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1. APPROXIMATE SOLUTIONS OF EQUATIONS

Sometimes, we encounter problems such as finding the roots of equations of the form
f(x)=0

1.1. Newton-Rapson Method

To find the roots of an equation given by the function f(x)=0, let's open the Taylor

1

series at X =X, . So we can write itas @, X" +a,, X" +...+ &,

L"!C{X)

= *q-radlor
Acithioni

!

SRS ?<

For the Fourier series expansion, it can be written as:

f(x)=a, cos(b, x)+c,sin(d, x)+a,_, cos(b, , x)+c, ,sin(d, , X)+...

(X —Xo )2 f u(

o X )+ ...

If we write Taylor Series expansion; f(x)= f(x,)+(x—x%,)f"(x,)+

In this series, at X =0 the McLauren series occurs. If we solve this equation, X, is the

closest value to root. Therefore, the 3rd term and after converge to 0.

F(x) = 1% )+ (x =% ) (%)
| f(x)=0
0

= f(Xo)"'(X_Xo)f’(Xo)

=>
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Example-1: Find the roots of the equation given by x> —2=0

X,, = F/2 = F1.414213562

f(x)=x*-2
f'(x)=2x
X2 -2 . N
=> Xop = X, — 5 (we can take any value as an first approximation)
X

If we choose X, =1, as the first approximation value.

2 —
=> X :1—12*12 =15
2 —_—
X, =1.5- 2> ~2 _1 4166667
2*15
2 —_—
X, =1.4166667 - LHLO006T =2 ) 4142157
2*1.4166667
2 —_—
x, =1.4142157 - LAMA2IT =2 4 4145143
2*1.4142157
2 —
x, =1.4142143- 24142143 =2 4 1145136 x solution

2*1.4142143
Xs =1.4142136

Note: The found root converges to the root closest to the initially accepted value.
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Example-2: Find the roots of the equation given by e¥ —x*+3x-4=0
f(x)=eX —x°+3x-4

f'(x)=2xe" —3x2+3

X, = 0.5 is chosen as a first approximation,

f(x) _og5_ "7 —(05) +3%(0.5)-4
fl(x)  2%05%eC¥ —3%(0.5) +3

e _(0.5) +3*(0.5)—4
2

=> X =05- .
' 2%0.5%e®% _3%(0.5) +3

=0.8794467 bulunarak iterasyona devam edilir.
e879467" _(0,8794467)° +3*(0.8794467)— 4

X, = 0.8794467 — 2
’ 2*0.8794467* 874467 _3x(0 8794467) + 3

=0.8515428

e®1529 _ (0.8515428)° + 3*(0.8515428)— 4

X, = 0.8515428 — 4
’ 2%0.8515428* #1928 _3x(( 8515428 +3

=0.851049 *Co6zim

X, =0.851049

The root found is the closest root to 0.5.

1.2. Newton's Modified Method

In this method, the solution can be reached more easily by reducing the number of

iterations. However, it is not preferred because the quadratic derivative of the function is
used during the solution.
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1.3. Secant Method

If we define the derivative; f'(x): ||m f(xn)_ f(xn—l)

Xn—Xp 10 Xn - Xn—l

When we apply this definition to the Newton-Rapson model, we obtain the Secant method

equation:

T M
I (7 T 8 R
§ :X_f(Xn)*(Xn—Xn—1)
" T T (%)= F (% )]

In this method, we do not take the derivative of the function, but instead of one initial

value, two initial values must be chosen.

Homework:

1) Find 3/83 (f (X): x° —83); by using all methods with precision up to the 6th digit.

-3x

2) Find the root of the equation f(x)=x2 —2e7%*x° —e by taking initial values as

Xo =1 and x ; =2 (by using all methods).

. 1
3) Find the root of the equation SIn x}+2)== by taking initial values as X, =1 and x_, =3
X 0 1

(by using all methods).
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2. SOLUTION OF LINEAR EQUATIONS AND INVERSION OF THE MATRIX

i)
[
g
)
O
w
O
i

N
s

4*4 matrix

(@)
w
(=

(@]
w
N

(@)
w
@

O O O
w
~

C;1,Cyy, Cs3,C,y diagonal terms

If C; =C;;, then this matrix is a symmetric matrix
C11 012 C13 Cl4
_ 0 Cr Cpz Gy . L . .
C= This matrix is called the upper trigonal matrix.
0 0 ¢y cy
0 0 0 ¢,

In the opposite case, it is called the lower trigonal matrix.

c, O 0
C22 O . .
C= Diagonal matrix
0 c3; O
0 0 0 ¢,
1 000
0100 _ _
| = Unit matrix
0 010
0 0 01
¢; ¢ 0 O
Cc, C, C 0
c=| 2 = = Band type matrix [Tri-diagonal matrix]
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Some Matrix Properties

1) The sum of two matrices (such as A and B) is defined as long as their dimensions are
the same.

S=A+B=B+A

S; =aij+-bij:bij+aij

1 2 2 1 3 3
0 1{+/4 0|=/4 1
3 0 1 3 4 3

2) The difference of two matrices of the same size,

S=A-B=-B+A

1 2 2 1 -1 1
0 1|—-14 0|=|1-4 1
3 0 1 3 2 -3

3) In multiplication of two matrices, if the number of columns in the first matrix is equal

to the number of rows in the second matrix, the multiplication operation is defined.

S=A*B=B*A

1 2 5 1 1*2+2*1 1*1+2*0 4 1
0 1{ }: 0*2+1*1 0*1+1*0|=|1 O
10 1*2+0*1 1*1+0*0 2 1

General formula; P = Zaikbkj

4) When a matrix is multiplied by the unit matrix, the result is the matrix itself.
Al =A=1A
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5) If the inverse of the C matrix C! exists, C.C ' =1 and (Cfl)f1 =C (For the inverse to

happen, the matrix must be a square matrix and its determinant must be different from
|IOII)

_ cofactorof C;  (-1)"'M

Ci'_l — — ji
! C] C]
8 0 1
Example-3: Find the inverseof C=|3 -2 1
1 4 0

If we calculate the determinant,

8 0 118 0
Cl=|3 -2 1|3 -2=[(8*-2%0)+(0*1*1)+(L1*3*4)]-[1*-2*1)+(8*1*4)+(0*3*0)]
1 4 01 4
8 0 1|8 0
C|=|3 -2 1|3 -2=12-30=-18
1 4 01 4
-2 1
1*
—1_(_1)1+1M11 4 0 _ -4 _i
B C] -18  -18 18
1
_1*
c_lz(—1)1+2M21: 4 0‘: 4 :_i
" ] -18  -18 18
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0 1

