi)

Ramazan BAĞDAT

GAZİ ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ

Ocak 2020

ÖZET

Yapılarda yükseklik arttıkça taşıyıcı sistem seçeneği azalmaktadır. Yapı mühendisleri bu sorunu çözmek için yeni sistemler üzerinde çalışmışlardır. Geliştirilen bu sistemlerden biri de yüksek binalarda sıklıkla kullanılan tüp sistemlerdir. Bu sistem yapıların farklı plan ve yükseklikte birden fazla parçadan oluşmasına olanak sağlamaktadır. Yüksek binalarda yatay yükler az katlı binalara göre daha fazla etkili olmaktadır. Tüp sistemler sık cevre kolonlarından oluştuğundan dolayı bu yüklere karşı daha dayanıklıdır. Meydana gelen yatay deplasmanların da azaltılmasıyla kayma çerçevelerinden avantajlı olmaktadır. Bu tez çalışmasında tüp yapılar ile az katlı yapılarda sıkça kullanılan kesme çerçevelerinin yatay yük etkisi altında mekanik açıdan karşılaştırması yapılmıştır. İncelemesi yapılan kayma çerçeveleri ve tüp yapı davranışının ortaya çıkarılması için her iki yapı türü SAP2000 sonlu eleman paket programıyla modellenmiş ve analizleri yapılmıştır. Yatay yük olarak statik analiz kısmında rüzgâr yükü, dinamik analiz kısmında ise deprem yükü esas alınmıştır. Kullanılan modellerde tüp yapı meydana getirebilmek için kolon sıklaştırması yapılmıştır. Elde edilen sonuçlar statik ve dinamik gerilmeler ile yanal ötelenmeler üzerinden karşılaştırılmıştır. Analizler sonrasında oluşan elastik eğriler ile tüp yapı ve kesme yapısı davranışı belirgin olarak ortaya konulmuştur. Kolonlarda oluşan gerilmelerin tüp sistemlerde daha düşük olduğu ve orta akslardan dışa doğru gerilmelerin azaldığı görülmüştür. Oluşan yanal ötelenmeler kolon sayısının artmasıyla azalmıştır. Yapı yüksekliği arttıkça tüp yapı özelliği daha iyi gözlemlenmiştir.

Bilim Kodu	: 91130
Anahtar Kelimeler	: Tüp yapılar, Kesme çerçeveleri, Sonlu elemanlar
Sayfa Adedi	: 73
Danışman	: Prof. Dr. Tekin GÜLTOP

A COMPARISON THE MECHANICAL RESPONSE OF TUBULAR STRUCTURES AND SHEAR FRAMES

(M. Sc. Thesis)

Ramazan BAĞDAT

GAZİ UNIVERSITY

GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

January 2020

ABSTRACT

The number of structural system options is reduced by increasing structural height. Structural engineers have been investigating on new structural systems in order to solve this problem. One of the systems developed in this context is the tubular structure which is commonly used in tall buildings. This system provides the composition of structures by multiple parts of different layouts and heights. Lateral loads on tall buildings are more forceful in comparison to the case of buildings with less number of stories. Tubular structures are composed of densely placed circumferential columns, hence their lateral load resistance increases. Tubular structures are more efficient than shear frames as lateral displacements in them are drastically reduced. In this thesis a comparison is made from the point of view of mechanics between tubular structures and shear frames that are commonly used in structures of comparatively less number of stories. In order to display the mechanical behavior of shear frames and tubular structures both types of structures are modelled and analyzed by using the SAP2000 finite element program. In the statical stage of structural analysis wind loading is considered as the lateral loading and in the dynamical stage of structural analysis earthquake loading is considered. In order to reveal the mechanical behavior of tubular structures the density of columns is increased gradually. Statical and dynamical stresses and lateral displacemets are compared in the two types of structures. Elastic curves of both structures are derived, hence shear frame and tubular structural behavior is presented. Stresses formed in columns are found to be less compared to that of shear frames and stresses decrease from the central axes towards the circumference. Lateral displacements existing decrease by increasing number of columns. Tubular behaviour is observed more clearly by the increase of structural height.

Science Code	:	91130
Key Words	:	Tubular structures, Shear frames, Finite elements
Page Number	:	73
Supervisor	:	Prof. Dr. Tekin GÜLTOP

TEŞEKKÜR

Eğitim hayatımın temelini atan ve bu seviyeye gelmemin fitilini ateşleyen, aydın ve idealist eğitimci, ilkokul öğretmenim Gülnihal AYHAN'a; yüksek lisans eğitimim boyunca bilgi birikimini benden esirgemeyen, tez çalışmamı özenle takip eden ve bana olan inancıyla azmimi güçlendiren kıymetli hocam, danışmanım Sayın Prof. Dr. Tekin GÜLTOP'a teşekkürü bir borç bilirim.

İÇİNDEKİLER

Savfa
Dayia

ÖZET	iv
ABSTRACT	v
TEŞEKKÜR	vi
İÇİNDEKİLER	vii
ÇİZELGELERİN LİSTESİ	ix
ŞEKİLLERİN LİSTESİ	xi
SİMGELER VE KISALTMALAR	xiv
1. GİRİŞ	1
2. LİTERATÜR ÇALIŞMASI	3
2.1. Önceki Çalışmalar	3
2.2. Yüksek Yapılar	5
2.2.1. Yüksek yapılara etkiyen yükler	9
2.2.2. Yüksek yapı taşıyıcı sistem türleri	14
2.2.3. Yüksek yapı örnekleri	22
2.2.4. Yüksek yapılarla ilgili güncel veriler	29
3. TÜP YAPI VE KESME ÇERÇEVESİ KARŞILAŞTIRMASI	31
3.1. Kesme Çerçevesi (Kayma Çerçevesi)	31
3.2. Tüp Yapı (Tübüler Sistem)	31
3.3. Statik Analiz Hesapları	33
3.3.1. Statik analiz gerilme hesap sonuçları	39
3.3.2. Statik analiz yanal ötelenme hesap sonuçları	44
3.4. Dinamik Analiz Hesapları	51
3.4.1. Dinamik analiz gerilme hesap sonuçları	57

Sayfa

3.4.2. Dinamik analiz yanal ötelenme hesap sonuçları	62
4. SONUÇ VE ÖNERİLER	69
KAYNAKLAR	71
ÖZGEÇMİŞ	75

ÇİZELGELERİN LİSTESİ

Çizelge	Sayfa
Çizelge 2.1. TS 498'deki yükseklik, rüzgâr hızı ve rüzgâr basıncı aralık değerleri	11
Çizelge 2.2. Betonarme yapım sistemleri	15
Çizelge 2.3. Çelik yapım sistemleri	15
Çizelge 2.4. Inland Steel Building	23
Çizelge 2.5. Aspire Tower	23
Çizelge 2.6. World Trade Center Twin Towers	24
Çizelge 2.7. Bank of China	25
Çizelge 2.8. Taipei 101	26
Çizelge 2.9. John Hancock Center	27
Çizelge 2.10. Sky City	28
Çizelge 3.1. Statik analiz yapı modeli malzeme özellikleri	33
Çizelge 3.2. Statik analiz yapı modellerindeki malzeme ebatları	35
Çizelge 3.3. Model 1 statik gerilme değerleri	39
Çizelge 3.4. Model 2 statik gerilme değerleri	40
Çizelge 3.5. Model 3 statik gerilme değerleri	41
Çizelge 3.6. Model 4 statik gerilme değerleri	41
Çizelge 3.7. Model 5 statik gerilme değerleri	42
Çizelge 3.8. Model 6 statik gerilme değerleri	43
Çizelge 3.9. Model 7 statik gerilme değerleri	43
Çizelge 3.10. 10 katlı statik model yanal ötelenme değerleri	44
Çizelge 3.11. 15 katlı statik model yanal ötelenme değerleri	46
Çizelge 3.12. 20 katlı statik model yanal ötelenme değerleri	47
Çizelge 3.13. 25 katlı statik model yanal ötelenme değerleri	49

Çizelge	Sayfa
Çizelge 3.14. Dinamik analiz yapı modellerindeki malzeme ebatları	53
Çizelge 3.15. Model 1 dinamik gerilme değerleri	57
Çizelge 3.16. Model 2 dinamik gerilme değerleri	58
Çizelge 3.17. Model 3 dinamik gerilme değerleri	59
Çizelge 3.18. Model 4 dinamik gerilme değerleri	59
Çizelge 3.19. Model 5 dinamik gerilme değerleri	60
Çizelge 3.20. Model 6 dinamik gerilme değerleri	61
Çizelge 3.21. Model 7 dinamik gerilme değerleri	61
Çizelge 3.22. 10 katlı dinamik model yanal ötelenme değerleri	62
Çizelge 3.23. 15 katlı dinamik model yanal ötelenme değerleri	64
Çizelge 3.24. 20 katlı dinamik model yanal ötelenme değerleri	65
Çizelge 3.25. 25 katlı dinamik model yanal ötelenme değerleri	67

ŞEKİLLERİN LİSTESİ

Şekil	Sayfa
Şekil 2.1. CTBUH'ye göre yükseklik kriteri	7
Şekil 2.2. Willis Tower ile Petronas Towers yükseklik ölçütleri	8
Şekil 2.3. Yapıya etkiyen yüklerin sınıflandırılması	9
Şekil 2.4. Rüzgâr hızı profili ve yapı çevresindeki türbülans	10
Şekil 2.5. Rüzgâr hızının yükseklikle değişimi	11
Şekil 2.6. a) Yuvarlatılmış köşe b) Daralan c) Değişen kesit d) Hız kesici e) Boşluk	12
Şekil 2.7. Deprem yükü altında performans düzeyleri	13
Şekil 2.8. Yüksek bina taşıyıcı sistemleri	14
Şekil 2.9. Fazlur Rahman Khan tarafından hazırlanan taşıyıcı sistem şeması	16
Şekil 2.10. (a) Konsol eğilme deformasyonu (b) Kesme gerilme deformasyonu	17
Şekil 2.11. Kirişsiz döşeme sistemleri a) kolon başlıksız b) kolon başlıklı c) guseli	17
Şekil 2.12. Çekirdek sistemde çekirdek perde ve konsol döşeme	18
Şekil 2.13. Perde duvar sistemler	18
Şekil 2.14. Kafes perdeli çerçevelerde kullanılan çapraz çeşitleri	19
Şekil 2.15. Perdeli çerçeve sistemin yanal yükler altındaki davranışı	19
Şekil 2.16. a) Mega kolon sistem b) Mega çekirdek sistem	20
Şekil 2.17. Yatay perdeli çerçeve sistem	21
Şekil 2.18. Çerçeve tüp: a) plan b) izometrik görünüm	21
Şekil 2.19. Kafes tüp sistem kesiti	22
Şekil 2.20. Demet tüp taşıyıcı sistem Willis Tower modeli	22
Şekil 2.21. Inland Steel Building	23
Şekil 2.22. Aspire Tower	24
Şekil 2.23. World Trade Center	24

Şekil	S
Şekil 2.24. Bank of China	•
Şekil 2.25. Taipei 101	
Şekil 2.26. John Hancock Center	
Şekil 2.27. Sky City	
Şekil 2.28. 2019 yılında tamamlanan yüksek yapıların bölgesel oranı	
Şekil 2.29. 2019 yılında tamamlanan yüksek yapıların fonksiyonel oranı	
Şekil 2.30. 2019 yılında tamamlanan yüksek yapıların taşıyıcı sistem malzeme oranı	
Şekil 2.31. Tianjin CTF Finance Centre	
Şekil 3.1. a) Çerçeve deformasyonu b) Kolon-kiriş bağlantısı	
Şekil 3.2. a) Tüp yapının yatay yük altındaki yer değiştirmesi	
Şekil 3.3. a) Çerçeve deformasyon şekli b) Tüp yapı deformasyon şekli	
Şekil 3.4. Statik model mesnet sınır koşulları	
Şekil 3.5. Statik model sistem serbestlikleri	
Şekil 3.6. Statik model 1	
Şekil 3.7. Statik model 2	
Şekil 3.8. Statik model 3	
Şekil 3.9. Statik model 4	
Şekil 3.10. Statik model 5	
Şekil 3.11. Statik model 6	
Sakil 3 12 Statik model 7	

Şekil

Şekil 3.4. Statik model mesnet sınır koşulları	34
Şekil 3.5. Statik model sistem serbestlikleri	34
Şekil 3.6. Statik model 1	36
Şekil 3.7. Statik model 2	36
Şekil 3.8. Statik model 3	37
Şekil 3.9. Statik model 4	37
Şekil 3.10. Statik model 5	38
Şekil 3.11. Statik model 6	38
Şekil 3.12. Statik model 7	39
Şekil 3.13. 10 katlı statik model elastik eğrileri	45
Şekil 3.14. 15 katlı statik model elastik eğrileri	46
Şekil 3.15. 20 katlı statik model elastik eğrileri	48
Şekil 3.16. 25 katlı statik model elastik eğrileri	50
Şekil 3.17. El Centro depremi ile ilgili grafikler	51

xii

25

26

27

28

29

29

30

30

31

32

32

Sayfa

Şekil 3.18. Dinamik model mesnet sınır koşulları	52
Şekil 3.19. Dinamik model sistem serbestlikleri	52
Şekil 3.20. Dinamik model 1	54
Şekil 3.21. Dinamik model 2	54
Şekil 3.22. Dinamik model 3	55
Şekil 3.23. Dinamik model 4	55
Şekil 3.24. Dinamik model 5	56
Şekil 3.25. Dinamik model 6	56
Şekil 3.26. Dinamik model 7	57
Şekil 3.27. 10 katlı dinamik model elastik eğrileri	63
Şekil 3.28. 15 katlı dinamik model elastik eğrileri	64
Şekil 3.29. 20 katlı dinamik model elastik eğrileri	66
Şekil 3.30. 25 katlı dinamik model elastik eğrileri	68

Şekil

xiii

SİMGELER VE KISALTMALAR

Bu çalışmada kullanılmış simgeler ve kısaltmalar, açıklamaları ile birlikte aşağıda sunulmuştur.

Simgeler	Açıklamalar
С	Concrete
cm	Santimetre
c _p	Yüzey Katsayısı
E _c	Elastisite Modülü
E _{su}	Kopma Uzaması
f _{ck}	Karakteristik Basınç Dayanımı
f _{ctk}	Karakteristik Çekme Dayanımı
$\mathbf{f}_{\mathbf{yk}}$	Akma Dayanımı
f _{su}	Kopma Dayanımı
ft	Feet
g	İvme
γ	Öz ağırlık
h	Yükseklik
Hz	Hertz
km	Kilometre
kN	KiloNewton
kPa	KiloPascal
m	Metre
m ²	Metrekare
MPa	MegaPaskal
q	Rüzgâr Basıncı
S	Steel
s, sn	Saniye
v	Rüzgâr Hızı
w	Eşdeğer Statik Kuvvet

Kısaltmalar	Açıklamalar
CG	Can Güveliği
СТВИН	Council on Tall Building and Urban Habitat
DD	Deprem Düzeyi
DTS	Deprem Tasarım Sınıfı
Eş.	Eşitlik
F	Floor
GÖ	Göçme Öncesi
НК	Hemen Kullanım
K	Kolon
SAP	Structural Analysis Programme
TBDY	Türkiye Bina Deprem Yönetmeliği
TS	Türk Standartları

1. GİRİŞ

İnsanın temel yaşama gereksinimlerinden biri de barınmadır. İnsanoğlu kendini doğanın olumsuz koşullarından korumak için ilkel dönemlerden günümüze kadar gelişen tarzlarda yapılar oluşturmuştur. Mağara ile başlayan bu süreç, göçebe dönemlerde kendini çadırlara bırakmış, daha sonraları yerleşik hayata geçilmesiyle birlikte yaşanılan coğrafyada hâkim olan iklim ve malzemeye uygun olarak günümüz yapılarının temeli atılmıştır. Bugün ise gelişen yapım ve imalat teknolojisi, taşıyıcı sistem ve tasarımdaki iyileştirmeler ile malzeme kalitesindeki artış sayesinde daha konforlu ve yaşanabilir yapılar inşa edilmektedir.