1%*
C—l_(_1)1+3M31_ -2 1_ 2 __3
N le -18  -18 18

301
—1%*
-1 (_I)MMU ! 0‘ 1 1
G T R TR T
1

1%

-1 (_1)2+2M22 1 0‘ —1 1
Cpn = = = =g
(e -18  —18 18

8 1

—1%*

-1 (_1)2+3M32 3 1‘ —3 5
Cy3 = = = =
(¢ -18  -18 18
P2
- "'m, 4| 14 _ 14
¥ i -1 -18 18
8 0
—1%*
L (1M, 1 4‘ 32 32
€3 = = = Y
| -18  -18 18
13 0‘
L =Py, 3 -2 -16 16
C33 = = = =75
c| -18  -18 18
4 -4 -2
c*:% -1 1 5
-14 32 16
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n .
6) The determinant of a matrix of n*n dimensions is [C|= " (~1)"'c, M,; . In this formula,
=i

a solution can be made by considering the desired row or column in the matrix. Selecting

the row or column with the highest number of "0" is convenient for analysis.

-3 1 16 -8
) 0O 1 14 0
Example-4: Calculate the determinant of C =
0 3 0 1
0 14 6 O
The analysis will be made by considering the 1st column with the maximum number of “0”.
-3 1 16 -8
0 1 14 0 1 14 0 1 16 -8
C=l0 2 o0 1 =(-1)"(-3)3 0 +(-1**0)3 0 1|+(-1"%(0)..
14 6 O 14 6 O
0 14 6 O
1 14 0 ey
=> =-33 0 1:_3{(—1)”(1)114 GH=—3[—1*(1*6—14*14)]:3*(6—196)=—570
14 6 0

Matrix Representation of Systems of Linear Equations

Cu Xy +Cp Xy +C3 X3+ Cy X, =1,
Cpr Xy +Cpu X, +Cp3 X3 +Cy X, =1,
C3i Xy +Cgp Xy +C33 X3+ C, X, =15

Cup X +Cpp X, +Cy3 X3 +Cyy X, =1,

Cll ClZ C13 Cl4 Xl rl
=> C21 C22 C23 C24 X2 — r2
C31 C32 C33 C34 X3 r3
C41 C42 C43 C44 X4 r4

CX=R
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Note: The determinant of a matrix whose two rows or two columns are the same is always
0.

The classical solution of this system of equations is done by Cramer's rule.
_detlc,)
“ " det(C)

C, ; is the resulting matrix with the k' column replaced with R. The reason for not using
this method is the total number of operations consisting of addition, subtraction,
multiplication and division operations for each calculation. Approximately O(N"’)

operation is needed.

CX =R

=> C'CX=C'R
X =C™'R
X=C*'R

Example-5: Solve the following system of equations using Cramer's rule.

X, —3X, —4X, =1
— X, +X, —3X; =14

X, =3X; =5

1 -3 —4x| |1
11 —3x,|=[4
0 1 -3x| |5
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If we calculate its determinant,
1 -3 -41 -3
-1 1 -3-1 1 =1+12=13
0O 1 -30 1

14 1 -314 1
5 1 -35 1 -117
Xl = = =—9
13 13
1 1 —-41 1
-1 14 -3-1 14
0 5 =30 5 -10
X2 = =
13 13
1 -3 1|1 -3
101 14-1 1
0 1 5/0 1 -—25
X3 = =

13 13

GAUSS VE GAUSS-JORDAN ELEMINATION METHODS

CuX +CpXo +C3 X +Cy X, =1y
Cor Xy +Cpp Xp +Cog X +Cpy X, =1
Ca1 Xy +C3p Xy +C33 X3 + G54 X, =1

Cpp X +Cypp X, +Cy3 X3 +Cyy X, =1,
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Ci Gy G
= Gy Cp Gy
G Gy Gy
Cii Gy Cy
C.X =R

K
S

<
]

Cou || X3 _ r
Cay || X3 I3
Caa || %4 I

Cua || % I
Cos || %2 _ P
Cay || X3 fy
Cas J[ %4 fy

~

After this step, we will multiply the first row by C,; and subtract from the second row,

multiply the first row by C;; and subtract from the third row and multiply the first row by

C,, and subtract from the fourth row, the matrix becomes:

o O O -

'
C12 C13
’ '
C22 C23
' ’
CSZ CSS
’ '
C42 C43

~

Cu | X% | [N
Cou | X2 | |1
Ch | X | |1
Ca | Xa] T

If we repeat this sequence of operations for the second row (Dividing second row by ¢, ,

multiplying second row by C;, and subtracting from third row; multiplying second row by

!

C,, and subtracting from fourth row) the matrix becomes:
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1 Cl’2 Cl3
0 1 cj
0 0 cj
0 0 cj

1o, ¢
0 1 c
0 0 1
0 0 O
1o, ¢
0 1 o
0 0 1
0 0 O
X, =1,"

m m

X +Cop X, =T,

x XX X

=

=<

" " "
X, + Cha X + Chy X, =T,

e

o

o

=

=

I

~

I

Wy

m

~

Ry

I

oY

I

oy

I

~

m m

=> Xy = 1= Cyy X,

" ” "
=> X, =1 —Ch.X; —Cyy.X,

!

! ! ! ! ’ ’ !
X +ClpXy +ClaXg +Cp X, =1 => X =1'=Cl,.X, —Cl3.X, —C1,. X,

When the solution is made with the Gauss-Jordon method, the following matrix system is

formed,
1 0 0 0fx r”
01 0 0fx, r,’
=> =
0 0 1 0Ofxg ry'
0 0 0 1]x, r,

In this method, the number of operations is 1.5 times higher than the Gaussian elimination

method. For this reason, the Gaussian elimination method is preferred.
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3 1
Example: |1 4 1

2 1 2| X 10
method.

If we start the solution with the Gauss method,

Step 1. Operations related to the first row,

1/3 -1/3T x| [2/3
4 1 |x|=|12
12 x| [10

1
N = =

1 1/3 -1/3]x | [2/3
=> |0 11/3 4/3 |x,|=|34/3
0 1/3 8/3|x,| |26/3

Step 2. Operations related to the second row,

1 1/3 -1/37Tx ] [ 2/3
=> |0 1 12/33|x,|=|34/11
0 1/3 8/3 |x,| |26/3
1 1/3 -1/37x 2/3
=> |0 1 4/11|x,|=| 34/11
0 0 84/33|x,| |252/33

Step 3. Operations related to the third row,

1 1/3 -1/3| x, 2/3
=> 0 1 4/11|x,|=|34/11
0 O 1 |x 3
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4 34

11 11
L

3

The final set of equations to be obtained when solving with Gauss-Jordan is below,

1 0 0| x
0 1 0fx,
0 0 1fx,
Homework:
_bl , 0 0
a2 2 2 O
0 a, b, c,
1) | 0
0
0o . :
0 0 0 O

1
=2
3
0 0 O0fx ]| [r]
0 X, r,
0 || X r
0 =| . | Develop an algorithm for this system
0
an—l bn—l Cn—l Xn—l I’-n—l
0 a, b, | x| ||

that can be solved using the Gaussian elimination technique.

3

2)

11
56
17

-5
16
22
66

47

17

11
-12

20
10
-18
7

X, 18
X, 26 _
= Solve the system of equations.
X, 34
X, 82

Results: X, =-1.076888, x, =1.99028, x, =1.47447/ and X, =-1.906078
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3) NUMERICAL INTEGRATION

3.1) Rectangles Integration Rule

A{0x)
P 10
‘((C]—«\) ______________ 7,_],#,/ E (
- y |
e /J( [
{ ¥ ‘ g |
Wl
g (I"/
i I
e
! /;
: v
- f 4TI N N
a X344 é’ X5 b
Xo - Xn

n

f(x)dx = z f(Cj_]_XXj _Xj—l)

j=1

D —— T

X, + X

, (that is generally used)
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The order of error that occurs as a result of the integral solved in this method,

m If minimum value of f"(x)
M If maximum value of f"(x); the error, € is in range of
3 3
m(b—fl) << M(b—za)
12n 12n

If we interpret this formula; It is seen that the error decreases as the number of intervals

1/n2, in other words, when h (step interval) increases, the error also increases.

4
Example: J.dex=?, for n=2, obtain the approximate result of the integral using the
1

rectangular integration method.

4 314
_[xzdx:— =21
1 3 1
Forn=2,
Xj—X0+jh , 1=012,.....,n
hz;azﬂzjj
n 2
X; =1+15] , 1=012
Xo =1
X, =2.5
X, =4
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=> j:XZdX zh[f(CO)+ f(cl)]

X: + X,
Cj—l =JTH
¢, = X, ;xo _ 1+22.5 _175
¢, = X, erxl _ 2.52+4 _305

ixzdx ~h[f(co)+ F(c,)]=1.51.75) +(3.25) |~ 204375

As the number of steps, n is increased, the process gets closer to the correct result.

n ixzdx
1
20.4375
20.859375
10 20.9775
50 20.9991
100 20.999775

7l2
2 .
Example: Ie‘x sin(x? +L)dx = 2
0

7l2

Solution;  for n=100 [e™ sin(x? +1)dx = 07484696904 and
0

7l2

For n=200 [e™ sin(x? +1)ix = 0.748468314
0
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3.2) Trapezoidal Integration Rule

AL‘((X)
Yn 7(“'7)
4
h | h W
B a Xl Xz -~ b_—-}x
1 1 1
=> f(X)ZE(yo+y1)(X1_X0)+§(y1+Y2)(X2_X1)+ """ +E(yn—1+ynxxn_xn—l)
h=0-2
n

Formula of trapezoidal integration rule

b
J'f(x)dx;%h[yo+2yl+2y2+ ...... +2y.,+y,] ¥

b
jf(x)dx;%h[yo+2yl+2y2+ ...... +2y,, +Y,]+0(h?)

Example: For n=2 by using trapezoidal integration rule, find the approximate value of

4
Ixzdx:?.
1
Forn=2,
X; =X, + J.h , 1=012,.....,n
h=u=E=1.5
n
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X, =1+15] , j=012

Xo =1 X, =25 X, =4

4

If(X)dx = %hb}o +2y, +J’2]5 1'75[12 +2.(2.5)2 +42]

1
4

=> [ f(x)dx=22125
1

As the number of steps is increased, the process gets closer to the correct result.

n szdx
1
22.125
21.28125
10 21.045
50 21.00180
100 21.00045

7l2
Example: J.sin(xz)dx =?
0

n Rectangular Rule Trapezoidal Rule
0.89293919 0.69947699
4 0.84420228 0.79620809
10 0.83064857 0.82305960
50 0.82821727 0.82791446
100 0.82814156 0.82806586
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3.3) Simpson Integration Rule

A1 ix) In this method, each interval divided between a and b is

also divided into two within itself. It is tried to approach

?‘::i‘“‘;;'!‘wimr the solution by defining a quadratic curve passing

) ) Z‘ /lf(x} thorough each point. Here, as we can see in the error

J:xw“f Qr ? expression, the error rates decrease with respect to
- ‘l order of h%,

D ey T

f(x)dx = g[y0 +4y, +2y, +4Y, +2Y, +....+2y _ +4y +y |+0O(h*)

Error, E= f ””(C).h4 = O(h4) a<c<b

Example: J.dex =7, for n=2, obtain the integral using Simpson's integration method.
1

For n=2,
X; =X, + J.h , 1=012,.....,n
hz;azﬂzjj
n 2
X; =1+1.5] , ]=012
X, =1
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h
f(x)dx = E[y0 +4y,+Y,]

D e T

f(x)dx = %[12 +4(2.5) + 42]

D C— T

4
=> I f(x)dx =21
1

1
Example: IL =? Find the result of the integration according to all three rules?
0 V/2sin® x
Solution:
n Rectangular Rule Trapezoidal Rule Simpson’s Rule
2 0.76260967 0.77253221 0.7655945
10 0.76582073 0.76620815 0.76594906
50 0.76594477 0.76596025 0.76594992
100 0.76594864 0.76595251 0.76594993

3.4) Romberg Integration Rule

This rule will not be used in this course.

HOMEWORK

1) _[sin(x)dx:? 2) '[In(5—4.cos(x))dx:?
0 0
0.8 1

3) je*xde=? 4) jmdxﬂ
0 0.1X+1

By choosing n=100, solve the integrals using all the methods.
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3.5) Gauss-Legendre Quadrature and Integration

1
The aim of the method, to calculate the integral I f(x)dx. In the formula given below, X,
-1

and w, values are gauss quadratures. X, ‘s represent the roots of the Legendre polynomial

and thew, 's represent the weight functions dependent on these roots. The limits of integral

are between -1 and 1.