Dünya nüfusunun artmasıyla birlikte daha fazla konut ihtiyacı ortaya çıkmıştır. Bu ihtiyacı gidermek adına kullanılan yöntemlerden biri de bina kat sayısının artırılması olmuştur. Öyle ki, bu yükseklik artışı ileride bahsedileceği üzere çeşitli nedenlerden ötürü devasa boyutlara ulaşmıştır. Bu durumda tasarım, analiz ve imalat aşamalarında ileri yöntemler geliştirilmiş ve yapılara uygunluklarına göre çeşitlilik kazanmıştır.

Bu çalışmada, özellikle yüksek yapılarda tercih edilen tüp sistemler ve kayma çerçeveleri ele alınmaktadır. Tezin amacı; yatay yük etkisi altında kayma çerçeveleri ve tüp yapılardaki yatay deplasman eğrisi farkının ve oluşan gerilmelerin karşılaştırmalı olarak incelenmesidir. Mekanik davranışları karşılaştırılarak incelenen kayma çerçeveleri ve tüp yapı davranışının ortaya çıkarılması için her iki yapı türünün modellenmesi paket sonlu eleman programıyla yapılmıştır. Öncelikle kolon boyutları parametresinin değişimiyle yapı davranışının değişimi arasında bir bağıntı kurulmuş ve kayma çerçeveleriyle tüp yapıların yanal yükleme altındaki elastik eğrilerinin karşılaştırılması yapılarak hangi kat sayısına ulaşıldığında mekanik davranış farkının ortaya çıktığı gözlemlenmiştir. Bundan sonra incelenen her yapı türünde oluşan statik ve dinamik gerilmelerin bir karşılaştırması yapılmıştır.

2. LİTERATÜR ÇALIŞMASI

2.1. Önceki Çalışmalar

Günel ve Ilgın (2010), çalışmalarında yüksek bina tasarımına ilişkin geniş bilgiye yer vermişlerdir. Betonarme, çelik ve kompozit binaların taşıyıcı sistemleri örneklerle anlatılırken, yüksek binalarda oldukça önemli ve kritik olan rüzgâr yükünün tasarıma etkisi tartışılmıştır. Yapılan bu çalışma 5 bölümden oluşmaktadır. İlk önce yüksek bina tanımı yapılmış ve tarihsel gelişiminden bahsedilmiştir. Daha sonra rüzgâr ve deprem kaynaklı yanal yükler ele alınırken kullanılan çeşitli taşıyıcı sistemler örnek çizimlerle birlikte sunulmuştur. Farklı ülkelerden tanınmış ve sembol olmuş birçok yüksek yapı örneği, tasarımcısı, mevcut durumu ve yapıda kullanılan taşıyıcı sistemi ile açıklanmaktadır [1].

Sağlam (2016), yüksek yapılarla ilgili ders olarak okutulabilecek nitelikte bir araştırma yapmıştır. Çeşitli ölçütlere göre yüksek yapı tanımlarını yaparken, gökdelenlerin tarih boyunca gelişimlerini de ele almıştır. Sistemlerin yatay yüklere göre direncini incelerken farklı yüksek yapılarda kullanılan taşıyıcı sistemleri resim ve çizimlerle desteklemiştir. Yurtdışından birçok gökdelen örneklerinin yanında ülkemizden de İstanbul'daki yapıları görsel materyal kullanarak strüktür, bazı tasarım parametreleri ve yüklenici firma gibi bilgilere yer vermiştir [2].

Eren (2019), yaptığı bu çalışmada çelik yüksek yapıları incelemiştir. Farklı yüksek yapı tanımlarını kıyaslarken ölçme kriterlerine de yer vermiştir. Bu yapıların tarihsel gelişimini örnekleriyle ele alıp, mimari tarzlara göre dönemlerine ayırmıştır. Yüksek yapıların avantajlarını bu fikre karşıt görüşlerle ele alıp, malzeme olarak çeliğin tercih edilme nedenlerini açıklamıştır. Tasarım kuralları konusu altında yapıya etkiyen yükleri, özellikle de rüzgâr ve deprem yükünün önemini vurgulamaktadır. Kullanılan taşıyıcı sistem türlerini görsel unsurlarla zenginleştirerek açıklamakta, birçok ülkeden yüksek yapı örneklerini detaylı bir şekilde irdelemektedir [3].

Bal (2003), çalışmasına yüksek bina kavramını, yapılan çeşitli tanımları inceleyerek başlamıştır. Bu bina türünün ortaya çıkış nedenlerini ortaya koyarken, tarihsel süreçteki gelişimini kullanılan malzeme, taşıyıcı sistem, yükseklik gibi faktörler ışığında örnekler sunarak ele almıştır. Yüksek yapıların şehir planlamasındaki rolü, iç ve dış mekân

sorunsalları ve kullanım amaçları ile ilgili bilgilere yer vermiştir. Taşıyıcı sistemleri sınıflara ayırarak örnek yapılarla desteklemiştir [4].

Atasoy (2014), ilk olarak önemli kurumların yüksek yapı tanımlarını incelemiştir. Dünyadaki yüksek bina gelişimini istatiksel veriler ile sunmaktadır. Ayrıca kıtalara göre dağılımının grafiğini oluştururken, yıllara göre yükseklik değişimine de değinmiştir. Türkiye'deki yüksek bina gelişimini dönemsel olarak örnek yapılarla göstermiştir. Yüksek yapı formları, rüzgâr ve deprem yükleri, yanal ötelenmeler gibi tasarıma etkiyen faktörleri incelemiştir. Güncel taşıyıcı sistemleri detay çözümleriyle ele almıştır [5].

Parker ve Wood (2013), çalışmalarında Chicago ve New York'taki ilk örneklerinden itibaren tarihsel süreçte yapılmış diğer yapılara resimleriyle birlikte yer vermişlerdir. 21. yüzyılda estetik ve sembol olma özelliği kazanan bu yapılardaki yapım teknolojisindeki gelişmelere değinmişlerdir. Az ve çok katlı yapıları kullanılan net alan, kira değeri, yeşil alan büyüklüğü, yapım maliyeti gibi bazı faktörlere göre karşılaştırmışlardır. Çeşitli ülkelerde yüksek bina varlığıyla ilgili bilgiler verilirken, gelecekte çevre ve şehir yaşamı açısından bir değerlendirmesi yapılmaktadır. Yakın gelecekteki imalat teknolojileri ve malzeme kalitesinin değişimini vurgulanmıştır. Deprem, sel, kum-rüzgâr fırtınası, patlama, yangın, radyasyon gibi risk etmenlerinin yüksek yapılara etkisine değinilmektedir. Çevreci çözümler için çift cidarlı cephe uygulaması anlatılmıştır. Son kısımlarda birçok yüksek yapı örneği plan, kesit ve detay çizimleriyle sunulmuştur [6].

Taranath (2012), çelik ve kompozit yüksek yapıların tasarım ve analizi ile ilgili son derece detaylı bir çalışma yapmıştır. Rijit çerçeve, çekirdek, mega kolon, tüp, perde duvar, mega çekirdek sistemleri ayrıntılı bir şekilde açıklamıştır. Yüksek yapılarda son derece önem arz eden rüzgâr ve deprem yüklerini Amerikan şartnamelerine göre irdeleyip ilgili formülleri örnekler üzerinde uygulamıştır. Literatüre girmiş birçok örneği taşıyıcı sistem, kullanılan malzeme, yapıldığı dönem, plan, kesit çizimleri ve rakamsal bilgilerle konusunu tamamlamıştır [7].

Smith ve Coull (1991), birlikte oluşturdukları bu kitaba neden yüksek yapılara ihtiyaç duyulduğu ile başlarlar. Bu yapıların tasarım kriterlerini, etkiyen yüklerden özellikle rüzgâr ve deprem yükleri ile yük kombinasyonlarını açıklamışlardır. Yapısal formları sınıflandırarak analiz için yapılan modellerdeki kabullere değinmişlerdir. Tüp, çekirdek,

5

rijit çerçeve, perde duvar, yatay perdeli çerçeve, kafes perdeli çerçeve sistemler gibi taşıyıcı sistem gruplarının davranış ve özelliklerini basit örneklerle anlatmışlardır. Yüksek yapıların statik ve dinamik analizlerini ele almışlar; sünme, büzülme ve sıcaklık etkilerini araştırmışlardır [8].

Işık (2008), yüksek binalarda kullanılan taşıyıcı sistemlerle başlangıç yapmıştır. Bu yapıların tarihin akışı içinde dünyada ve Türkiye'deki gelişiminden bahsederek, önemli olanlarını kısaca aktarmıştır. Daha sonra yüksek yapı gelişimine etki eden sosyal ve teknolojik faktörleri sıralamıştır. Çok katlı yapıların tasarım ilkelerini, tasarımda dikkat edilmesi gerekenleri açıklamıştır. Yüksek yapılara etkiyen düşey yükler ve eleman boyutlandırılmasında önem arz eden rüzgâr ve deprem gibi yatay yüklerden bahsedilmiştir. Son olarak betonarme 20 katlı bir yapının SAP2000 paket programı ile çözümünü yapıp, mod birleştirme yöntemi ve eşdeğer deprem yükü yöntemi ile de hesaplamıştır. Kolon ve perdelerin yapıya etkisini belirlemek amacıyla iki farklı sistem oluşturarak hesaplamalarını tamamlamıştır [9].

Gülsoy (2003), çalışmasında deprem yükü altında 30 kat ve 104 m yüksekliğinde olan betonarme tüp sistem bir binanın çevre kiriş rijitliği ve beton dayanımının farklılığını incelemiştir. Karşılaştırdığı beton dayanımları 35 MPa, 50 MPa ve 65 MPa'dır. Yapının analizi SAP2000 paket programı ile yapılmıştır. Çevre kirişlerin boyutlarının artmasının yanal rijitliği artırdığı sonucuna ulaşılmıştır [10].

2.2. Yüksek Yapılar

19. yüzyıl sonlarında özellikle Amerika'nın Chicago ve New York şehirlerinde yapılmaya başlanmıştır. Bugün ise hemen hemen büyük kentlerin tamamında sembol niteliğinde yüksek yapıya rastlamak mümkün olmaktadır. Bu yapıların yaygınlaşmasıyla şehirlerin görünümleri ve planlamaları de değişikliğe uğramıştır. Geçmiş dönemlerde her yerden görülebilen gösterişli yapılar genellikle saraylar ve ibadethaneler iken bugün devasa yüksekliklere ulaşan yapıların arasında adeta nokta görümünde kalmışlardır. Amerikan mimarisinden kaynağını aldığından dolayı yaygın olarak İngilizce terimler kullanılmaktadır [2].

Yüksek yapı nedir sorusunun farklı tanımları mevcuttur:

- Yapı mühendisleri Mir M. Ali ve Paul J. Armstrong'a göre hızlı asansörlerin kullanıldığı, strüktürün özel olarak tasarlandığı, gücü temsil eden yapılardır [3].
- Taban alanı küçük, yüksekliği taban ölçülerine göre daha fazla olan kule biçimindeki narin yapılardır [11].
- Yapı kurallarına göre asansör gerekliliğinden dolayı 5 ya da daha çok katlı yapılardır [12].
- CTBUH'ye (Council on Tall Buildings and Urban Habitat) göre en alt açık hava seviyesinden itibaren 50 m yükseklik ve üzeri yüksek yapı, 300 m ve üzeri çok yüksek bina, 600 m ve üzeri ise mega yüksek bina olarak adlandırılmaktadır [1].
- Emporis Standartları ise 12 kat ve 35 m üzerini yüksek bina, 100 m ve üzerini ise gökdelen olarak tanımlamaktadır [1].
- Türkiye Bina Deprem Yönetmeliği (TBDY 2018) yüksek binalar için üç farklı yükseklik sınırı belirlemektedir. DTS=1, 1a, 2, 2a için 70 m'den yüksek, DTS=3, 3a için 91 m'den yüksek, DTS=4, 4a için ise 105 m'den yüksek olan yapılar, yüksek bina olarak tanımlanır [14].

Yüksek bina kriterlerinin belirlenmesinde Avrupa genelinde tercih edilen Emporis Standartları içerisindeki sınır değerleri, başta Amerika olmak üzere pek çok ülkede baz alınan CTBUH'nin belirlediği sınır değerlerinin altındadır.

Ülkelere hatta aynı ülke içindeki bölgelere göre dahi yüksek yapı kavramı değişiklik göstermektedir. Gökdelenlerin yoğun olarak yer aldığı Amerika'da yüksek bina sayılmayan bir yapı, herhangi bir Avrupa ülkesinde yüksek bina olarak nitelendirilebilmektedir [3].

Aşağıda Şekil 2.1'de CTBUH'ye göre yükseklik sınıflandırmasına ait görsel bulunmaktadır.

Şekil 2.1. CTBUH'ye göre yükseklik kriteri [13]

Yüksek Yapılar Konseyi (CTBUH), yüksek binaların yüksekliklerinin belirlenmesini 3 farklı şekilde yapmaktadır [3]:

- 1. Zeminden mimari tepe noktasına kadar olan yükseklik
- 2. Zeminden en üst kat döşemesine kadar olan yükseklik
- 3. Zeminden tepe en uç noktasına kadar olan yükseklik

Şekil 2.2'de iki farklı yüksek bina üzerinden bu yüksekliklerin nereleri belirttiği gösterilmektedir.

Şekil 2.2. Willis Tower ile Petronas Towers yükseklik ölçütleri [13]

Yüksek yapılar her ülkede çeşitli ihtiyaçlar sonucunda yapılmaya başlanmıştır. Özellikle gelişmiş ülkelerde prestij yarışının en önemli sembolleri gökdelenlerdir. Genellikle otel ve ofis olarak tasarlanan bu yapılar günümüzde yaygın bir biçimde konut olarak da kullanılmaktadır. Ayrıca uzun beton blok görünümünden sıyrılması ve insanları cezbetmesi için sosyal ve yeşil alan uygulamasına sıklıkla rastlamaktayız.

Yüksek binaların yaygın yapılma nedenlerini şöyle sıralayabiliriz [3]:

- Kırsal alanlardan şehirlere göçün artması
- Hızla artan nüfus
- Şehirlerdeki arazi fiyatlarındaki pahalılık
- Devlet ve şirketlerin güç ve prestij yarışı
- Doğal alanların tahribatının azaltılması isteği
- Kullanıcı başına tüketilen enerjiyi düşürmek
- Trafikte geçen sürenin kısaltılması
- Yapı malzemelerindeki iyileşme
- Beton teknolojisindeki ilerlemeler
- Tasarım ve analiz yöntemlerindeki gelişmeler

Yüksek yapıların sağladığı faydalar çok olmakla beraber önemli hususlarda dikkat edilmediği durumlarda olumsuzluklara yol açabilmektedir. Bu yapıların kendilerine göre özel yapım teknikleri vardır. Az katlı yapılara göre yatay yükler tasarımda kritik rol oynar. Özellikle rüzgâr ve deprem yükleri dikkatli bir şekilde hesaba dahil edilmediklerinde büyük salınımlar sonucu konfor eksikliği ve dahası taşıyıcı sistemde ciddi hasara neden olabilirler. Özel tasarımlarından ötürü ekstra maliyeti de beraberinde getirmektedir. Yüksek yapıların konumlandırılması çevresindeki diğer binaların güneş ışığından faydalanmaları açısından önemlidir. Deniz kenarlarında kıyıya yakın yapılan çok katlı binalar hâkim iklimin iç taraflara ulaşmasını engelleyebilirler. Aynı zamanda yapılacağı bölgenin alt yapı durumu uygun değilse yüksek yapı varlığı bölgedeki yaşamı sekteye uğratabilmektedirler.

2.2.1. Yüksek yapılara etkiyen yükler

Yapıların tasarım ve analizleri yapılırken genel olarak dikkate alınan yükler; zati ve hareketli yüklerdir. Ancak yüksek yapıların kendine özgü tasarım ve yapım teknikleri vardır. Az katlı yapılara göre rüzgâr ve deprem yükleri tasarımda etkin rol oynamaktadır. Yapıya etkiyen yükler Şekil 2.3'teki gibi gruplandırılabilir [15]:

Düşey Yükler

7 Yatay Yükler

Zati yük Hareketli yük Deprem yükü Rüzgar yükü Toprak itkisi Sıvı yükü Diğer Yükler

Buz yükü Çarpma yükü Patlama yükü Montaj yükü Dalga yükü Isıl yük Sünme ve büzülmeden oluşan yük

Şekil 2.3. Yapıya etkiyen yüklerin sınıflandırılması

Yüksek yapıların tasarımda özel olarak dikkate alınan rüzgâr ve deprem yüklerini açıklamalı olarak ele alınacaktır.