:l[f(x)dxzwl.f(x1)+wz.f(x2)+ ...... +w, f(x )= iwk.f(xk) b S

Legendre Polynomials,

1 d° n
P (x)= {[x2 —1] } can be calculated by “Rodriguez Formula”.
" 2".n!dx"

Pz(x):%(?’ ? _1)
PB(X):%(S 3 _3x)

P,(x)= %(35x4 —30x% +3)

If two previous Legendre polynomials are known, the remaining Legendre polynomials can

be calculated by the "recurrence relation".
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Recurrence relation : (n+1)P,,,(x)—(2n +1)x.P,(x)+n.P,,(x)=0

n+1l
If this formula is applied for n=1,

2.P,(x)-3x.P,(x)+ P,(x)=0

3x? -1
= P, (x)=
> 2(X) 5
- - T T T [
W:: 2(1-x,> :
Weight F ti :
eig unction k Inz[an (Xk)]2 :
e o o mm mm mm mm 4

Example: Find the Gauss quadratures for n=3.

Ps(x)=%(5x3—3x)=0 => 5x°-3x=0
3
—> % =0 X, 5 = +\E — ¥0.7745966
2
W, = 3(1—0 )2 -2 5 _0ssssso
3 [Pz (O)] 9[1(3 0> _1) 9
J6.
2 2
" 3(1—0.7745966 )2: 2(1-0.7745966° ) o 0.555556
3[R (0.7745966)] 9[1(3*0 7745966 1)}
20 )
W, =W,

MM597 ADVANCED NUMERICAL METHODS IN ENGINEERS / PROF.DR. NURI YUCEL
24/141



Example: Find the Gauss quadratures for n=2.

P,(x)==(3x*-1)=0 => X, =T0.577350

The error equation that occurs in the solutions made with the Gauss-Legendre formulas is

as follows,

2n+1 4
R, :Lﬂ!)zf@”)(c) , ~1<c<1

(2n+1)(2n)]

If the limits of the integral are not between -1 and 1, but between two different values

such as a and b, the following formulas must be used to calculate the integral.

if(y)dyz(b%ajiwi.f(yip R, *

i=1

o
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2n+1 4
Error Function ; R = (b-a)™"(n)* f)(c)

(2n+1)(2n)P

1
Example: Calculate the integral '[XZ Cos(x)dx for n=3 by using Gauss-Legendre
-1

formulas.

P:,)(x):%(Sx3 —3x):0 => 5x°-3x=0

=> % =0 & Xy, = i\E — 70.7745966
2
w, = 201-0°) = 2 -8 _0.888889
- 3RO [ T
. 9[(3.02 —1)}
2(1-0.77459662)  2(1-0.7745966°)
_ _ = 0.555556
" 32[R,(0)f 2 & W, =w,

9[; (3+0.7745966 — 1)}

1
sz cos(x)dx = w,. f (x,)+w,. (X, )+ w,.T(x;)
3

1
[/ x? cos(x)dx = 0.888889* (0)-+ 0.555556*(0.77459)° * cos(0.77459))+
-1
0.555556*((— 0.77459) *cos(— 0.77459))
1
[ x? cos(x)dx = 0.47650
=

Check by analytical solution;

1
=0.47830

-1

sz cos(x)dx =2x* cos(x)— (x2 - 2)* sin (x)

-1
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2
Example: Calculate the integral Ieydy for n =3 by using Gauss-Legendre formulas.
0

J:'eydy;(z—gojgwi.f(yi)

(b—aj (b+a}
Vi=| — X+ — |=X% +1
2 2

y, =% +1=0+1=1
Y, =X, +1=0.77459+1=1.77459
Y; =X, +1=-0.77459 +1=0.22541

2 _ 3
=> [e'dy= [Z—ZOJZ w,.f (y,)=1[0.888889* e’ +0.555556* 7™ + 0.555556* ¢°%* |
0 i=1

2
j e’dy = 6.388853
0

2

2
2 0
Check by analytical solution; Ieydy =e’ . =e” —e =6.389056
0
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3.6) Gauss-Chebysev Integration Formula

f(x) G

“iN1-x?

, The integral has singular points in X =+1. if we try to solve

H'_"'_‘

it with normal numerical methods, the integral goes to
infinity at these points. In this case we use Chebysev
formulas,

T, (x)=cos[n.(arccos x, )]

n

1 n
=> J. f(x) ——= dx = ZW*f , W.:%

1v1l— x? i= |

We can calculate X; such that

If T, (x)=cos[n.(arccos x, )] =0 ,
*(arccosx, )= @ becomes.
=>  arccosx, = @1
2n
cos(arccosx, )= COS(MJ
2n

T T T T |

| i—
=> | X = cos((2I 1)”j I

2n I

- 1

Error function, R :Lf(zn)(c) , -1<c<1

n (Zn)|*2 2n-1
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1
dx
Example: Calculate the integral forn =3 by using Gauss-Chebysev integration
_In/l—x2
formula.
[(m —1)71
X; = COS
2n
*1_
For [ =1 X, = C0S M =Cos(£j:£
2*3 6 2
*9 _
For I =2 x2=cosw =cos{ 2 |=0
2*3 2
. (2*3-1)r 57) /3
For 1=3 X, =C0§| ———— | =C0§ — |=——
2*3 6 2
W, =W, =W, Tz
1 2 3 n 3
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4

Example: Calculate the integral J.gdx forn=3 by using Gauss-Chebysev

S3V1-x

integration formula.

f(x)=x*
X, :COS[(ZI —1)7[}
2n
For i=1 X, = COS[M} = cos(zj = ﬁ
2*3 6 2
*2 _
For i=2 X, = cos‘:w} = CQSLZJ =0
2*3 2
For i=3 Xy = Cos{w:l — COS(S—EJ — _ﬁ
2*3 6 2
VA T
Wl :WZ :W3 —FZE
1 4dx
=> .[ al _W1*f(x1)+wz*f(x2)+ws f(x3)

NOTE: If the limits of integral are between a and b, the formula becomes

z\/y o y)dy=(b_7ajgwi*f(yi)+R

o
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3.7) Gauss-Laguerre Formula

0

J.e‘xf(x)dx = iZl:Wi *f(x,)+R,

0

Laguerre functions ,

Weighting function , W =

2
Error function , R, = (n!) f)(c)

Example: Te‘x sin(x)dx = ?
f(x)=sin(x)

Tex sin(x)dx = iz_nolwi *sin(x, )

n ‘ 2 6 10

14

n
> w; *sin(x; ) 0.43 0.50005 0.500002
i=0

0.500000
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3.8) Gauss-Hermite Formula
J.e‘X2 f(x)dx = anwi *f(x,)+R,
—0 i=1

Where X;’s are the roots of Hermite functions.

_2™nr

- and R =——— (C)

T OT "= 2" (2n)

Example: J.e’x2 sin?(x)dx =?