<u>Rüzgâr Yükü</u>

Yapı malzemelerindeki gelişmeler neticesinde dayanımı daha fazla fakat ağırlığı daha az ürünler kullanılmaya başlandı. Bu da yüksek yapıların yatay yükler etkisi altında hassaslığının artmasına neden oldu. Rüzgâr yüksek binaların özellikle üst katlarında konfor bozucu yatay deplasmanlar oluşturur. Bu yatay ötelenmelerin sınırlandırılması gerekmektedir. Yüksek yapılarda yatay yükler etkisindeki en büyük ötelenmenin bina yüksekliğinin yaklaşık 1/500'ü kadar olması beklenir [16]. Yüksek bir yapının etrafındaki rüzgâr akışı Şekil 2.4'te gösterilmektedir.

Şekil 2.4. Rüzgâr hızı profili ve yapı çevresindeki türbülans [6]

Türkiye'de yapılara uygulanacak rüzgâr yükü hesabı ve tasarım yükleri TS 498 yönetmeliğinde açıklanmaktadır. Yüksek yapılarda daha gerçekçi davranışı gözlemlemek için rüzgâr tüneli testleri de yapılmaktadır. Rüzgâr yükü çelik yapılarda ve betonarme yapılarda belirli bir yükseklikten sonra önemli derecede etkili olur. Rüzgâr hızının yükseklikle değişimi Şekil 2.5'te gösterilmiştir.

Şekil 2.5. Rüzgâr hızının yükseklikle değişimi [15]

Rüzgârın çarptığı yüzeylerde basınç, terk ettiği arka tarafında emme, yalayıp geçtiği yüzeylerde ise emme kuvveti oluşmaktadır. Rüzgâr hızı belirli bir yüksekliğe kadar artar, sonra sabit olarak devam eder [15]. Yönetmelikteki ilgili aralık değerleri Çizelge 2.1'de gösterilmektedir.

TS 498'de rüzgâr yükünün hesabı Eş. 2.1 ve Eş. 2.2'deki gibi yapılmaktadır [17]:

$$w = c_p.\,q\tag{2.1}$$

$$q = \frac{v^2}{1600}$$
(2.2)

q: rüzgâr basıncı (kN/m²)
v: rüzgâr hızı (m/s)
w: eşdeğer statik kuvvet (kN/m²)
c_p: yüzey katsayısı

Zeminden Yükseklik (m)	Rüzgâr Hızı (m/s)	Rüzgâr Basıncı (kN/m ²)
0-8	28	0,5
8-20	36	0,8
20-100	42	1,1
>100	46	1,3

Çizelge 2.1. TS 498'deki yükseklik, rüzgâr hızı ve rüzgâr basıncı aralık değerleri [17]

Rüzgâr basıncının yapıya olan etkisini azaltmak için aerodinamik tasarım ve iyileştirmeler yapılabilmektedir. Binaların köşe geometrileri değiştirilerek, hâkim rüzgâr yönüne göre konumlandırılarak, plan-kesit alanı azaltılarak ve uygun formlar ile örneklendirebiliriz [1]. Rüzgâr yükünü azaltmaya yönelik bazı formlar Şekil 2.5'te verilmektedir.

Şekil 2.6. a) Yuvarlatılmış köşe b) Daralan c) Değişen kesit d) Hız kesici e) Boşluk [6]

Deprem Yükü

Deprem yapıya etkiyen yatay yüklerden birini oluşturur. Büyüklüğüne ve yapının uygun tasarım ile imalatına göre çok yıkıcı olabilmektedirler. Deprem doğal bir olaydır ve faylar üzerindeki hareketlilikler neticesinde oluşmaktadır. Taş ocakları, baraj yapımı ve madencilik faaliyetleri de deprem üretebilmektedirler. Bunlar insan kaynaklı depremlerdir ve genelde yıkıcı bir etki yapmazlar. Özellikle aktif fay hatları üzerinden bulunan bölgelerde yapı tasarımında çok iyi bir hesap yapılması gerekmektedir. Yapılarımızın yük hesabını yaparken etkiyen yükleri yapıdan zemine doğru iletildiğini bilmekteyiz. Sismik yükleri ele alırken bu durumun tersi geçerlidir, yani zeminden yapıya doğru bir etki olmaktadır. Tasarım yapılırken deprem yükleri statik ve dinamik olarak iki şekilde analizi yapılmaktadır [18].

Yüksek yapılar için az katlı binalardaki tasarım ve analiz yöntemleri yeterli olmamaktadır. Ülkemizde de dünyada kullanılan gelişmiş yöntemler kullanılmaktadır. Yakın zamanda güncellenen deprem yönetmeliğimizin 13. bölümü deprem etkisi altında betonarme ve çelik yüksek binaların tasarım kurallarını içermektedir. TDBY 2018'e göre performansa dayalı tasarım yapılması gerekmektedir. Bu yöntem ile yapıların gerçekte gösterdikleri doğrusal olmayan davranışa daha yakın sonuçlar elde edilebilmektedir.

Bu durumda yüksek binaların tasarımı üç aşamada yapılmaktadır [19]:

- Tasarım Aşaması I: DD-2 deprem yer hareketi altında kontrollü hasar performans hedefini sağlamak için ön tasarım ve boyutlandırma
- Tasarım Aşaması II: DD-4 deprem yer hareketi altında kesintisiz kullanım, DD-3 deprem yer hareketi altında sınırlı hasar performans hedefini sağlamak için değerlendirme ve iyileştirme
- Tasarım Aşaması III: DD-1 deprem yer hareketi altında göçmenin önlenmesi, şekil değiştirmeye göre değerlendirme, iyileştirme ve son tasarım

Depreme dayanıklı yapılarda kullanımın devam edebilmesi için çeşitli düzeylerde performans düzeyleri vardır [20]:

- a. Kesintisiz Kullanım Düzeyi: Bu düzeyde yapının taşıyıcı sistem elemanlarında bir hasarın ortaya çıkmadığı durumdur. Depremde meydana gelecek yer değiştirme ve gerilmelerin elastik bölgede kalması beklenir.
- b. Sınır Hasar Düzeyi: Bu düzeyde yapının taşıyıcı sisteminde sınırlı bir hasar meydana geldiği durumdur. Depremin meydana getireceği yer değiştirme ve gerilmelerin elastik bölgede kalması veya sınırlı olarak aşması beklenir. Büyük çatlaklar, beton ezilmesi ve donatının akmaması istenir.
- c. Kontrollü Hasar Düzeyi: Bu düzeyde binanın taşıyıcı elemanlarında onarılabilir hasar meydana gelmesi durumudur. Can güvenliğinin korunduğu kabul edilir. Donatı akma durumuna gelirken, bazı büyük çatlaklar ve yer yer beton ezilmesine rastlanabilir.
- d. Göçmenin Önlenmesi Düzeyi: Bu düzey yapının taşıyıcı sisteminde ağır hasar meydana geldiği ve göçmeden önceki duruma karşılık gelir. Bu durumda da can kaybının ve binanın tamamen göçmesinin önlenmesi gerekir.

Yer değiştirme esaslı tasarım ile ilgili performans düzeyleri Şekil 2.7'de gösterilmektedir.

Şekil 2.7. Deprem yükü altında performans düzeyleri [21]

2.2.2. Yüksek yapı taşıyıcı sistem türleri

Genellikle az katlı yapılar düşey yükleri karşılaması amacıyla tasarlanmaktadır. Günümüzde bina yüksekliğinin artması, malzeme teknolojisindeki gelişmeler nedeniyle bina ağırlığının azalması ile deprem ve rüzgâr yükleri çok katlı yapılarda önemli hale gelmektedir. Bu yapıların tasarımında geleneksel yöntemler pek fayda sağlamamakla beraber yapı mühendislerini yeni taşıyıcı sistem tasarımı arayışına sokmuştur. Yükseklik arttıkça kullanılacak taşıyıcı sistem seçeneği azalmaktadır. Yüksek bina taşıyıcı sistemlerini Şekil 2.8'deki gibi sınıflandırmak mümkündür [1].

Şekil 2.8. Yüksek bina taşıyıcı sistemleri

Yapı malzemelerindeki ilerlemeler neticesinde beton dayanımının artması, betonun yüksek yapılarda kullanımını arttırmıştır. Bina kullanım alanının fazlalığı ve daha büyük açıklıkların geçilmesi avantajları ile çelik ise günümüzde çok katlı yapılarda popüler bir malzeme olarak yerini korumaktadır. Yine de hem yapım maliyeti hem de malzeme fiyatları düşünüldüğünde beton ve çeliğin birlikte kullanımı büyük yarar sağlamaktadır. Beton ve çelik malzeme için yüksek yapı taşıyıcı sistemleri ve ulaşabildikleri kat adetleri Çizelge 2.2 ve Çizelge 2.3'te ayrı ayrı gösterilmektedir.

BETONARME TAȘIYICI SİSTEMLER													
Sistem	Kat Adedi												
	0	10	20	30	40	50	60	70	80	90	100	110	120
İki yönlü döşeme ve kolonlar	-												
Perde duvarı ve mantar döşeme	-												
Perde duvarı, kolon ve mantar döşeme	-												
İkiz perde duvarları													
Rijit Çerçeve	_												
Geniş açıklıklı çerçeveli tüp													
Guseli kirişli rijit çerçeve													
Çekirdekli sistemler													
Perde duvarı ve çerçeve													
Perde duvarı ve guseli kirişli çerçeve													
Dış tüp	⊢												
İç içe tüp													
Kafes tüp													
Modüler tüp													

Çizelge 2.2. Betonarme yapım sistemleri [4]

Çizelge 2.3. Çelik yapım sistemleri [4]

ÇELİK TAŞIYICI SİSTEMLER													
Sistem	Kat Adedi												
	0	10	20	30	40	50	60	70	80	90	100	110	120
Yari-rijit bağlantılı çerçeveler	⊢	_											
Rijit çerçeveler													
Çaprazlı çerçeveler													
Şaşırtmalı kafesli çerçeveler													
Dış merkezli çaprazlı çerçeveler													
Büyük ölçekte çaprazlı rijit çerçeveler													
Yatay kafes kirişli ve kuşaklı sistemler													
Çerçeveli tüp sistemler											•	•	
Kafesli tüp sistemler													
Demet tüp sistemler				•							•	•	

Aşağıda Şekil 2.9'da tübüler sistemin mucidi Fazlur Rahman Khan tarafından ilk olarak hazırlanan taşıyıcı sistem ve ulaşmaları beklenen kat yükseklikleri verilmektedir.

Şekil 2.9. Fazlur Rahman Khan tarafından hazırlanan taşıyıcı sistem şeması [26]

a. Rijit Çerçeve Sistemler

Rijit çerçeve sistemler uzun zaman kullanılmıştır. Bu sistem birbirine bağlı kolon ve kirişlerin yapıya etkiyen yükler altında aralarındaki açının değişmemesi prensibine dayanmaktadır. Çelik elemanlarda ise birleşim yerlerine takviye yapılmaktadır. Yapısal dayanım kolon ve kiriş kesit alanlarıyla doğru orantılı, uzunlukları ve kolon aralıkları ile ters orantılıdır [22]. Şekil 2.10'da çerçeve sistemdeki yanal ötelenmeler gösterilmektedir.

Şekil 2.10. (a) Konsol eğilme deformasyonu (b) Kesme gerilme deformasyonu [7]

b. Kirişsiz Döşemeli Sistemler

Bu sistemler betonarme binalarda kullanılmaktadır. Sabit kalınlıkta döşeme ve kolonlardan oluşmaktadır. Normal yapılara göre döşeme plak kalınlığı fazla olabilmektedir. Zımbalama etkisini azaltmak amacıyla kolon başlarına başlık konulabilmektedir [1]. Şekil 2.11'da kirişsiz döşeme görselleri mevcuttur [24].

Şekil 2.11. Kirişsiz döşeme sistemleri a) kolon başlıksız b) kolon başlıklı c) guseli

c. <u>Çekirdek Sistemler</u>

Bu sisteme betonarme binalarda rastlanmaktadır. Binaya gelen tüm yükleri taşıyan büyük boyutlarda betonarme bir çekirdek perde bulunmaktadır (Şekil 2.12). Kat döşemeleri bu çekirdek perdeden konsol olarak çıkmaktadırlar. Belirli yüksekliklerde bu döşemelere sürekli olmayan kenar kolonlar ilave edilmektedir [1].

Şekil 2.12. Çekirdek sistemde çekirdek perde ve konsol döşeme [25]

d. Perde Duvar Sistemler

Yüksek binaların yapımında etkin olarak kullanılmaktadır. Rüzgâr ve deprem kaynaklı yatay yüklerin dengelenmesinde fayda sağlamaktadır. Ayrıca merdiven ve asansör boşluklarını çevreleyerek kolaylık sağlayabilmektedir. Perdenin varlığı da kayar kalıp sistemiyle yapının daha kısa sürede tamamlanmasına olanak vermektedir [2]. Şekil 2.13'te perde duvarlarla ilgili yerleşim plan örnekleri gösterilmektedir [25].

(a) Enine doğrultuda

(b) Boyuna doğrultuda

e. Perdeli Çerçeve Sistemler

 Kafes Perdeli Çerçeve Sistemler: Bu sistemde rijit çerçeve ve çapraz destekli çerçeveler bulunmaktadır. Kullanılan çapraz şekilleri X, K, V, ters V, diyagonal olabilmektedirler (Şekil 2.14). Çaprazlar yanal stabiliteyi sağlamak için uygulanmaktadırlar.

Şekil 2.14. Kafes perdeli çerçevelerde kullanılan çapraz çeşitleri [7]

Perde Duvarlı Çerçeve Sistemler: Bu sistemde rijit çerçeve ve perde duvarlar bulunmaktadır. Kullanılan perde duvarlar genellikle betonarmedir. Perdelerin yer ve şekilleri yük etkisinde gösterecekleri davranışları etkilemektedirler [1]. Şekil 2.15'te bu taşıyıcı sisteme ait davranış gösterilmektedir.

Şekil 2.15. Perdeli çerçeve sistemin yanal yükler altındaki davranışı [26]

f. Mega Kolon ve Mega Çekirdek Sistemler

Mega kolon sistemlerde kesitleri normalden çok daha büyük ve bina yüksekliği boyunca devam eden kolonlar bulunmaktadır (Şekil 2.16-a). Bu sistemde düşey yükler rahatlıkla karşılanabilmekte ancak yatay yükler için perde duvar, çekirdek, kafes kirişler ve yapıyı çevreleyen kuşaklar kullanılmaktadır. Mega çekirdek sistemlerde ise bu tür destek elemanları kullanılmamaktadır. Kat döşemeleri büyük boyutlardaki çekirdek tarafından taşınmaktadır (Şekil 2.16-b).

Şekil 2.16. a) Mega kolon sistem b) Mega çekirdek sistem [24]

g. Yatay Perdeli Çerçeve Sistemler

Yatay perdeli çerçeve sistemler (Şekil 2.17), çekirdek perdeli sistemlerin bazı eklemelerle geliştirilmiş halidir. Yatay yük etkisinde çekirdek ile dış kolonların yatay perde duvarlarla bağlanması yanal ötelenmenin azalmasında etkilidir [22].

Şekil 2.17. Yatay perdeli çerçeve sistem [22]

- h. <u>Tüp Sistemler</u>
- Çerçeve Tüp Sistemler: Geleneksel çerçeve sistemlerin gelişmiş versiyonudur. Bu sistemde yapıyı sık aralıklarla çevreleyen kolonlar derin kirişlerle birbirine bağlanmaktadır (Şekil 2.18).

Şekil 2.18. Çerçeve tüp: a) plan b) izometrik görünüm [7]

Kafes Tüp Sistemler: Çerçeve tüp sisteme birden fazla kat yüksekliğinde çapraz destek elemanların eklenmesiyle oluşmaktadır (Şekil 2.19). Böylece daha geniş aralıklarla çevre kolon kullanımı sağlanmış olmaktadır.

Şekil 2.19. Kafes tüp sistem kesiti

iii. Demet Tüp Sistemler: Bu sistem birden fazla tüp sistemin birleşiminden meydana gelmektedir (Şekil 2.20). Kat planı farklılığı, farklı yüksekliğe ulaşma gibi imkanlar ile mimari açıdan serbestlik sağlamaktadır [22].

Şekil 2.20. Demet tüp taşıyıcı sistem Willis Tower modeli [5]

2.2.3. Yüksek yapı örnekleri

Bu bölümde farklı yüksek yapı örnekleri çeşitli bilgiler (özellikle taşıyıcı sistem), resim ve teknik çizimlerle birlikte sunulmaktadır.

Rijit çerçeve sistem kullanılarak yapılan "Inland Steel Building" ile ilgili bilgiler Çizelge 2.4'te, ilgili görseller Şekil 2.21'de verilmektedir.

Yeri	Chicago, Amerika
Kullanım Amacı	Ofis
Strüktürel Yükseklik	101,30 m
Kat Adedi	19+3
Bitiş Tarihi	1958
Taşıyıcı Sistem Türü	Rijit Çerçeve Sistem

Şekil 2.21. Inland Steel Building [23]

Mega çekirdek sistem kullanılarak yapılan "Aspire Tower" ile ilgili bilgiler Çizelge 2.5'te, ilgili görseller Şekil 2.22'de verilmektedir.

Çizelge 2.5. Aspire Tower [1]

Yeri	Doha, Katar
Kullanım Amacı	Karma
Strüktürel Yükseklik	300 m
Kat Adedi	36
Bitiş Tarihi	2006
Taşıyıcı Sistem Türü	Mega Çekirdek Sistem

Şekil 2.22. Aspire Tower [24]

Yatay perdeli çerçeve sistem kullanılarak yapılan "WTC Towers" ile ilgili bilgiler Çizelge 2.6'da, ilgili görseller Şekil 2.23'te verilmektedir.

Cizelge	2.6.	World	Trade	Center	Twin	Towers	[1]
ÇILCISC	2.0.	11 Office	IIuuc	Contor	1 ** 111	1000015	L + J

Yeri	New York, Amerika
Kullanım Amacı	Ofis
Strüktürel Yükseklik	415/417 m
Kat Adedi	110
Bitiş Tarihi	1972/1973
Taşıyıcı Sistem Türü	Çerçeve Tüp Sistem

Şekil 2.23. World Trade Center [24]

Mega kolon sistem kullanılarak yapılan "Bank of China" ile ilgili bilgiler Çizelge 2.7'de, ilgili görseller Şekil 2.24'te verilmektedir.

Çizelge 2.7. Bank of China [1]

Yeri	Hong Kong, Çin
Kullanım Amacı	Ofis
Strüktürel Yükseklik	367 m
Kat Adedi	70
Bitiş Tarihi	1989
Taşıyıcı Sistem Türü	Mega Çerçeve Sistem

Şekil 2.24. Bank of China [7]

Yatay perdeli çerçeve sistem kullanılarak yapılan "Taipei 101" ile ilgili bilgiler Çizelge 2.8'de, ilgili görseller Şekil 2.25'te verilmektedir.

Çizelge 2.8. Taipei 101 [1]

Yeri	Taipei, Tayvan
Kullanım Amacı	Ofis
Strüktürel Yükseklik	508 m
Kat Adedi	101
Bitiş Tarihi	2004
Taşıyıcı Sistem Türü	Yatay Perdeli Çerçeve Sistem

Şekil 2.25. Taipei 101 [5]

Kafes tüp sistem kullanılarak yapılan "John Hancock Center" ile ilgili bilgiler Çizelge 2.9'da, ilgili görseller Şekil 2.26'da verilmektedir.

Yeri	Chicago, Amerika
Kullanım Amacı	Karma
Strüktürel Yükseklik	344 m
Kat Adedi	100
Bitiş Tarihi	1969
Taşıyıcı Sistem Türü	Kafes Tüp Sistem

Cephe kafesi Çevre kolonu Çevre kirişi

Çizelge 2.9. John Hancock Center [1]

Şekil 2.26. John Hancock Center [24]

Demet tüp sistem kullanılarak yapılan "Sky City" ile ilgili bilgiler Çizelge 2.10'da, ilgili görseller Şekil 2.27'de verilmektedir.

Yeri	Changsha, Çin
Kullanım Amacı	Karma
Strüktürel Yükseklik	733,5 m
Kat Adedi	220
Bitiş Tarihi	2021 (yapım aşamasında)
Taşıyıcı Sistem Türü	Demet Tüp Sistem

Şekil 2.27. Sky City [5]

Çizelge 2.10. Sky City [31]

2.2.4. Yüksek yapılarla ilgili güncel veriler

Bu bölümde yüksek yapılarla ilgili 2019 yılına ait güncel veriler gösterilecektir. 2019 yılında tamamlanan 200 m ve üzeri 126 adet yüksek yapının bölgelere göre oranı Şekil 2.28'de, kullanım amaçlarına göre oranı Şekil 2.29'da ve taşıyıcı sistem malzemelerine göre oranı Şekil 2.30'da gösterilmektedir.

Şekil 2.28. 2019 yılında tamamlanan yüksek yapıların bölgesel oranı [26]

Şekil 2.29. 2019 yılında tamamlanan yüksek yapıların fonksiyonel oranı [26]

Şekil 2.30. 2019 yılında tamamlanan yüksek yapıların taşıyıcı sistem malzeme oranı [26]

2019 yılında tamamlanan en yüksek bina Tianjin CTF Finance Centre (Şekil 2.31), 530 m yüksekliğindedir. Şu anda dünyadaki en yüksek 8. yapıdır [26].

Şekil 2.31. Tianjin CTF Finance Centre [32]

3. TÜP YAPI VE KESME ÇERÇEVESİ KARŞILAŞTIRMASI

3.1. Kesme Çerçevesi (Kayma Çerçevesi)

Geleneksel olarak adlandırılabilecek bir taşıyıcı sistem türüdür. Kolon, kiriş ve döşeme elemanlarından oluşmaktadır. Yapıya etkiyen yükler döşemelerden kirişlere, kirişlerden de kolonlara aktarılarak temele iletilmektedir. Kirişlerin kolonlara eğilmeye karşı rijit bir şekilde bağlanmasıyla kararlılık sağlanmaktadır [27]. Az katlı yapılarda maliyetin de düşük olmasından dolayı çokça tercih edilegelmiştir. Yapıda kolon ve kirişler arasında genelde bölme duvarlar bulunmaktadır. Bölme duvarlar taşıyıcı eleman olarak kabul edilmemektedir ancak yapının yatay ötelenmesinin azaltılmasına yardımcı olmaktadır [28]. Çerçeve yapıların rijitliği, kolon ve kiriş boyutlarıyla doğru orantılı, kat yüksekliği ve kolon aralıkları ile ters orantılı olarak değişmektedir [4]. Şekil 3.1'de çerçeve sistemin yatay etkisinde kolon ve kiriş birleşim noktasının davranışı gösterilmektedir.

Şekil 3.1. a) Çerçeve deformasyonu b) Kolon-kiriş bağlantısı [4]

3.2. Tüp Yapı (Tübüler Sistem)

Yapılarda yükseklik arttıkça özellikle yatay yüklere karşı direnç sağlamak amacıyla kullanılabilecek taşıyıcı sistem yelpazesi daralmaktadır. Yapı mühendisleri yüksek binalarda az katlı olanlara göre daha çok etkili olan rüzgâr ve deprem yüklerine karşı yeni taşıyıcı sistem arayışına girmişlerdir. Bu arayış içerisinde olan Fazlur Rahman Khan, yüksek binalarda etkin olarak kullanılan tüp sistemi yapı tasarım sektörüne kazandırmıştır. 1960'ların başında geliştirdiği bu fikir ilk olarak Chicago'da DeWitt Chestnut binasında uygulanmıştır.

Tüp yapı, bina taşıyıcı sisteminin zemine sabit tutulu bir şekilde yükselmiş içi boş bir kutu veya konsol kiriş olarak düşünülebilir [4]. Bu sistemde birim alana düşen taşıyıcı sistem malzemesinin, çerçeve sistemlere göre daha az olduğu görülmektedir. Bu da yüksek yapıların daha ekonomik, daha dayanıklı ve daha hafif olmasını sağlamaktadır. Özellikle yatay yüklere karşı koymada diğer sistemlere göre etkin olması tercih edilebilirliğini artırmaktadır. Yanal yüklere karşı yapı konsol kiriş davranışı göstermektedir (Şekil 3.2).

Şekil 3.2. Tüp yapının yatay yük altındaki yer değiştirmesi [5]

Tüp sistemler kullanılmaya başlandığından bu yana sürekli olarak geliştirilmişlerdir. Sık çevre kolonlarıyla ortaya çıkan bu tür; kafes tüp, demet tüp, tüp içinde tüp gibi çeşitli varyasyonlarla zenginleştirilmiştir. Tüp sistemlerin yatay yük etkisindeki davranışı çerçeve sistemlerden farklılık göstermektedir (Şekil 3.3).

Şekil 3.3. a) Çerçeve deformasyon şekli [4] b) Tüp yapı deformasyon şekli [7]

3.3. Statik Analiz Hesapları

Yapılan analizler bir yapının modelinin oluşturulması ve yapısal davranışının elde edilmesi için yaygın olarak kullanılan SAP2000 sonlu eleman paket programı ile yapılmıştır. İncelenen yapı modellerinde yatay yük etkisi altında yanal ötelenme ve statik gerilmeler hesaplanmıştır. Yatay yük olarak rüzgâr yükü uygulanmıştır. 10, 15, 20 ve 25 katlı dört yapı modeli tek açıklık ile başlayıp 8 kolona kadar sıklaştırma yapılarak incelenmiştir. Söz konusu modellerde kullanılan malzeme özellikleri Çizelge 3.1'deki gibidir:

Çizelge 3.1. Statik analiz yapı modeli malzeme özellikleri

Beton smifi (TS 500-2000)	C25	
Karakteristik silindir basınç dayanımı f _{ck}	25 MPa	
Karakteristik küp basınç dayanımı f _{ck}	30 MPa	
Karakteristik çekme dayanımı f _{ctk}	1,75 MPa	
Elastisite modülü Ec	30000 MPa	
Donatı sınıfı (TS 708)	S420	
Minimum akma dayanımı f _{yk}	420 MPa	
Minimum kopma dayanımı f _{su}	500 MPa	
Minimum kopma uzaması E _{su}	0,12 MPa	

Yapı modellerine uygulanan rüzgâr yükü ise şöyledir:

<u>Yükseklik (m)</u>	<u>w (basınç, kN)</u>	w (emme, kN)
0-8	1,2	0,6
9-20	1,92	0,96
21-75	2,64	1,32

C_p yüzey katsayısı TS 498'e göre basınç yüzeyi için 0,8; emme yüzeyi için 0,4 alınmıştır. Rüzgâr yükü yapı modellerine kat hizalarında noktasal yük olarak uygulanmıştır. Döşeme öz ağırlığı (kalınlık = 0,15 m, γ = 25 kN/m³) = 3,75 kN/m² Kaplama + sıva = 1,2 kN/m² Toplam zati yük \approx 5 kN/m²

Hareketli yük (TS 498'den) = $2,0 \text{ kN/m}^2$

Çatı kar yükü (Çankaya/Ankara bölgesi için) = 0,75 kN/m²

Tüm modellerdeki mesnet sınır koşulları Şekil 3.4'te gösterilmektedir:

Restraints in Joint Local Directions		
✓ Translation 1	✓ Rotation about 1	
✓ Translation 2	✓ Rotation about 2	
✓ Translation 3	✓ Rotation about 3	
Fast Restraints		

Şekil 3.4. Statik model mesnet sınır koşulları

Oluşturulan modellerdeki sistemlerin serbestlikleri Şekil 3.5'te gösterilmektedir:

Şekil 3.5. Statik model sistem serbestlikleri

Gerilmelerin araştırılması 10 katlı yapı modeli üzerinden yapılmıştır. 6,30 m tek açıklık ile başlayıp, bu açıklık arasına birer kolon konularak 8 kolona ulaşıncaya dek 7 adet model oluşturulmuştur. Yanal ötelenme hesaplarında ise farklı kat yükseklikleri ele alınmıştır. Yapı modellerindedeki kolon ve kiriş ebatları Çizelge 3.2'de gösterilmektedir:

10 katlı model	1-5 kat kolonları	55 cm × 55 cm
	6-10 kat kolonları	$50 \text{ cm} \times 50 \text{ cm}$
	Tüm kat kirişleri	$35 \text{ cm} \times 60 \text{ cm}$
15 katlı model	1-5 kat kolonları	55 cm × 55 cm
	6-10 kat kolonları	$50 \text{ cm} \times 50 \text{ cm}$
	11-15 kat kolonları	45 cm × 45 cm
	Tüm kat kirişleri	$35 \text{ cm} \times 60 \text{ cm}$
20 katlı model	1-5 kat kolonları	$60 \text{ cm} \times 60 \text{ cm}$
	6-10 kat kolonları	55 cm × 55 cm
	11-15 kat koonları	$50 \text{ cm} \times 50 \text{ cm}$
	16-20 kat kolonları	$45 \text{ cm} \times 45 \text{ cm}$
	Tüm kat kirişleri	$35 \text{ cm} \times 60 \text{ cm}$
25 katlı model	1-5 kat kolonları	$60 \text{ cm} \times 60 \text{ cm}$
	6-10 kat kolonları	55 cm × 55 cm
	11-15 kat kolonları	$50 \text{ cm} \times 50 \text{ cm}$
	16-20 kat kolonları	$45 \text{ cm} \times 45 \text{ cm}$
	21-25 kat kolonları	$40 \text{ cm} \times 40 \text{ cm}$
	Tüm kat kirişleri	$35 \text{ cm} \times 60 \text{ cm}$

Çizelge 3.2. Statik analiz yapı modellerindeki malzeme ebatları

Model-1 sistem kesiti Şekil 3.6'da, Model-2 sistem kesiti Şekil 3.7'de gösterilmektedir:

Şekil 3.6. Statik model 1

Şekil 3.7. Statik model 2

Model-3 sistem kesiti Şekil 3.8'de, Model-4 sistem kesiti Şekil 3.9'da gösterilmektedir:

Şekil 3.8. Statik model 3

Şekil 3.9. Statik model 4

Şekil 3.10. Statik model 5

Şekil 3.11. Statik model 6

Model-7 sistem kesiti Şekil 3.12'de gösterilmektedir:

Şekil 3.12. Statik model 7

3.3.1. Statik analiz gerilme hesap sonuçları

Model-1 ve Model-2'deki gerilmeler Çizelge 3.3 ve Çizelge 3.4'te gösterilmektedir:

V-4	GERİLME (kPa)						
Kat	Aks 1	Aks 2					
1	15,4893	15,4712					
2	14,5757	14,5854					
3	13,6845	13,6762					
4	12,2381	12,2423					
5	10,8004	10,7982					
6	9,3592	9,3612					
7	7,9227	7,9184					
8	5,9393	5,9417					
9	3,9605	3,9591					
10	1,9792	1,9805					

Çizelge 3.3. Model 1 statik gerilme değerleri

Çizelge 3.3'te gösterilen tek açıklıklı ilk modelde rüzgâr yükü etkisinde oluşan gerilmelerde yapı modelinin simetrik olmasından dolayı her iki kolonda da birbirine yakın değerler elde edilmiştir. Tabanda meydana gelen toplam gerilme ise 191,88 kPa olarak belirlenmiştir. Üst katlara doğru taşıyıcı elemanlarda oluşan gerilmelerde azalma olduğu görülmektedir. Elemanlarda oluşan en büyük gerilme ile en küçük gerilme arasında 13,5101 kPa fark tespit edilmiştir.