—0

=> [ sin®(x)dx :an:wi *sin?(x, )

—00

n ’ 2 4 6 8 10
n
> w, *sin®(x;) 0.748 0.5655 0.560255  0.560202  0.560202
i=0
HOMEWORKS
1 T
1) J'xxdx=? 2) Jes'”(x)dx=?
0 0
© . < —[x+%)
3) Je’xx dx=7? 4) '[e dx="?
0 0
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0 o 2 1
5) Ie‘xz cos(x)dx = ? 6) [e Xdx=2

dx =7

3.9) Multiple Integrals

]i f(x, y)dy.dx

x=a y=C

— . -

The integral can be separated two parts,

d b
If we say F(x)= If(x, y)dy, then I integral becomes | = IF(X).dX :

y=C x=a

=>  F(x)= icf (x,y)dy = (d—gcjgwj ~flcy;)
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dy.dx
x> +y

Example: A= i j.
x=0 y=-1

T = ? Find the approximate value of integral by dividing the

integrals by x and y into two parts.

Yi =X

If we assume m=n=2,

For integral depends on x,

X, =0.57735 => X, =X +1=057735+1=1.57735
X, =—0.57735 => X, =X,+1=-057735+1=0.42265
w, =w, =1

For integral depends on vy,

X, =0.57735 => y, =X =057735
X, =-0.57735 =>  y,=x,=-0.57735
W, =w, =1

PR T SR S U GO S S SR
iy xi+yr ) U HyE xP+yr Xp 4yl XS +ys

=> A=4.61538
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1x N
Example: 4=[[xye” dydc=? Find the approximate value of integral by dividing the
00

integrals by x and y into two parts.

A= jx{x[ ye dy}dx

0 0

X 1
=> If I1(x)= I ye ™ dy then “"A” integral becomes A= _[X.I (x)dx
0

0

1(x)= E ye Y dy= (b_Taji w, * f(y;)

X, =¥0.57735 and w,=w, =1

b-a). (b+a (x=0)- (x+0) _(x)- ¥
yiz(T)“(Tj y( 2 j[ 2 j @“2

”, =§(o.57735)+§ =0.788675¢

y, = g(— 0.57735)+§ — 0.211325x

=> |(X)=§[1*f(Y1)+l*f(Y2)]

I(x)= % [(0.788675x)* e 0T 1 (0.2113285x)* ¢ 0211325 ]

=> A

1
j{o.394338.x3 02 4 0.105663.x° e %55 fix
0

b-a) (b+a _(120), (140} 5 1
XF(T)“(T) => x"_( 2 jx"{ 2 ] 272

X, = 0'572735 +% =0.788675
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X, = ﬂ +% =0.211325

A= (b_Taij::Wj *g(x,)

A= % {0.394338.(0.788675)3 2700220787 | 105663,(0.788675)° 00400788675 }+

% {0.394338.(0.211325)3 £ 062201 | 0 105663,(0.211325)° ¢ 00400211325 }

A=0.0932
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4) NUMERICAL DIFFERENTIAL

4.1) Forward and Backward Differences

If we expand the f(x) function to a Taylor series at a distance h from x, we get,

f(x+h)= f(x)+h.f’(x)+h72!f”(x)+h?j

F7(x) ..

In this case f'(x)can be obtained such that,

2

S fx)= f(x+h)—f(x) h f”(x)—h—

f " .
h 2 6 0+

=> f'(x)= flx+ hh)_ fx) +0(h) (Forward Difference Formula)

A‘F(x‘}
§[Y+h)_7- e
OO
—= X
f(x) =>
f (X + h) => fi+1
=> f'= % +0(h) (Forward Difference Formula)
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If we repeat the above operations for a point at a negative distance of h from the

selected point x, we get

h? h?

f(x—h)=f(x)-h.f '(x)+5 f(x)- 3 f7(X)+...

f.—f
=> f/=- n 1+ 0(h) (Backward Difference Formula)
Operators
rAf .
Af, =f, - f => f, = TI + O(h) (Forward Difference Formula)
Y ¢ .
Vi, =1 -1, => f. = 'y + O(h) (Backward Difference Formula)

In order to calculate the quadratic forward difference formula, the solution is obtained by
opening the f(x+h) and f(x+2h) functions to the Taylor series.

h? h?

2 tbeen)= 100+ n 160w T )4 T fo
) f(x+zh)=f(x)+zh.f'(x)+@f~(x)+(23L!)3fm(x)+...

2f(x+h)— f(x+2h)= f(x)-h*f"(x)-h*f"(x)-...

_. f,,(x):f(x+2h)—2f(x+h)+f(x)

= —hf "(x)—...
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: " L +0(h) (Quadratic Forward Difference Formula)
" f| 2 fi—l + fl 2 i H
f"= e o(h) (Quadratic Backward Difference Formula)
2 " AZ fi
At =1,-2f,+ 1 => fi'= h? +O(h)
2 " Vz fi
Vifi=fi-2f,+f,  => f==2t+0(h)

4.2) Central Differences

“I]Cl')(\ .
O —5/;—,’/"“1( bl
{x) i f,( )E f(x+h)2_hf(x_h);tana
{()(-h) . /‘{ I
*h X xih
h? h?
f(x+h)=f(x)+ h.f’(x)+Ef"(x)+§ f7(X)+... (1)
h? h?
f(x—h)= f(x)—h.f’(x)+§f"(x)—gf’”(x)+... (2)
! 2h3 m
f(x+h)-f(x—h)=2h.f (x)+?f (X)+...
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If we add formulas (1) and (2) side by side,

a

f(x+h)+ f(x=h)=2f()+ = f(x)+0(h*)

7(x) = f(x+h)—21r‘]gx)+ f(x—h)+o(h2)

Central Difference Formula

](;” — f;‘+] _2f1 +f;‘71 +O(h2)

hZ

4.3) Generalization of Difference Formulas

dilf B AHL O(h)
" - I + Forward Difference Formula
dnf V”f
0" = X -+ O(h) Backward Difference Formula
vy +A S,
d”f| — / E ]_5 + O(hz) . .
" ) " , if n is even
Central Difference Formula

dnf| V f (n 1)+A’f (n 1) )

= 2 210\’ P
dx" ) YL , if nis odd
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General Formulas,
n n-1 n-1

A fj =A le —-A fj
n n-1 n-1

\Y% fj =V fj -V fj_l

Example: Calculate the central difference formula for n=2.

Vif NS,
d*f s i3
|, s o)

i

d2{ _ vzfj+1 +2A2f,-_1 +O(h2)= (ij+1 —Vf/.)+2(Afj —Afj._l)
dx” | 2h 2h

J

+o(n?)

d’f (f,-+1—fj—f,-+fj_1)+(fj+1—f,-—fj+f,-_1)

dx’ | 2h°

J

+o(n?)

d>f _ (fj+1 -2f; +fj1)+0(h2)
dx? |, h?