Vat	GERİLME (kPa)							
Kat	Aks 1	Aks 2	Aks 3					
1	9,3011	12,3771	9,2818					
2	7,7692	13,6135	7,7773					
3	7,2961	12,7763	7,2876					
4	6,4998	11,4773	6,5029					
5	5,6423	10,3156	5,6421					
6	5,1238	8,4703	5,1259					
7	4,2871	7,2717	4,2811					
8	3,2067	5,4645	3,2088					
9	2,1421	3,6357	2,1422					
10	1,0277	1,9042	1,0281					

Çizelge 3.4. Model 2 statik gerilme değerleri

Çizelge 3.4'te gösterilen iki açıklıklı modelde rüzgâr yükü etkisinde oluşan gerilmelerde yapı modelinin simetrik olmasından dolayı kenar kolonlarda birbirine yakın değerler elde edilmiştir. En büyük gerilmelerin orta akstaki kolonlarda meydana geldiği görülmüştür. Tabanda meydana gelen toplam gerilme ilk model ile aynı olup 191,88 kPa olarak belirlenmiştir. Üst katlara doğru oluşan gerilmeler azalmaktadır. Elemanlarda oluşan en büyük gerilme ile en küçük gerilme arasında 12,5858 kPa fark tespit edilmiştir. İlk modelde oluşan en büyük gerilme ile bu modelde oluşan en büyük gerilme arasında yaklaşık %12'lik bir fark bulunmaktadır.

Model-3 ve Model-4'teki gerilmeler Çizelge 3.5 ve Çizelge 3.6'da gösterilmektedir:

V4	GERİLME (kPa)								
Kat	Aks 1	Aks 2	Aks 3	Aks 4					
1	6,7234	8,7702	8,7628	6,7036					
2	5,2931	9,2827	9,2840	5,3003					
3	4,9008	8,7851	8,7819	4,8922					
4	4,2856	7,9525	7,9533	4,2886					
5	3,7415	7,0580	7,0587	3,7417					
6	3,2132	6,1449	6,1458	3,2161					
7	2,7251	5,2006	5,1973	2,7170					
8	1,9873	3,9508	3,9517	1,9902					
9	1,2870	2,6726	2,6731	1,2873					
10	0,4641	1,5154	1,5158	0,4647					

Çizelge 3.5. Model 3 statik gerilme değerleri

Çizelge 3.5'te gösterilen üç açıklıklı modelde rüzgâr yükü etkisinde oluşan gerilmelerde yapı modelinin simetrik olmasından dolayı Aks 1-4 ve Aks 2-3 kolonlarında birbirine yakın değerler elde edilmiştir. En büyük gerilmelerin orta akstaki kolonlarda meydana geldiği görülmüştür. Tabanda meydana gelen toplam gerilme ilk model ile aynı olup 191,88 kPa olarak belirlenmiştir. Üst katlara doğru oluşan gerilmeler azalmaktadır. Elemanlarda oluşan en büyük gerilme ile en küçük gerilme arasında 8,8199 kPa fark tespit edilmiştir. İlk modelde oluşan en büyük gerilme ile bu modelde oluşan en büyük gerilme arasında yaklaşık %40'lık bir fark bulunmaktadır.

Vat		GERİLME (kPa)									
Kat	Aks 1	Aks 2	Aks 3	Aks 4	Aks 5						
1	5,2454	6,7831	6,9341	6,7721	5,2253						
2	3,9350	6,9353	7,4116	6,9372	3,9413						
3	3,5762	6,4977	7,2256	6,4929	3,5676						
4	3,0755	5,8305	6,6638	5,8318	3,0784						
5	2,5594	5,1980	6,0837	5,1989	2,5600						
6	2,4886	4,3652	5,0095	4,3661	2,4906						
7	2,0349	3,7259	4,3285	3,7222	2,0286						
8	1,4706	2,8017	3,3326	2,8026	1,4756						
9	0,9260	1,8717	2,3236	1,8723	0,9264						
10	0,2903	0,9742	1,4300	0,9747	0,2908						

Çizelge 3.6. Model 4 statik gerilme değerleri

Çizelge 3.6'da gösterilen dört açıklıklı modelde rüzgâr yükü etkisinde oluşan gerilmelerde yapı modelinin simetrik olmasından dolayı Aks 1-5 ve Aks 2-4 kolonlarında birbirine yakın değerler elde edilmiştir. En büyük gerilmelerin orta akstaki kolonlarda meydana geldiği görülmüştür. Tabanda meydana gelen toplam gerilme ilk model ile aynı olup 191,88 kPa olarak belirlenmiştir. Üst katlara doğru oluşan gerilmeler azalmaktadır. Elemanlarda oluşan en büyük gerilme ile en küçük gerilme arasında 7,1213 kPa fark tespit edilmiştir. İlk modelde oluşan en büyük gerilme ile bu modelde oluşan en büyük gerilme arasında yaklaşık %52'lik bir fark bulunmaktadır.

Model-5'teki gerilmeler Çizelge 3.7'de gösterilmektedir:

IZ (GERİLME (kPa)								
Kat	Aks 1	Aks 2	Aks 3	Aks 4	Aks 5	Aks 6			
1	4,2872	5,4913	5,7203	5,7159	5,4782	4,2671			
2	3,0848	5,4313	6,0593	6,0599	5,4335	3,0912			
3	2,7579	5,0215	5,9086	5,9066	5,0159	2,7495			
4	2,3360	4,4537	5,4478	5,4483	4,4553	2,3389			
5	1,9101	3,9229	4,9659	4,9663	3,9241	1,9108			
6	1,9187	3,3417	4,0979	4,0982	3,3428	1,9207			
7	1,5577	2,8324	3,5359	3,5345	2,8281	1,5514			
8	1,1120	2,1069	2,7194	2,7197	2,1080	1,1140			
9	0,6849	1,3794	1,8950	1,8952	1,3801	0,6854			
10	0,1704	0,6543	1,1546	1,1548	0,6549	0,1710			

Çizelge 3.7. Model 5 statik gerilme değerleri

Çizelge 3.7'de gösterilen beş açıklıklı modelde rüzgâr yükü etkisinde oluşan gerilmelerde yapı modelinin simetrik olmasından dolayı Aks 1-6, Aks 2-5 ve Aks 3-4 kolonlarında birbirine yakın değerler elde edilmiştir. En büyük gerilmelerin orta akstaki kolonlarda meydana geldiği görülmüştür. Tabanda meydana gelen toplam gerilme ilk model ile aynı olup 191,88 kPa olarak belirlenmiştir. Üst katlara doğru oluşan gerilmeler azalmaktadır. Elemanlarda oluşan en büyük gerilme ile en küçük gerilme arasında 5,8895 kPa fark tespit edilmiştir. İlk modelde oluşan en büyük gerilme ile bu modelde oluşan en büyük gerilme arasında yaklaşık %60'lık bir fark bulunmaktadır.

Model-6 ve Model-7'deki gerilmeler Çizelge 3.8 ve Çizelge 3.9'da gösterilmektedir:

Vat		GERİLME (kPa)							
Kat	Aks 1	Aks 2	Aks 3	Aks 4	Aks 5	Aks 6	Aks 7		
1	3,6160	4,5873	4,8482	4,8985	4,8409	4,5730	3,5960		
2	2,5079	4,3947	5,0644	5,2164	5,0653	4,3971	2,5142		
3	2,2100	4,0083	4,9021	5,1366	4,8990	4,0023	2,2018		
4	1,8482	3,5130	4,4889	4,7744	4,4896	3,5148	1,8511		
5	1,4879	3,0573	4,0649	3,3771	4,0656	3,0586	1,4887		
6	1,5403	2,6451	3,3708	3,6038	3,3714	2,6464	1,5423		
7	1,2431	2,2276	2,8968	3,1183	2,8945	2,2229	1,2369		
8	0,8783	1,6394	2,2129	2,4150	2,2135	1,6410	0,8802		
9	0,5313	1,0516	1,5239	1,7046	1,5243	1,0523	0,5318		
10	0,1014	0,4490	0,8908	1,0760	0,8912	0,4497	0,1019		

Çizelge 3.8. Model 6 statik gerilme değerleri

Çizelge 3.8'de gösterilen altı açıklıklı modelde rüzgâr yükü etkisinde oluşan gerilmelerde yapı modelinin simetrik olmasından dolayı Aks 1-7, Aks 2-6 ve Aks 3-5 kolonlarında birbirine yakın değerler elde edilmiştir. En büyük gerilmelerin orta akstaki kolonlarda meydana geldiği görülmüştür. Tabanda meydana gelen toplam gerilme ilk model ile aynı olup 191,88 kPa olarak belirlenmiştir. Üst katlara doğru oluşan gerilmeler azalmaktadır. Elemanlarda oluşan en büyük gerilme ile en küçük gerilme arasında 5,1150 kPa fark tespit edilmiştir. İlk modelde oluşan en büyük gerilme ile bu modelde oluşan en büyük gerilme arasında yaklaşık %66'lık bir fark bulunmaktadır.

V		GERİLME (kPa)									
Kat	Aks 1	Aks 2	Aks 3	Aks 4	Aks 5	Aks 6	Aks 7	Aks 8			
1	3,1210	3,9218	4,1918	4,2689	4,2659	4,1826	3,9067	3,1013			
2	2,0952	3,6446	4,3080	4,5272	4,5275	4,3090	3,6472	2,1014			
3	1,8234	3,2814	4,1280	4,4570	4,4557	4,1239	3,2753	1,8154			
4	1,5085	2,8439	3,7459	4,1387	4,1390	3,7469	2,8458	1,5113			
5	1,1975	2,4467	3,3644	3,7897	3,7900	3,3653	2,4481	1,1983			
6	1,2740	2,1510	2,8082	3,1245	3,1248	2,8090	2,1524	1,2760			
7	1,0229	1,8010	2,4021	2,7016	2,7005	2,3990	1,7961	1,0167			
8	0,7162	1,3124	1,8194	2,0900	2,0902	1,8201	1,3137	0,7181			
9	0,4267	0,8258	1,2335	1,4730	1,4732	1,2340	0,8266	0,4272			
10	0.0584	0.3141	0.6824	0.9242	0.9244	0.6829	0.3147	0.0589			

Çizelge 3.9. Model 7 statik gerilme değerleri

Çizelge 3.9'da gösterilen yedi açıklıklı modelde rüzgâr yükü etkisinde oluşan gerilmelerde yapı modelinin simetrik olmasından dolayı Aks 1-8, Aks 2-7, Aks 3-6 ve aks 4-5 kolonlarında birbirine yakın değerler elde edilmiştir. En büyük gerilmelerin orta akstaki kolonlarda meydana geldiği görülmüştür. Tabanda meydana gelen toplam gerilme ilk model ile aynı olup 191,88 kPa olarak belirlenmiştir. Üst katlara doğru oluşan gerilmeler azalmaktadır. Elemanlarda oluşan en büyük gerilme ile en küçük gerilme arasında 4,4691 kPa fark tespit edilmiştir. İlk modelde oluşan en büyük gerilme ile bu modelde oluşan en büyük gerilme arasında yaklaşık %70'lik bir fark bulunmaktadır.

3.3.2. Statik analiz yanal ötelenme hesap sonuçları

Yatay rüzgâr yükü etkisinde yanal ötelenmelerin belirlenmesinde 10, 15, 20 ve 25 kat olarak dört farklı yükseklik için yapı modelleri üzerinden hesap yapılmış ve elastik eğri şekilleri oluşturulmuştur.

<u>10 katlı model</u> için yanal ötelenme değerleri Çizelge 3.10'da ve oluşan elastik eğriler Şekil 3.13'te gösterilmektedir:

X71 1 1 1 ()		YANAL ÖTELENME (m)					
Y UKSEKIIK (m)	2 Kolon	3 Kolon	4 Kolon	5 Kolon	6 Kolon	7 Kolon	8 Kolon
0	0	0	0	0	0	0	0
3	0,0009	0,0004	0,0003	0,0002	0,0002	0,0002	0,0001
6	0,0025	0,0011	0,0007	0,0005	0,0004	0,0004	0,0003
9	0,0042	0,0018	0,0011	0,0009	0,0007	0,0006	0,0005
12	0,0058	0,0024	0,0016	0,0012	0,0010	0,0008	0,0007
15	0,0072	0,0030	0,0020	0,0015	0,0013	0,0011	0,0010
18	0,0086	0,0037	0,0024	0,0019	0,0016	0,0013	0,0012
21	0,0098	0,0043	0,0028	0,0022	0,0018	0,0016	0,0014
24	0,0108	0,0048	0,0031	0,0025	0,0021	0,0018	0,0016
27	0,0115	0,0052	0,0034	0,0028	0,0023	0,0020	0,0018
30	0,0121	0,0055	0,0036	0,0030	0,0025	0,0022	0,0020

Çizelge 3.10. 10 katlı statik model yanal ötelenme değerleri

Şekil 3.13. 10 katlı statik model elastik eğrileri

Çizelge 3.10'da on katlı model rüzgâr yükü etkisinde oluşan yanal ötelenmelerde, aynı yapı genişliği içerisine birer kolon arttırılarak oluşturulan modellerden, en az kolona sahip olandan en fazla kolona sahip olana doğru azalma görülmektedir. En büyük yatay ötelenmelerin en üst katlarda meydana geldiği görülmüştür. Üst katlara doğru oluşan deplasmanlar belirli bir şekilde artmaktadır. Yedi model üzerinde yapılan çalışmalarda en üst katlarda meydana gelen en büyük ile en küçük yanal ötelenme değerleri arasında 0,0101 m fark tespit edilmiştir. Bu da yaklaşık %83'lük bir farka karşılık gelmektedir. Şekil 3.13'te gösterilen elastik eğri şekillerinden iki kolonlu modelden sekiz kolonlu modele doğru çerçeve davranışından tüp yapı davranışına geçildiği görülmektedir.

<u>15 katlı model</u> için yanal ötelenme değerleri Çizelge 3.11'de ve oluşan elastik eğriler Şekil 3.14'te gösterilmektedir:

Villagelalila (ma)		YANAL ÖTELENME (m)					
Y UKSEKIIK (M)	2 Kolon	3 Kolon	4 Kolon	5 Kolon	6 Kolon	7 Kolon	8 Kolon
0	0	0	0	0	0	0	0
3	0,0015	0,0007	0,0005	0,0004	0,0003	0,0003	0,0002
6	0,0042	0,0019	0,0012	0,0009	0,0008	0,0007	0,0006
9	0,0073	0,0031	0,0021	0,0016	0,0013	0,0011	0,0010
12	0,0103	0,0044	0,0030	0,0023	0,0019	0,0016	0,0015
15	0,0132	0,0058	0,0039	0,0030	0,0025	0,0022	0,0019
18	0,0162	0,0072	0,0049	0,0039	0,0032	0,0028	0,0025
21	0,0191	0,0087	0,0060	0,0047	0,0040	0,0035	0,0031
24	0,0218	0,0101	0,0070	0,0056	0,0047	0,0041	0,0036
27	0,0242	0,0114	0,0081	0,0064	0,0054	0,0047	0,0042
30	0,0265	0,0127	0,0090	0,0073	0,0061	0,0054	0,0048
33	0,0287	0,0140	0,0101	0,0081	0,0069	0,0060	0,0054
36	0,0305	0,0152	0,0110	0,0089	0,0076	0,0067	0,0060
39	0,0322	0,0163	0,0119	0,0097	0,0083	0,0073	0,0065
42	0,0335	0,0173	0,0128	0,0104	0,0089	0,0078	0,0070
45	0,0346	0,0182	0,0135	0,0111	0,0095	0,0084	0,0075

Çizelge 3.11. 15 katlı statik model yanal ötelenme değerleri

Şekil 3.14. 15 katlı statik model elastik eğrileri

Çizelge 3.11'de on beş katlı model rüzgâr yükü etkisinde oluşan yanal ötelenmelerde, aynı yapı genişliği içerisine birer kolon arttırılarak oluşturulan modellerden, en az kolona sahip olandan en fazla kolona sahip olana doğru azalma görülmektedir. En büyük yatay ötelenmelerin en üst katlarda meydana geldiği görülmüştür. Üst katlara doğru oluşan deplasmanlar belirli bir şekilde artmaktadır. Yedi model üzerinde yapılan çalışmalarda en üst katlarda meydana gelen en büyük ile en küçük yanal ötelenme değerleri arasında 0,0271 m fark tespit edilmiştir. Bu da yaklaşık %78'lik bir farka karşılık gelmektedir. Şekil 3.14'te gösterilen elastik eğri şekillerinden iki kolonlu modelden sekiz kolonlu modele doğru çerçeve davranışından tüp yapı davranışına geçildiği görülmektedir.

<u>20 katlı model</u> için yanal ötelenme değerleri Çizelge 3.12'de ve oluşan elastik eğriler Şekil 3.15'te gösterilmektedir:

Villagelalila (ma)			YANAL	. ÖTELEN	IME (m)		
Y UKSEKIIK (M)	2 Kolon	3 Kolon	4 Kolon	5 Kolon	6 Kolon	7 Kolon	8 Kolon
0	0	0	0	0	0	0	0
3	0,0018	0,0008	0,0006	0,0004	0,0004	0,0003	0,0003
6	0,0053	0,0023	0,0015	0,0012	0,0010	0,0008	0,0007
9	0,0094	0,0040	0,0026	0,0020	0,0017	0,0014	0,0013
12	0,0136	0,0058	0,0039	0,0030	0,0025	0,0022	0,0019
15	0,0178	0,0077	0,0052	0,0040	0,0034	0,0029	0,0026
18	0,0221	0,0097	0,0067	0,0053	0,0044	0,0038	0,0034
21	0,0264	0,0119	0,0082	0,0065	0,0055	0,0048	0,0043
24	0,0306	0,0140	0,0098	0,0079	0,0066	0,0058	0,0052
27	0,0346	0,0162	0,0115	0,0092	0,0078	0,0068	0,0061
30	0,0385	0,0183	0,0132	0,0106	0,0090	0,0079	0,0071
33	0,0423	0,0205	0,0149	0,0121	0,0103	0,0090	0,0081
36	0,0460	0,0226	0,0167	0,0136	0,0116	0,0102	0,0091
39	0,0495	0,0247	0,0185	0,0151	0,0129	0,0114	0,0102
42	0,0528	0,0268	0,0202	0,0166	0,0142	0,0125	0,0112
45	0,0558	0,0288	0,0219	0,0180	0,0155	0,0136	0,0122
48	0,0588	0,0308	0,0236	0,0195	0,0168	0,0148	0,0133
51	0,0614	0,0328	0,0253	0,0210	0,0181	0,0160	0,0143
54	0,0638	0,0346	0,0269	0,0224	0,0193	0,0171	0,0153
57	0,0660	0,0364	0,0285	0,0237	0,0205	0,0181	0,0163
60	0,0678	0,0380	0,0300	0,0250	0,0217	0,0192	0,0172

Çizelge 3.12. 20 katlı statik model yanal ötelenme değerleri

Şekil 3.15. 20 katlı statik model elastik eğrileri

Çizelge 3.12'de yirmi katlı model rüzgâr yükü etkisinde oluşan yanal ötelenmelerde, aynı yapı genişliği içerisine birer kolon arttırılarak oluşturulan modellerden, en az kolona sahip olandan en fazla kolona sahip olana doğru azalma görülmektedir. En büyük yatay ötelenmelerin en üst katlarda meydana geldiği görülmüştür. Üst katlara doğru oluşan deplasmanlar belirli bir şekilde artmaktadır. Yedi model üzerinde yapılan çalışmalarda en üst katlarda meydana gelen en büyük ile en küçük yanal ötelenme değerleri arasında 0,0506 m fark tespit edilmiştir. Bu da yaklaşık %75'lik bir farka karşılık gelmektedir. Şekil 3.15'te gösterilen elastik eğri şekillerinden iki kolonlu modelden sekiz kolonlu modele doğru çerçeve davranışından tüp yapı davranışına geçildiği görülmektedir.

25 katlı model için yanal ötelenme değerleri Çizelge 3.13'te gösterilmektedir:

Villagelalila (ma)			YANAL	ÖTELEN	IME (m)		
Y UKSEKIIK (M)	2 Kolon	3 Kolon	4 Kolon	5 Kolon	6 Kolon	7 Kolon	8 Kolon
0	0	0	0	0	0	0	0
3	0,0024	0,0011	0,0007	0,0006	0,0005	0,0004	0,0004
6	0,0070	0,0031	0,0021	0,0016	0,0013	0,0011	0,0010
9	0,0124	0,0054	0,0036	0,0028	0,0023	0,0020	0,0018
12	0,0180	0,0079	0,0054	0,0042	0,0035	0,0031	0,0027
15	0,0238	0,0106	0,0073	0,0058	0,0049	0,0042	0,0038
18	0,0299	0,0137	0,0096	0,0076	0,0064	0,0056	0,0050
21	0,0360	0,0168	0,0120	0,0096	0,0081	0,0071	0,0063
24	0,0421	0,0202	0,0145	0,0117	0,0099	0,0087	0,0078
27	0,0482	0,0236	0,0171	0,0139	0,0118	0,0104	0,0093
30	0,0541	0,0270	0,0198	0,0162	0,0138	0,0122	0,0109
33	0,0603	0,0308	0,0228	0,0187	0,0160	0,0141	0,0126
36	0,0663	0,0346	0,0258	0,0213	0,0183	0,0161	0,0144
39	0,0722	0,0384	0,0289	0,0239	0,0206	0,0181	0,0163
42	0,0780	0,0422	0,0321	0,0266	0,0229	0,0202	0,0182
45	0,0836	0,0461	0,0352	0,0293	0,0253	0,0223	0,0201
48	0,0893	0,0501	0,0386	0,0321	0,0278	0,0246	0,0221
51	0,0949	0,0541	0,0419	0,0350	0,0303	0,0268	0,0241
54	0,1002	0,0580	0,0452	0,0379	0,0328	0,0290	0,0261
57	0,1052	0,0619	0,0485	0,0407	0,0353	0,0313	0,0281
60	0,1100	0,0657	0,0517	0,0435	0,0378	0,0335	0,0301
63	0,1148	0,0696	0,0550	0,0464	0,0403	0,0358	0,0322
66	0,1193	0,0733	0,0582	0,0492	0,0428	0,0380	0,0342
69	0,1235	0,0769	0,0614	0,0520	0,0453	0,0402	0,0362
72	0,1273	0,0804	0,0644	0,0546	0,0477	0,0423	0,0381
75	0,1308	0,0837	0,0674	0,0572	0,0500	0,0444	0,0400

Çizelge 3.13. 25 katlı statik model yanal ötelenme değerleri

25 katlı model için oluşan elastik eğriler Şekil 3.16'da gösterilmektedir:

Şekil 3.16. 25 katlı statik model elastik eğrileri

Çizelge 3.13'te yirmi beş katlı model rüzgâr yükü etkisinde oluşan yanal ötelenmelerde, aynı yapı genişliği içerisine birer kolon arttırılarak oluşturulan modellerden, en az kolona sahip olandan en fazla kolona sahip olana doğru azalma görülmektedir. En büyük yatay ötelenmelerin en üst katlarda meydana geldiği görülmüştür. Üst katlara doğru oluşan deplasmanlar belirli bir şekilde artmaktadır. Yedi model üzerinde yapılan çalışmalarda en üst katlarda meydana gelen en büyük ile en küçük yanal ötelenme değerleri arasında 0,0908 m fark tespit edilmiştir. Bu da yaklaşık %70'lik bir farka karşılık gelmektedir. Şekil 3.16'da gösterilen elastik eğri şekillerinden iki kolonlu modelden sekiz kolonlu modele doğru çerçeve davranışından tüp yapı davranışına geçildiği görülmektedir.

3.4. Dinamik Analiz Hesapları

Yapılan analizler bir yapının modelinin oluşturulması ve yapısal davranışının elde edilmesi için yaygın olarak kullanılan SAP2000 sonlu eleman paket programı ile yapılmıştır. İncelenen yapı modellerinde yatay yük etkisi altında yanal ötelenme ve dinamik gerilmeler hesaplanmıştır. Yatay yük olarak deprem yükü uygulanmıştır. 10, 15, 20 ve 25 katlı dört yapı modeli tek açıklık ile başlayıp 8 kolona kadar sıklaştırma yapılarak incelenmiştir. Söz konusu modellerde kullanılan malzemeler statik analizde kullanılanlar ile aynı özelliklere sahiptir. Statik analizden farklı olarak herhangi bir düşey yük uygulanmamış, sadece deprem yükü uygulanmıştır.

Yapı modellerine yatay yük olarak El Centro deprem verileri uygulanmıştır.

El Centro (Imperial Valley) depremi 7,1 büyüklüğünde olup 1940 yılında meydana gelmiştir. Bu bölgedeki binaların %80'i hasar görmekle beraber Brawley bölgesinde yapıların tamamı hasar görmüş ve yarıya yakını kullanılamaz hale gelmiştir. Bu depreme neden olan fay, Güney Kaliforniya'daki San Andreas fay sisteminin bir uzantısıdır. Toplam hasar yaklaşık 6 milyon dolar olarak hesaplanmıştır [29]. Depremin merkez üssü Kaliforniya, derinliği 8,8 km ve mekanizması ise çarpma kaymasıdır [30]. Şekil 3.17'de ivme-zaman grafiği ve pik ivme-doğal frekans grafiği gösterilmektedir:

Şekil 3.17. El Centro depremi ile ilgili grafikler [29]

SAP2000 sonlu eleman paket programında modellere uygulanan El Centro deprem yükü ile ilgili bazı veriler aşağıda gösterilmektedir:

Etki derinliği: 8,8 km
30 m'deki ortalama dalga hızı: 213 m/s
Maksimum yer ivmesi: 0,25 g
Maksimum hız: 30 cm/s
Maksimum yer değiştirme: 17 cm
Sönüm oranı: %5
Ölçek faktörü: 0,1

Tüm modellerdeki mesnet sınır koşulları Şekil 3.18'de gösterilmektedir:

Restraints in Joint Local Directions				
✓ Translation 1		✓ Rotation about 1		
✓ Translation 2		✓ Rotation about 2		
✓ Translation 3		✓ Rotation about 3		
Fast Restraints				
·/////				

Şekil 3.18. Dinamik model mesnet sınır koşulları

Oluşturulan modellerdeki sistemlerin serbestlikleri Şekil 3.19'da gösterilmektedir:

Şekil 3.19. Dinamik model sistem serbestlikleri

Gerilmelerin araştırılması 10 katlı yapı modeli üzerinden yapılmıştır. 6,30 m tek açıklık ile başlayıp, bu açıklık arasına birer kolon konularak 8 kolona ulaşıncaya dek 7 adet model oluşturulmuştur. Yanal ötelenme hesaplarında ise farklı kat yükseklikleri ele alınmıştır. Yapı modellerindeki kolon ve kiriş ebatları Çizelge 3.14'te gösterilmektedir:

10 katlı model	1-5 kat kolonları	$50 \text{ cm} \times 50 \text{ cm}$
	6-10 kat kolonları	$45 \text{ cm} \times 45 \text{ cm}$
	Tüm kat kirişleri	$30 \text{ cm} \times 50 \text{ cm}$
15 katlı model	1-5 kat kolonları	$50 \text{ cm} \times 50 \text{ cm}$
	6-10 kat kolonları	45 cm × 45 cm
	11-15 kat kolonları	$40 \text{ cm} \times 40 \text{ cm}$
	Tüm kat kirişleri	$30 \text{ cm} \times 50 \text{ cm}$
20 katlı model	1.5 kat kolonlari	55 cm × 55 cm
	6 10 leat lealandam	$50 \text{ cm} \times 50 \text{ cm}$
		50 cm × 50 cm
	11-15 kat koonlari	$45 \text{ cm} \times 45 \text{ cm}$
	16-20 kat kolonları	$40 \text{ cm} \times 40 \text{ cm}$
	Tüm kat kirişleri	$30 \text{ cm} \times 50 \text{ cm}$
25 katlı model	1-5 kat kolonları	55 cm × 55 cm
	6-10 kat kolonları	$50 \text{ cm} \times 50 \text{ cm}$
	11-15 kat kolonları	$45 \text{ cm} \times 45 \text{ cm}$
	16-20 kat kolonları	$40 \text{ cm} \times 40 \text{ cm}$
	21-25 kat kolonları	$35 \text{ cm} \times 35 \text{ cm}$
	Tüm kat kirişleri	$30 \text{ cm} \times 50 \text{ cm}$

Çizelge 3.14. Dinamik analiz yapı modellerindeki malzeme ebatları

Şekil 3.20. Dinamik model 1

Şekil 3.21. Dinamik model 2

Model-1 sistem kesiti Şekil 3.20'de, Model-2 sistem kesiti Şekil 3.21'de gösterilmektedir:

Model-3 sistem kesiti Şekil 3.22'de, Model-4 sistem kesiti Şekil 3.23'te gösterilmektedir:

Şekil 3.22. Dinamik model 3

Şekil 3.23. Dinamik model 4

Model-5 sistem kesiti Şekil 3.24'te, Model-6 sistem kesiti Şekil 3.25'te gösterilmektedir:

Şekil 3.24. Dinamik model 5

Şekil 3.25. Dinamik model 6
Model-7 sistem kesiti Şekil 3.26'da gösterilmektedir:

Şekil 3.26. Dinamik model 7

3.4.1. Dinamik analiz gerilme hesap sonuçları

Model-1 ve Model-2'deki gerilmeler Çizelge 3.15 ve Çizelge 3.16'da gösterilmektedir:

V.	GERİLN	AE (kPa)
Kat	Aks 1	Aks 2
1	62,182	61,393
2	57,297	55,931
3	51,688	50,444
4	45,734	44,414
5	39,138	38,104
6	33,782	32,970
7	27,692	26,622
8	20,929	19,889
9	13,691	12,759
10	6,525	4,994

Çizelge 3.15. Model 1 dinamik gerilme değerleri

Çizelge 3.15'te gösterilen tek açıklıklı ilk modelde deprem yükü etkisinde oluşan gerilmelerde yapı modelinin simetrik olmasından dolayı her iki kolonda da birbirine yakın değerler elde edilmiştir. Tabanda meydana gelen toplam gerilme ise 706,178 kPa olarak belirlenmiştir. Üst katlara doğru taşıyıcı elemanlarda oluşan gerilmelerde azalma olduğu görülmektedir. Elemanlarda oluşan en büyük gerilme ile en küçük gerilme arasında 57,188 kPa fark tespit edilmiştir.

Vat		GERİLME (kPa)							
Kat	Aks 1	Aks 2	Aks 3						
1	37,068	49,422	36,941						
2	30,116	53,263	29,880						
3	26,768	48,223	26,514						
4	23,890	42,963	23,615						
5	19,984	37,705	19,669						
6	17,825	29,977	17,552						
7	14,107	24,732	13,801						
8	10,660	18,417	10,343						
9	6,869	11,746	6,560						
10	2,745	5,293	2,311						

Çizelge 3.16. Model 2 dinamik gerilme değerleri

Çizelge 3.16'da gösterilen iki açıklıklı modelde deprem yükü etkisinde oluşan gerilmelerde yapı modelinin simetrik olmasından dolayı kenar kolonlarda birbirine yakın değerler elde edilmiştir. En büyük gerilmelerin orta akstaki kolonlarda meydana geldiği görülmüştür. Tabanda meydana gelen toplam gerilme ilk modelden farklı olup 698,959 kPa olarak belirlenmiştir. Üst katlara doğru oluşan gerilmeler azalmaktadır. Elemanlarda oluşan en büyük gerilme ile en küçük gerilme arasında 50,952 kPa fark tespit edilmiştir. İlk modelde oluşan en büyük gerilme ile bu modelde oluşan en büyük gerilme arasında yaklaşık %15'lik bir fark bulunmaktadır.

Model-3 ve Model-4'teki gerilmeler Çizelge 3.17 ve Çizelge 3.18'de gösterilmektedir:

V.		GERİLME (kPa)								
Kat	Aks 1	Aks 2	Aks 3	Aks 4						
1	30,351	39,802	39,790	30,288						
2	22,972	40,812	40,777	22,848						
3	19,951	36,762	36,705	19,807						
4	17,402	32,707	32,634	17,240						
5	13,995	28,413	28,323	13,807						
6	12,820	22,665	22,587	12,657						
7	9,831	18,597	18,507	9,648						
8	7,247	13,972	13,875	7,056						
9	4,436	9,061	8,959	4,246						
10	1,091	4,413	4,295	0,840						

Çizelge 3.17. Model 3 dinamik gerilme değerleri

Çizelge 3.17'de gösterilen üç açıklıklı modelde deprem yükü etkisinde oluşan gerilmelerde yapı modelinin simetrik olmasından dolayı Aks 1-4 ve Aks 2-3 kolonlarında birbirine yakın değerler elde edilmiştir. En büyük gerilmelerin orta akstaki kolonlarda meydana geldiği görülmüştür. Tabanda meydana gelen toplam gerilme ilk modelden farklı olup 772,189 kPa olarak belirlenmiştir. Üst katlara doğru oluşan gerilmeler azalmaktadır. Elemanlarda oluşan en büyük gerilme ile en küçük gerilme arasında 39,972 kPa fark tespit edilmiştir. İlk modelde oluşan en büyük gerilme ile bu modelde oluşan en büyük gerilme arasında yaklaşık %35'lik bir fark bulunmaktadır.