J
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Example:

0.5 8.0

35.5

95 198.5

Find the third derivative of the function f(x) at Xx=0,1, 2 using the forward difference

formulas.

Since the step interval is 1, it is taken as h=1 in the expressions.

i X, f, Afp=f,—f | Af, =Af —Af, | A=A, — A,
0 0 1 05-1=-05 75-(-0.5)=8 20-8=12
1 1 0.5 8.0-0.5=75 275-75=20 32-20=12
2 2 8.0 355-8.0=275 | 59.5-27.5=32 44-32=12
3 3 35.5 95-355=595 | 103.5—59.5=44
4 4 95 198.5-95=103.5
5 5 198.5

d? Af,

dx{ =—5 +0(h)

h=1 =>

GRS (Y A S Y 4f| 8Ly,

e P a’ |1 P ol PO

4.4) Higher Order Forward, Backward, and Central Difference Formulas

If we write the forward difference formula,

0= IO N gy M gy
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When we write the second order forward difference formula instead of f"(x) in this

formula,

£7(x)= f(x+—2h)—2;fx—%h)+-f(x)

_hf"(x) .

. f,(x):f(x+h)—f(x) h[f(x+2h)—2f(x+h)+f(x)+o(h)}_ﬁf,,,(x)+m
h? 6

)Ll 2 e )37 | e

2h
- f 4f. . —3f.
f/=—"2 +2hl+1 ! +O(h2) Forward Differenc
' fi+1 B fi—l 2 . A
f'= oh +O(h ) Central Difference (Three-Point Formulas)
f —4f +3f
fi'= R = ' +O(h2) Backward Difference
2h
f'= fip =8y +8fy — iy +O(h4) Central Difference (Five Point Formula)

' 2h
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HOMEWORK

1)
X ‘ 0 0.5 1.0 1.5 2 2.5 3.0

f(x) ‘ 1 0.8 1.2 0.4 0.6 0.8 0.7

Solve by all approximations f’(1.5) and f'(1.5) so that the error order of 0(0.52)

2) Obtain central difference formula for f"(x).
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5) INTERPOLATION AND EXTRAPOLATION
5.1) Gregory-Newton Interpolation Formula

If the function f(x) expand to Taylor series at x=0,

f()= 10)+x£0)+ 7 170)+ 7 7(0)+
f'(0)= ATfo—h.f "(0)+ O(hz) , by substituting forward difference expression in Taylor

series, we obtain

s x(x—h)

21 h?

x(x—h)x —2h)

3.h?

A fy+

A, +...

If we expand it to the Taylor series at X = X, we can generalize the formula as

G o) =] (M)~ x =, )-21]

" 21.h? n 3.h?

(Gregory-Newton interpolation formula with forward difference)

A+

If we repeat these steps with the backward difference formula,

f(x)=f(x,)+ (x—xn)an N (x—xn)[z('xh—2 X, )+ h]szn . (X—Xn)[(X—Xn??I;?][(X—Xn)-i- 2h]V3fn .

(Gregory-Newton interpolation formula with backward difference)

If the data are equally spaced, the Gregory-Newton interpolation formula is used to

interpolate or extrapolate.
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Example:

Estimate the value of f(1.1) based on the given values.

When we look at the values, since there are more points beyond the 1.1 point, the forward

difference formula will be used.

L Ox M%) ]

62

n T

(x =% Jx = x,) = hlx=x,)-2h] o
3h? "

| X f; Afp =1, -1 A f = Af, — A, N =Nf, —NT,
0| o0 | -7]| -3-(-7)=4 9-4=5 10-5=5
11| -3 6-(-3)=9 19-9=10 18-10=8

21 2| 6 25-6=19 37-19=18 30-18=12

3]/ 3| 25 62— 25 =37 67-37=30 -

4| 4| 62 129-62 =67 - -

5 5

129

i | ox | T A =Af - A, Nf =AM - A,
-7 8-5=3 4-3=1
-3 12-8=4 -

62

u| | W| N| =| O
u| | W| N| =| O
N

ol

129

Since the closest value to 1.1 is 1.0, X, =1 will be accepted. (h=1 and x=1.1)
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TR S P (AR S CEAE (SRR

" 21.h? ! 3Lh®

TR UVIES (RS R IO CHE) (RSP

2112 ! 313 1t
04[0.9)-1J0.9-2J0.0)-3]
2.1 !
F(L1)=—3+01%9+ 0.1* (- 0.9)10+ 0.1% (- 0.9)*(—1.9)8+ 0.1*(~0.9)*(-1.9)- 2.9)4

6 24
f(1.1) = —2.40465

If we consider only first to terms the result would be
f(1.1)=-3+0.1*9=-21 (Linear Interpolation)

5.2) INTERPOLATION TO UNEVEN DATA (LAGRANGE POLYNOMIALS)

If we write nt" order polynomial for X; point,

If we were to find the value of the polynomial for any point, X,
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0 k#j

Ajl:g(xj—xi) k=]

i#j

\

1
—— is chosen,

P, (x) S L/ (Lagrange Polynomials)

{tx) %)

vy
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=>
Example:

i 0 1 2

X; 1 2 4

f(x) 1 3 7

Find the Lagrangian function and calculate the value f(?).
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(X=X X=X, x=%,)  (x—2)x—4)x—8)

Xo = Xl)(XO - Xz)(xo - Xs) B (1_2)(1_4)(1_8)

P (X) = (

(X=X JX =%, x=%;) _ (x=1)x—4)x~-8)

X _XO)(Xl _XZ)(Xl _X3) B (2_1)(2_4)(2_8)

Pl(x):(

PZ(X)— (X—XO)(X—Xl)(X—X3) _ (X—1XX—2XX—8)

B (Xz _Xo)(xz _Xl)(XZ _Xs) B (4_1)(4_2)(4_8)

(X=X X =% JXx=%,)  (x=1fx—2)x—4)

Xg — Xo)(xs - Xl)(x3 - Xz) B (8_1)(8_ 2)(8_4)

P (X) = (

FO0) = F0x)* Py(x)+ f(x,)* PO+ f(x,)* P (%) + f(x;)* Py (x)
f(x)=1*P,(x)+3*P,(x)+ 7*P,(x)+11* P,(x)

f(7)=1*P,(7)+3*P(7)+ 7*P,(7)+11*P,(7)

o (x=x )X =%, Mx—-%,)  (7-2)7-4)7-8) 5*3*-1
Po(7)= (Xo =% X =X, X —X5)  (1—2)1-4)1-8) —1*-3*-7 011429