Vat		GERİLME (kPa)									
Kat	Aks 1	Aks 2	Aks 3	Aks 4	Aks 5						
1	27,577	35,945	36,427	35,931	27,538						
2	19,804	35,488	37,182	35,452	19,724						
3	16,914	31,500	34,394	31,443	16,819						
4	14,181	27,354	30,709	27,281	14,072						
5	11,055	23,297	26,920	23,207	10,929						
6	10,238	18,438	21,007	18,362	10,129						
7	7,620	14,811	17,249	14,724	7,498						
8	5,387	10,828	12,980	10,734	5,260						
9	3,093	6,788	8,649	6,689	2,964						
10	0,287	2,869	4,856	2,757	0,133						

Çizelge 3.18. Model 4 dinamik gerilme değerleri

Çizelge 3.18'de gösterilen dört açıklıklı modelde deprem yükü etkisinde oluşan gerilmelerde yapı modelinin simetrik olmasından dolayı Aks 1-5 ve Aks 2-4 kolonlarında birbirine yakın değerler elde edilmiştir. En büyük gerilmelerin orta akstaki kolonlarda meydana geldiği görülmüştür. Tabanda meydana gelen toplam gerilme ilk modelden farklı olup 875,403 kPa olarak belirlenmiştir. Üst katlara doğru oluşan gerilmeler azalmaktadır. Elemanlarda oluşan en büyük gerilme ile en küçük gerilme arasında 37,049 kPa fark tespit edilmiştir. İlk modelde oluşan en büyük gerilme ile bu modelde oluşan en büyük gerilme arasında yaklaşık %40'lık bir fark bulunmaktadır.

Model-5'teki gerilmeler Çizelge 3.19'da gösterilmektedir:

IZ (GERİLME (kPa)									
Kat	Aks 1	Aks 2	Aks 3	Aks 4	Aks 5	Aks 6					
1	25,697	33,262	34,252	34,248	33,249	25,669					
2	17,698	31,836	34,616	34,608	31,804	17,641					
3	14,814	27,837	32,018	32,004	22,787	14,745					
4	12,220	23,890	28,598	28,578	23,827	12,141					
5	9,289	20,040	25,025	25,001	19,964	9,198					
6	8,924	16,065	19,568	19,547	16,000	8,846					
7	6,551	12,767	16,053	16,029	12,693	6,464					
8	4,578	9,224	12,081	12,054	9,146	4,488					
9	2,521	5,601	8,039	8,011	5,518	2,428					
10	0,124	1,934	4,407	4,377	1,841	0,240					

Çizelge 3.19. Model 5 dinamik gerilme değerleri

Çizelge 3.19'da gösterilen beş açıklıklı modelde deprem yükü etkisinde oluşan gerilmelerde yapı modelinin simetrik olmasından dolayı Aks 1-6, Aks 2-5 ve Aks 3-4 kolonlarında birbirine yakın değerler elde edilmiştir. En büyük gerilmelerin orta akstaki kolonlarda meydana geldiği görülmüştür. Tabanda meydana gelen toplam gerilme ilk modelden farklı olup 992,675 kPa olarak belirlenmiştir. Üst katlara doğru oluşan gerilmeler azalmaktadır. Elemanlarda oluşan en büyük gerilme ile en küçük gerilme arasında 34,492 kPa fark tespit edilmiştir. İlk modelde oluşan en büyük gerilme ile bu modelde oluşan en büyük gerilme arasında yaklaşık %44'lük bir fark bulunmaktadır.

Model-6 ve Model-7'deki gerilmeler Çizelge 3.20 ve Çizelge 3.21'de gösterilmektedir:

Vat		GERİLME (kPa)					
Kat	Aks 1	Aks 2	Aks 3	Aks 4	Aks 5	Aks 6	Aks 7
1	24,377	31,324	32,689	32,946	32,685	31,313	24,356
2	16,173	29,102	32,623	33,325	32,612	29,073	16,130
3	13,277	25,040	29,947	31,096	29,929	24,997	13,224
4	10,797	21,215	26,559	27,980	26,535	21,162	10,737
5	8,018	17,516	23,045	24,634	23,015	17,453	7,950
6	7,981	14,240	18,068	19,237	18,042	14,186	7,922
7	5,786	11,191	14,722	15,863	14,692	11,131	5,721
8	4,006	7,987	10,986	12,034	10,954	7,924	3,938
9	2,131	4,689	7,177	8,133	7,143	4,621	2,061
10	0,348	1,237	3,648	4,664	3,611	1,162	0,434

Çizelge 3.20. Model 6 dinamik gerilme değerleri

Çizelge 3.20'de gösterilen altı açıklıklı modelde deprem yükü etkisinde oluşan gerilmelerde yapı modelinin simetrik olmasından dolayı Aks 1-7, Aks 2-6 ve Aks 3-5 kolonlarında birbirine yakın değerler elde edilmiştir. En büyük gerilmelerin orta akstaki kolonlarda meydana geldiği görülmüştür. Tabanda meydana gelen toplam gerilme ilk modelden farklı olup 1120,524 kPa olarak belirlenmiştir. Üst katlara doğru oluşan gerilmeler azalmaktadır. Elemanlarda oluşan en büyük gerilme ile en küçük gerilme arasında 32,977 kPa fark tespit edilmiştir. İlk modelde oluşan en büyük gerilme ile bu modelde oluşan en büyük gerilme arasında yaklaşık %47'lik bir fark bulunmaktadır.

IZ (GERİLN	AE (kPa)			
Kat	Aks 1	Aks 2	Aks 3	Aks 4	Aks 5	Aks 6	Aks 7	Aks 8
1	23,401	29,846	31,497	31,936	31,935	31,492	29,836	23,385
2	15,016	26,953	30,994	32,163	32,160	30,982	26,929	14,982
3	12,114	22,831	28,151	29,996	29,991	28,132	22,795	12,072
4	9,734	19,108	24,730	26,959	26,951	24,706	19,064	9,688
5	7,078	15,537	21,232	23,686	23,676	21,202	15,485	7,025
6	7,282	12,822	16,713	18,500	18,492	16,687	12,778	7,236
7	5,218	9,970	13,503	15,228	15,218	13,474	9,921	5,167
8	3,583	7,035	9,967	11,531	11,521	9,935	6,983	3,531
9	1,850	3,997	6,355	7,765	7,755	6,321	3,942	1,795
10	0.510	0.726	2.913	4.383	4.371	2.877	0.664	0.577

Çizelge 3.21. Model 7 dinamik gerilme değerleri

Çizelge 3.21'de gösterilen yedi açıklıklı modelde deprem yükü etkisinde oluşan gerilmelerde yapı modelinin simetrik olmasından dolayı Aks 1-8, Aks 2-7, Aks 3-6 ve Aks 4-5 kolonlarında birbirine yakın değerler elde edilmiştir. En büyük gerilmelerin orta akstaki kolonlarda meydana geldiği görülmüştür. Tabanda meydana gelen toplam gerilme ilk modelden farklı olup 1244,546 kPa olarak belirlenmiştir. Üst katlara doğru oluşan gerilmeler azalmaktadır. Elemanlarda oluşan en büyük gerilme ile en küçük gerilme arasında 31,653 kPa fark tespit edilmiştir. İlk modelde oluşan en büyük gerilme ile bu modelde oluşan en büyük gerilme arasında yaklaşık %48'lik bir fark bulunmaktadır.

3.4.2. Dinamik analiz yanal ötelenme hesap sonuçları

Yatay deprem yükü etkisinde yanal ötelenmelerin belirlenmesinde 10, 15, 20 ve 25 kat olarak dört farklı yükseklik için yapı modelleri üzerinden hesap yapılmış ve elastik eğri şekilleri oluşturulmuştur.

<u>10 katlı model</u> için yanal ötelenme değerleri Çizelge 3.22'de ve oluşan elastik eğriler Şekil 3.27'de gösterilmektedir:

V ::11-1:1()			YATAY	DEPLASI	MAN (m)		
Y UKSEKIIK (M)	2 Kolon	3 Kolon	4 Kolon	5 Kolon	6 Kolon	7 Kolon	8 Kolon
0	0	0	0	0	0	0	0
3	0,0036	0,0021	0,0015	0,0013	0,0012	0,0011	0,0010
6	0,0096	0,0053	0,0037	0,0032	0,0029	0,0027	0,0026
9	0,0157	0,0085	0,0059	0,0050	0,0046	0,0043	0,0042
12	0,0215	0,0116	0,0080	0,0068	0,0062	0,0059	0,0057
15	0,0275	0,0144	0,0099	0,0084	0,0077	0,0073	0,0071
18	0,0338	0,0171	0,0119	0,0101	0,0093	0,0088	0,0086
21	0,0391	0,0195	0,0136	0,0116	0,0107	0,0102	0,0099
24	0,0434	0,0215	0,0151	0,0129	0,0120	0,0114	0,0111
27	0,0464	0,0230	0,0163	0,0140	0,0130	0,0125	0,0121
30	0,0483	0,0241	0,0173	0,0148	0,0139	0,0133	0,0130

Çizelge 3.22. 10 katlı dinamik model yanal ötelenme değerleri

Şekil 3.27. 10 katlı dinamik model elastik eğrileri

Çizelge 3.22'de on katlı model deprem yükü etkisinde oluşan yanal ötelenmelerde, aynı yapı genişliği içerisine birer kolon arttırılarak oluşturulan modellerden, en az kolona sahip olandan en fazla kolona sahip olana doğru azalma görülmektedir. En büyük yatay ötelenmelerin en üst katlarda meydana geldiği görülmüştür. Üst katlara doğru oluşan deplasmanlar belirli bir şekilde artmaktadır. Yedi model üzerinde yapılan çalışmalarda en üst katlarda meydana gelen en büyük ile en küçük yanal ötelenme değerleri arasında 0,0353 m fark tespit edilmiştir. Bu da yaklaşık %73'lük bir farka karşılık gelmektedir. Şekil 3.27'de gösterilen elastik eğri şekillerinden iki kolonlu modelden sekiz kolonlu modele doğru çerçeve davranışından tüp yapı davranışına geçildiği görülmektedir.

<u>15 katlı model</u> için yanal ötelenme değerleri Çizelge 3.23'te ve oluşan elastik eğriler Şekil3.28'de gösterilmektedir:

V::1			YATAY DEPLASMAN (m)				
Y UKSEKIIK (M)	2 Kolon	3 Kolon	4 Kolon	5 Kolon	6 Kolon	7 Kolon	8 Kolon
0	0	0	0	0	0	0	0
3	0,0063	0,0034	0,0026	0,0022	0,0020	0,0019	0,0018
6	0,0179	0,0089	0,0065	0,0056	0,0051	0,0049	0,0047
9	0,0308	0,0147	0,0107	0,0092	0,0085	0,0081	0,0078
12	0,0436	0,0205	0,0151	0,0130	0,0120	0,0115	0,0112
15	0,0558	0,0263	0,0194	0,0170	0,0157	0,0150	0,0147
18	0,0681	0,0325	0,0243	0,0214	0,0199	0,0191	0,0186
21	0,0794	0,0385	0,0291	0,0258	0,0241	0,0232	0,0227
24	0,0898	0,0443	0,0338	0,0302	0,0284	0,0273	0,0268
27	0,0991	0,0497	0,0383	0,0345	0,0325	0,0314	0,0308
30	0,1075	0,0548	0,0426	0,0386	0,0365	0,0353	0,0347
33	0,1153	0,0601	0,0471	0,0429	0,0407	0,0395	0,0388
36	0,1219	0,0646	0,0512	0,0470	0,0447	0,0435	0,0427
39	0,1273	0,0687	0,0550	0,0507	0,0484	0,0471	0,0464
42	0,1316	0,0723	0,0583	0,0541	0,0518	0,0505	0,0498
45	0,1347	0,0753	0,0612	0,0571	0,0548	0,0536	0,0528

Çizelge 3.23. 15 katlı statik model yanal ötelenme değerleri

Şekil 3.28. 15 katlı dinamik model elastik eğrileri

Çizelge 3.23'te on beş katlı model deprem yükü etkisinde oluşan yanal ötelenmelerde, aynı yapı genişliği içerisine birer kolon arttırılarak oluşturulan modellerden, en az kolona sahip olandan en fazla kolona sahip olana doğru azalma görülmektedir. En büyük yatay ötelenmelerin en üst katlarda meydana geldiği görülmüştür. Üst katlara doğru oluşan deplasmanlar belirli bir şekilde artmaktadır. Yedi model üzerinde yapılan çalışmalarda en üst katlarda meydana gelen en büyük ile en küçük yanal ötelenme değerleri arasında 0,0819 m fark tespit edilmiştir. Bu da yaklaşık %60'lık bir farka karşılık gelmektedir. Şekil 3.28'de gösterilen elastik eğri şekillerinden iki kolonlu modelden sekiz kolonlu modele doğru çerçeve davranışından tüp yapı davranışına geçildiği görülmektedir.

<u>20 katlı model</u> için yanal ötelenme değerleri Çizelge 3.24'te ve oluşan elastik eğriler Şekil 3.29'da gösterilmektedir:

Villagelalitz (m)			YATAY	DEPLASI	MAN (m)		
Y UKSEKIIK (M)	2 Kolon	3 Kolon	4 Kolon	5 Kolon	6 Kolon	7 Kolon	8 Kolon
0	0	0	0	0	0	0	0
3	0,0078	0,0043	0,0032	0,0028	0,0026	0,0025	0,0024
6	0,0235	0,0118	0,0087	0,0075	0,0069	0,0066	0,0064
9	0,0417	0,0203	0,0148	0,0129	0,0119	0,0113	0,0111
12	0,0604	0,0290	0,0213	0,0186	0,0173	0,0166	0,0162
15	0,0790	0,0378	0,0281	0,0248	0,0231	0,0222	0,0217
18	0,0977	0,0474	0,0357	0,0316	0,0297	0,0286	0,0281
21	0,1158	0,0569	0,0434	0,0388	0,0365	0,0354	0,0347
24	0,1330	0,0663	0,0513	0,0461	0,0437	0,0423	0,0418
27	0,1494	0,0757	0,0591	0,0536	0,0509	0,0495	0,0488
30	0,1648	0,0848	0,0670	0,0611	0,0583	0,0568	0,0560
33	0,1800	0,0944	0,0754	0,0692	0,0662	0,0646	0,0638
36	0,1941	0,1037	0,0837	0,0772	0,0741	0,0725	0,0716
39	0,2071	0,1126	0,0918	0,0852	0,0819	0,0803	0,0794
42	0,2189	0,1211	0,0997	0,0930	0,0897	0,0880	0,0872
45	0,2297	0,1292	0,1074	0,1006	0,0973	0,0956	0,0947
48	0,2400	0,1374	0,1151	0,1084	0,1051	0,1034	0,1025
51	0,2490	0,1450	0,1226	0,1159	0,1126	0,1109	0,1101
54	0,2568	0,1521	0,1296	0,1230	0,1198	0,1182	0,1174
57	0,2633	0,1585	0,1362	0,1298	0,1267	0,1251	0,1243
60	0,2688	0,1644	0,1424	0,1361	0,1332	0,1317	0,1309

Çizelge 3.24. 20 katlı dinamik model yanal ötelenme değerleri

Şekil 3.29. 20 katlı dinamik model elastik eğrileri

Çizelge 3.24'te yirmi katlı model deprem yükü etkisinde oluşan yanal ötelenmelerde, aynı yapı genişliği içerisine birer kolon arttırılarak oluşturulan modellerden, en az kolona sahip olandan en fazla kolona sahip olana doğru azalma görülmektedir. En büyük yatay ötelenmelerin en üst katlarda meydana geldiği görülmüştür. Üst katlara doğru oluşan deplasmanlar belirli bir şekilde artmaktadır. Yedi model üzerinde yapılan çalışmalarda en üst katlarda meydana gelen en büyük ile en küçük yanal ötelenme değerleri arasında 0,1379 m fark tespit edilmiştir. Bu da yaklaşık %50'lik bir farka karşılık gelmektedir. Şekil 3.29'da gösterilen elastik eğri şekillerinden iki kolonlu modelden sekiz kolonlu modele doğru çerçeve davranışından tüp yapı davranışına geçildiği görülmektedir.