(X=X X=X, (x—%;) (7-1)7-4)7-8) 6*3*-1

I:)1(7):(xl—xo)(xl—xz)(xl—xs)_(2—1)(2—4)(2—8)_1*—2*—6__1'5
(X=X X=X Nx=%;)  (7-1)7-2)7-8) 6*5*-1

P2(7):(Xz_xo)(xz_x1)(xz_Xs):(4_l)(4_2)(4_8):3*2*_421.25

P3(7)=((x—x0)(x—x1)(x—x2) _(7—1)(7—2)(7—4)_6*5*3:0.53571

Xy =% X5 — % NX —X,) (8-1)(8-2)8-4) 7*6*4
f(7)=1%0.71429+3*(~15)+ 7*1.25+11*0.53571

f(7)=10.8571
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HOMEWORK

1)
i 0 1 2 3 4
X; 2 4 6 7 9
f(x) 3 6 9 5 8

2)

X 0.1 0.3 0.7 0.9 1.2 1.5 1.7 2.0

f(x,) | 0.99 0.92 0.7 0.57 0.39 0.24 0.16 0.07

Find the Lagrange polynomial for the data given. Calculate the f(l) value.

5.3) Extrapolation

If the function f(X) is known only a< X <b in the range, but the values of f(X)in X<a

or X>b are desired, then extrapolation is performed. Gregory-Newton or Lagrange

functions are used.

In order to be able to perform interpolation and extrapolation for f(x), it must be suitable

for polynomial interpolation.
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Example:

X ‘ 1 2 3 4 5

f(x) ‘ 100 25 11.111 6.25 4
=>  Find estimated value of f(5.7).

Since the intervals are equal, we need to use the Gregory-Newton forward or backward
difference formulas. Since the desired value is 5.7, we need to use the backward
differences formula.

f(X)Z f(Xn)+ (X_hxn)an + (X_Xn )[Z('Xh_z Xn)+ h]Van + (X_Xn )[(X_Xn\??l—;?][(x_xn)-’_Zh]VBfn +

(Gregory-Newton interpolation function with backward difference formula)

e f, Vi =f, -, | VX =V -V | Vf =V, -V*f | V' =V3f, - V°f, |
0| 1| 100 - - - -

112] 25 -75 - - -

2| 3 [11.111| -13.889 61.111 - -

3/ 4| 625 —4.861 9.028 —52.083 -

4|5 4 ~-2.25 2.611 —6.417 45.666

X, =9 (closest to 5.7)

Xx=5.7
h=1

TIRTORR ST RIS (S (S (S LR

X=X, =957-5=0.7

f(5.7)= f(5)+0.7Vf, +

0.7[027 +1]VZ - 0.7[1.;][2.7]V3 - 0.7[1.7][2.7][3.7]V4 3
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0.7*1.7*%2.7*3.7

2.611+ —6.417) + 22 45.666

£(5.7)=4+0.7*(~2.25)+ 2T 17 07xLT*27

f(5.7)=23.163

Not suitable for interpolation and extrapolation.

If we do linear interpolation taking the first two terms, we get

f(5.7)= f(5)+0.7Vf, =4+ 0.7*(~ 2.25)= 2.425

Real Value
f(x):@ Linear 2. Degree 3. Degree 4. Degree
X
f(5.7) 3.078 2.425 3.979 0.543 23.163

In such a case, the safest approach is the linear interpolation approach.

5.4) Spline Interpolation

In the interpolation methods we have examined under other headings, an nt" degree curve
passes from the (n+1) points. However, passing high-order polynomials across data points
could produce erroneous results when there were abrupt changes in data values. To avoid
this, the data can be divided into smaller data groups and smaller order polynomial
overlays can be made for each data group. Thus, the curve fitting operations made from

small-order polynomials are called spline interpolation.
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Linear Spline

First-order spline functions for data groups given in order can be given as follows,

f(x)= f(x,)+my(x—x,) Xo <X <X,
f(x)=f(x,)+m(x—x,) X, <X<X,
f(X)= f(xn—l)+ mn—l(x - Xn—l) Xn1 X< X,

f(x.0)- )

—X.

i+1 i

Here the slope expression, m; =

Example: For the data group given below, apply the linear spline and calculate f(5).

i 0 1 2 3
X, 3.0 4.5 7.0 9.0
f(x;) 2.5 1.0 2.5 0.5
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f(x)=f(x,)+m(x—x,) X, <X<X,
f(x)=1+m,(x-4.5)

_F0G)-flx)_25-1_

= = 0.6
X, =X, 7-45

f(x)=1+0.6*(x—4.5) 45<x<7
=>  f(5)=1+0.6*(5-4.5)=1.3

Quadratic Spline

As seen in the example above, the curve at the node (data) points is discontinuous and 1.,
2., ..., n. derivatives are undefined. If it is required, the continuous mt derivative, It is
necessary to pass a (m+1) degree polynomial. If a third-order polynomial is passed
through the data points, both the 15t and 2™ derivatives are defined. For this reason, cubic
splines are mostly used in spline interpolation. In a quadratic spline, the goal is to pass a
second-order curve through the data points. As a result, the first derivative is defined at

the data points.

Af1x)

Ny {tx3)

(R
4
% N 13
X .)(‘- ¥ \)3“7\

{(71) ‘la\l\lk\ﬂ*
N N

{ A1)

| .f (%) {tx) !

s o "
L Arahl Aralile Lo Arahk | P
Xo X4 X2 b

f.(x)=a,.x* +b,.x+c

For (n+1) data points, there are n intervals in total.

There are (3n) unknowns in total consisting of a's, b's and c's.
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Then a total of (3n) conditions (equations) are needed. These;

i) At internal data points, the function values must be equal to the data values.
ai—l'Xiz—l + bi—l'Xi—l +Ci, = f (Xi—l)
a,.x’, +b.x_ +¢ = f(x_,)

This condition satisfies 2(n-1) equation.

if) First and last functions must pass through first and last data points.

a, X2 +b.x, +¢, = f(x,)

a .x?+b x +c, = f(x,)
This provides 2 equations.

ifi) The first derivatives must be equal at the internal data points.

f'(x)=2ax+b
23, ,.% , +b,, =2a,.x, +b, i=2,3,..,n

This provides (n—1) equations.
iv) At the first data point, the second derivative is assumed to be “0".
2a, =0 => a =0

In this case, the first function is a straight line, not a quadratic curve.
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Example: For the data given in the previous example, solve the quadratic spline and

calculate f(5).