25 katlı model için yanal ötelenme değerleri Çizelge 3.25'te gösterilmektedir:

Vültaaltilt (m)		YANAL ÖTELENME (m)					
I UKSEKIIK (III)	2 Kolon	3 Kolon	4 Kolon	5 Kolon	6 Kolon	7 Kolon	8 Kolon
0	0	0	0	0	0	0	0
3	0,0095	0,0052	0,0040	0,0034	0,0032	0,0030	0,0029
6	0,0288	0,0145	0,0108	0,0093	0,0086	0,0082	0,0079
9	0,0514	0,0251	0,0188	0,0162	0,0150	0,0143	0,0140
12	0,0750	0,0363	0,0274	0,0238	0,0222	0,0213	0,0208
15	0,0987	0,0478	0,0365	0,0320	0,0300	0,0288	0,0282
18	0,1229	0,0604	0,0468	0,0414	0,0389	0,0376	0,0369
21	0,1468	0,0734	0,0577	0,0513	0,0486	0,0470	0,0462
24	0,1701	0,0866	0,0689	0,0617	0,0587	0,0570	0,0560
27	0,1928	0,0999	0,0805	0,0725	0,0692	0,0673	0,0663
30	0,2147	0,1132	0,0923	0,0836	0,0800	0,0781	0,0770
33	0,2369	0,1275	0,1051	0,0958	0,0919	0,0898	0,0887
36	0,2583	0,1417	0,1181	0,1083	0,1040	0,1018	0,1007
39	0,2789	0,1559	0,1312	0,1210	0,1163	0,1141	0,1129
42	0,2985	0,1699	0,1443	0,1338	0,1287	0,1265	0,1252
45	0,3171	0,1837	0,1574	0,1467	0,1414	0,1389	0,1377
48	0,3359	0,1981	0,1712	0,1603	0,1550	0,1522	0,1509
51	0,3537	0,2123	0,1850	0,1740	0,1685	0,1656	0,1641
54	0,3703	0,2260	0,1985	0,1874	0,1820	0,1790	0,1773
57	0,3859	0,2393	0,2117	0,2007	0,1952	0,1922	0,1905
60	0,4004	0,2522	0,2247	0,2138	0,2083	0,2053	0,2036
63	0,4148	0,2655	0,2381	0,2272	0,2218	0,2188	0,2171
66	0,4279	0,2781	0,2510	0,2403	0,2349	0,2319	0,2302
69	0,4398	0,2901	0,2634	0,2529	0,2476	0,2446	0,2429
72	0,4503	0,3014	0,2752	0,2651	0,2599	0,2569	0,2553
75	0,4596	0,3120	0,2866	0,2767	0,2717	0,2688	0,2672

Çizelge 3.25. 25 katlı dinamik model yanal ötelenme değerleri

25 katlı model için oluşan elastik eğriler Şekil 3.30'da gösterilmektedir:

Şekil 3.30. 25 katlı dinamik model elastik eğrileri

Çizelge 3.25'te yirmi beş katlı model deprem yükü etkisinde oluşan yanal ötelenmelerde, aynı yapı genişliği içerisine birer kolon arttırılarak oluşturulan modellerden, en az kolona sahip olandan en fazla kolona sahip olana doğru azalma görülmektedir. En büyük yatay ötelenmelerin en üst katlarda meydana geldiği görülmüştür. Üst katlara doğru oluşan deplasmanlar belirli bir şekilde artmaktadır. Yedi model üzerinde yapılan çalışmalarda en üst katlarda meydana gelen en büyük ile en küçük yanal ötelenme değerleri arasında 0,1924 m fark tespit edilmiştir. Bu da yaklaşık %42'lik bir farka karşılık gelmektedir. Şekil 3.30'da gösterilen elastik eğri şekillerinden iki kolonlu modelden sekiz kolonlu modele doğru çerçeve davranışından tüp yapı davranışına geçildiği görülmektedir.

4. SONUÇ VE ÖNERİLER

Yapılan çalışma sonucunda kayma çerçeveleri ile tüp yapıların statik ve dinamik yanal yük etkisi altında meydana gelen gerilme ve yer değiştirme değerleri elde edilmiştir. Ortaya çıkan sonuçlar çizelge ve grafiklerle karşılaştırılmıştır. Yapı modellerinin incelenmesinde yatay yük olarak statik analizlerde rüzgâr yükü, dinamik analizlerde ise deprem yükü uygulanmıştır.

Yatay yük etkisi altında oluşan gerilmeler 10 katlı yapı modeli üzerinden incelenmiştir. Statik ve dinamik analizler sonucunda meydana gelen gerilme değerlerine bakıldığında kesme yapısından tüp yapıya doğru taşıyıcı sistem ana elemanı olan kolonlarda oluşan gerilmelerin daha düşük değerlere sahip olduğu görülmüştür. Oluşan en büyük gerilmeler:

Model 2 ile Model 1 arasında %12 (statik) - %15 (dinamik), Model 3 ile Model 1 arasında %40 (statik) - %35 (dinamik), Model 4 ile Model 1 arasında %52 (statik) - %40 (dinamik), Model 5 ile Model 1 arasında %60 (statik) - %44 (dinamik), Model 6 ile Model 1 arasında %66 (statik) - %47 (dinamik), Model 7 ile Model 1 arasında %70 (statik) - %48 (dinamik) bir fark oluşturmaktadır.

Oluşan toplam gerilme daha fazla kolon tarafından paylaşıldığından dolayı taşıyıcı elemanlardaki zorlanmalar azalmaktadır. Bu da sanılanın aksine elemanlara etkiyen gerilme düşüşünden kaynaklı malzeme boyutu ve miktarı açısından maliyet düşürücü etki yapmaktadır. Ayrıca tek açıklıklı çerçeveden başlanıp belirli aralıklarda birer artırılarak oluşturulan yapı modellerinde, ara kolonlarda oluşan statik ve dinamik gerilmeler çevre kolonlarında oluşan gerilmelerden daha yüksektir.

Yatay yük etkisi altında oluşan yanal deformasyonlar 10, 15, 20 ve 25 katlı yapı modelleri üzerinden incelenmiştir. Modellerde her 5 katta bir kolon en kesiti yaklaşık %10 oranında azaltılmıştır. Statik ve dinamik analizler sonucunda oluşan yanal ötelenmeler incelendiğinde kayma çerçevesinden tüp yapıya doğru göreli kat ötelenme değerlerinin azaldığı görülmektedir. Her modelin en üst katında meydana gelen en büyük ve en küçük yanal ötelenmeler:

- 10 katlı model için %83 (statik) %73 (dinamik),
- 15 katlı model için %78 (statik) %60 (dinamik),
- 20 katlı model için %75 (statik) %50 (dinamik),
- 25 katlı model için %70 (statik) %42 (dinamik) bir fark oluşturmaktadır.

Veriler sonucu oluşturulan elastik eğrilerde kesme çerçevesi ve tüp yapı davranışı belirgin bir şekilde ortaya konulmaktadır. 25 katlı modelde tüp yapı davranışına daha önce ulaşılırken en geç 10 katlı modelde ulaşılmıştır. Yapı yüksekliği arttıkça oluşan deformasyon şekillerinden tüp yapı özelliği daha iyi gözlemlenmektedir. Bu da az katlı yapılarda tüp sistemin kullanılmasının avantajlı olmadığı gibi sık çevre kolonlarından dolayı yapım maliyetini artırmaktadır. Yüksek yapılarda en-boy oranından ötürü narinlik fazla olduğundan dayanımı artırmak için tüp sistemlerin kullanımı daha uygun olmaktadır. Aynı zamanda yüksek binalarda üst katlara doğru rüzgâr salınımlarından oluşan konfor eksikliğini azaltıcı bir etkiye sahiptir.

KAYNAKLAR

- 1. Günel, M. H., Ilgın, H. E. (2010). Yüksek Binalar: Taşıyıcı Sistem ve Aerodinamik Form (Birinci Baskı). Ankara: ODTÜ Mimarlık Fakültesi Yayınları.
- 2. Sağlam, M. R. (2016). Yüksek Yapılar: İstanbul'dan Örnekler (Birinci Baskı). Ankara: Nobel Akademik Yayıncılık.
- 3. Eren, Ö. (2019). *Geçmişten Günümüze Çelik Yüksek Yapılar* (Birinci Baskı). İstanbul: Quintessence Yayıncılık.
- 4. Bal, C. (2003). Yüksek Bina Yapım Sistemlerinin Tasarım Kısıtlamaları Üzerine Bir Araştırma. Yüksek Lisans Tezi, İstanbul Teknik Üniversitesi Fen Bilimleri Enstitüsü, İstanbul, 89-126.
- 5. Atasoy, N. (2014). Yüksek Yapılarda Güncel Tasarım Yaklaşımları. Yüksek Lisans Tezi, Yıldız Teknik Üniversitesi Fen Bilimleri Enstitüsü, İstanbul, 85-124.
- 6. Parker, D., Wood, A. (2013). *The Tall Buildings Reference Book*. (First Edition). Oxfordshire: Routledge.
- 7. Taranath, B. S. (2012). *Structural Analysis and Design of Tall Buildings: Steel and Composite Construction* (First Edition). Florida: CRC Press.
- 8. Smith, B. S., Coull, A. (1991). *Tall Building Structures: Analysis and Design*. (First Edition). Canada: A Wiley Interscience Publication.
- 9. Işık, M. (2008). *Çok Katlı Betonarme Yapılarda Taşıyıcı Sistem Etkisi*. Yüksek Lisans Tezi, İstanbul Teknik Üniversitesi Fen Bilimleri Enstitüsü, İstanbul, 1-23.
- 10. Gülsoy, İ. (2003). Betonarme Tüp Sistem Bir Yapının Tasarımı. Yüksek Lisans Tezi, İstanbul Teknik Üniversitesi Fen Bilimleri Enstitüsü, İstanbul, 1-2.
- 11. Emregül, C. (1997). *Teknoloji Bağlamında Yüksek Binalara Yaklaşım*. Yüksek Lisans Tezi, İstanbul Teknik Üniversitesi Fen Bilimleri Enstitüsü, İstanbul, 3-8.
- 12. Beedle, L.S. (1984). *The Role of Tall Buildings*. Tall Buildings in Urban Context, Dhahran.
- 13. İnternet: CTBUH. Tall Buildings High Criteria. URL: https://www.ctbuh.org/resource/height, Son Erişim Tarihi: 19.12.2019.
- 14. Çevre ve Şehircilik Bakanlığı. (2018). *Türkiye Bina Deprem Yönetmeliği*. Ankara: Türkiye Çevre ve Şehircilik Bakanlığı, 268-277.
- 15. Topçu, A. (2019). *Betonarme 2 ders notları*. Eskişehir: Osmangazi Üniversitesi İnşaat Mühendisliği Bölümü, 141-154.
- 16. Bennett, D. (1995). *Skyscrapers: Form & Function*. (First Edition). New York: Simon & Schuster Ltd.

- 17. Türk Standartları Enstitüsü. (1997). Yapı Elemanlarının Boyutlandırılmasında Alınacak Yüklerin Hesap Değerleri. Ankara: Türk Standartları Enstitüsü, 8-12.
- Krinitzsky, E. L., Gould, J. P., Edinger, P. H. (2006). Depreme Dayanıklı İnşaat İçin Temel İlkeler. (Çev. Kamil Kayabalı). Ankara: Gazi Kitabevi. (Eserin orijinali 1993'te yayımlandı).
- 19. Livaoğlu, R. (2017). Yeni Deprem Yönetmeliği ve Yüksek Yapılar. *İMO Bursa Bülten*, 70, 22-25.
- 20. Celep, Z., Özuygur, A. R. (2017). Yüksek Binaların Yapısal Tasarımı. İMO Bursa Bülten, 70, 8-12.
- 21. Orakçal, K. (2019). Mevcut betonarme yapıların deprem performansının değerlendirmesi: itme analizi ders notları. İstanbul: Boğaziçi Üniversitesi İnşaat Mühendisliği Bölümü, 26.
- 22. Günel, M. H., Ilgın, H. E. (2008). Yüksek Binalarda Yanal Kuvvetlere Karşı Strüktürel Yaklaşımlar. *Ege Mimarlık Dergisi*, 10, 20-25.
- 23. İnternet: Embarch. Inland Steel Building. URL: http://www.embarch.com/chicagoinland-steel-building, Son Erişim Tarihi: 25.10.2019.
- 24. Günel, M. H., Ilgın, H. E. (2014). *Tall Buildings: Structural Systems and Aerodynamic Form* (First Edition). John Wiley: London.
- 25. Sesigür, H. (2018). Yüksek binalar ders sunusu. İstanbul: İstanbul Teknik Üniversitesi Mimarlık Fakültesi Yapı ve Deprem Mühendisliği Çalışma Grubu.
- 26. İnternet: CTBUH. Year in Review: Tall Trends of 2019, URL: http://www.skyscrapercenter.com/year-in-review, Son Erişim Tarihi: 19.12.2019.
- 27. Meistermann, A. (2017). *Adım Adım Taşıyıcı Sistemler*. (Çev. Tuğçe Selin Tağmat). İstanbul: Yem Yayınevi. (Eserin orijinali 2007'de yayımlandı).
- 28. Doğangün, A. (2018). Betonarme Yapıların Hesap ve Tasarımı (On beşinci baskı). İstanbul: Birsen Yayınevi, 141.
- 29. İnternet: Vibration Data. El Centro Earthquake Data. URL: http://www.vibrationdata.com/elcentro.htm, Son Erişim Tarihi: 08.11.2019.
- 30. İnternet: Strong Motion Center. El Centro Earthquake Data. URL: https://strongmotioncenter.org/vdc/scripts/event.plx?evt=88#28, Son Erişim Tarihi: 08.11.2019.
- 31. İnternet: The Skyscraper Center. Sky City. URL: https://www.skyscrapercenter.com/building/sky-city/14297, Son Erişim Tarihi: 08.11.2019.
- 32. İnternet: Medium. Tianjin CTF Finance Centre. URL: https://medium.com/@SOM/reinventing-the-skyscraper-5ed77dd266b1, Son Erişim Tarihi: 19.12.2019.

ÖZGEÇMİŞ

Kişisel Bilgiler

Soyadı, adı	: BAĞDAT, Ramazan
Uyruğu	: T.C.
Doğum tarihi ve yeri	: 27.03.1992, Zonguldak
Medeni hali	: Bekar
Telefon	: (554) 7871118
e-mail	: ramazan.bagdat@gazi.edu.tr

Eğitim

Derece	Eğitim Birimi	Mezuniyet Tarihi
Yüksek Lisans	Gazi Üniversitesi / İnşaat Mühendisliği	Devam ediyor
Lisans	Ege Üniversitesi / İnşaat Mühendisliği	2016
Lise	Çankırı Gazi Anadolu Lisesi	2011

İş Deneyimi

Yıl	Yer	Görev
2017-2020	Gökdem Yapı Denetim Ltd. Şti.	Kontrol Mühendisi
2016-2017	Kardelen Mimarlık Mühendislik	Proje Mühendisi

Yabancı Dil

İngilizce, Almanca

Yayınlar

1. Bağdat, R., Gültop, T. (2019, 15-17 November). A comparison the mechanical response of tubular structures and shear frames. In 7th International Symposium on Academic Studies in Science, Engineering and Architecture Studies, Ankara.

Hobiler

Teknik kitaplar okumak, Tiyatroya gitmek, Klasik müzik ve Türk halk müziği dinlemek.

GAZİ GELECEKTİR...