i 0 1 2 3
X, 3.0 4.5 7.0 9.0
f(x,) 2.5 1.0 2.5 0.5

Here n=3 and 3n=9 unknowns. If we write the 9 equations that depend on these 9

unknowns,
20,25a, +4.5b, +¢, =1 (1)
20,25a, +4.5b, +¢c, =1 (2)
49a, +7b, +c, =2.5 (3)
49a, +7b, +c, =2.5 (4)
9a, +3b, +¢, =25 (5)
8la, +9b, +c, =0.5 (6)
9a, +b, =9a, +b, (7)
14a, +b, =14a, +b, (8)
a =0 (9)

If we solve these equations with the Gauss elimination method, the equation becomes as

follows,

b ¢ a, b, ¢, a, by ¢

(45 1 0 0 0 0 0 Ofp | [1]
0 0 2025 451 0 0 0fc 1
0 0 49 7 1 0 0 Ofa,| |25
00 0 0 0 4 7 1|b| |25
31 0 0 0 0 0 O0fc,| [25
00 0 0 0 8 9 1fa| |05
1 0 -9 -1.0 0 0 0fb 0
|0 0 14 1 0 -14 -1 0]c| [0
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If a solution is made,

) ¢, =55
a, =0.64 b, = -6.76 c, =18.46
a, =-1.6 b, =24.6 c,=-91.3
=>  f(x)=—x+55 3<x<45
f,(x)=0.64x* —6.76x +18.46 45<x<7
fo(x)=—-1.6x* +24.6x—91.3 7<x<9
(¥4
“
25

2+

;9

Xx="5 =>  ,(5)=0.64*25-6.76*5+18.46
f,(5)=0.66

There are two important shortcomings in the quadratic spline solution;

i) The first two data points are joined with a straight line.

ii) Functions in both the first and last intervals show extreme oscillation.

The remedy for these weaknesses is the cubic spline. These deficiencies are not observed
in the cubic spline.
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Cubic Spline
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=>  f(x)=ax®+bx* +c,x+d,
For (n+1) data points,
There are n intervals.

4n unknowns appear (a, b, ¢, d's)
Conditions:

1) Function values at internal data points must be equal to the data value.

It provides 2(n-1) equations.

2) The first function must pass through the first data point, and the last function
must pass through the last data point.

It provides 2 equations.

3) The value of the first derivatives of the functions at the internal data points must
be equal.

It provides (n-1) equations.

4) The value of the second derivatives of the functions at the internal data points
must be equal.

It provides (n-1) equations.

5) The second derivatives of the functions passing through the first and last data

points must be “0”. (Forcing Condition). It provides 2 equations.
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In the sum of these items, 4n equations are obtained and a solution is made in this way.

Since the number of equations is too large during these operations, a set of equations has
been developed for each region and generalized as;

) {( ) Tl —xu)}(

6(Xi — X Xj — Xi—l)

f.(x)= f(x4)

6(Xi - Xil)(Xi ) X)3 ’

{( fho) _ f"(Xi)(xi_Xil)}(x—xil) ,1=123,....,0 (A)

Xj — Xi—l) 6

First, equation B is solved. After obtaining f" values at internal points, those can be

substituted in equation A and for each interval a third order curve is obtained.

Example: Calculate the cubic spline curves using the data below and calculate f(5).

i 0 1 2 3
X; 3.0 4.5 7.0 9.0
f(x;) 2.5 1.0 2.5 0.5

=> If we say i=1 in equation B,

(%, =% )T (% 20X, — X )E () + (%, — 3 )F (0, ) =2 [£ (%, )= £ (x, )]+ ——[F ()= F(x,)]

(x, = %) (X, —%,)
(45-3)1 (@207 ~9)1 (45)+(7-48)1"(7)=, _64'5) [f(7)- £(45)]+ (4'56_ Hl1@-1(43)

If we say i=2 in equation B,
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(7—45)f "(4.5)+2(9-45)f "(7)+ (0 —7)f "(9):ﬁ[f(9)_ F(7)] =2 S[1(@8)-£(7)
f7(3) and "(9) values are equal to zero from the 5% condition. In this case, the above
equations take the form:

8.1"(4.5)+25f"(7)=9.6 if i=1

2.5.1"(4.5)+9.f"(7)=-9.6 if i=2

=>  f"(45)=1.67909
f"(7)=-1.53308

For the first interval;

If equation A is solved by setting i=1;

f.(x)= f"(3) (45-x] + f"(4.5) (x—3)3+{ 2.5 f”(3)(4.5—3)}(4_5_x)

6(4.5—3) 6(4.5-3) 45-3 6

{ 1 f"(4.5)(4.5—3)}(x_3) —

45-3 6

f,(x)=1.86566(x —3)° +1.66667(4.5 — x)+ 0.246894(x — 3)

For the second interval;

If equation A is solved by setting i=2;

f,(x)=0.111939(7 — x)* — 0.102205(x — 4.5)* —0.299621(7 — x)+1.638783(x —4.5) , i=2

For the third interval;
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If equation A is solved by setting i=3;
f,(x)=-0.127757(9 — x)* +1.761027(9 — x)+ 0.25(x-7) , i=3

The point x=5 is valid for the second interval. In this situation,

f,(5)=1.102886

3 L)
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] ‘ /f ‘ \“A'x
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( \\ / [
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et s b e K
i { | l
\ I R R I
Cubic Interpolation
HOMEWORK

1) Construct quadratic and cubic splines for the data given below. Find the value of f(0.47)

i 0 1 2 3 4 5 6 7 8
X; 0 0.1 0.7 0.9 1.2 2.8 2.1 2.4 2.7
f; 3.0 4.0 6.5 7.2 4.3 3.2 6.0 7.1 8.3

2) Write a computer program that overlaps a cubic spline with a curve.
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LEAST SQUARE REGRESSION
If the data contains errors or is thought to contain errors, instead of the curve that will
pass through all data points, the lower-order curve fitting that is thought to represent these

data approximately and does not pass through all data points is called regression.

1. Linear Regression

3: Jdo4dg- X

> X

y=a,+ax+e , e; error

(The difference between each point that makes up the function and

the actual value gives the error value for that point.)

Criterion for Optimal Curve

The optimal curve is defined as the curve that minimizes the sum of the squared errors.

X; Yi
Xy Y1
X, Y,
X, Yn
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n

S, = Zn:eiz = Z(Yi — 8, — X )2
i1

i=1

0S L
r =0 =>  -2>(y;-a,-ax)=0 (1)
0a, =)
0S 4
6ar =0 =>  —2>(y;i—a,—ax)x =0 (2)
1 i=1
n n n n n
1) D2 Vi-2 8- ax%=0 => )Y =nag+ Y ax (3)
i=1 i=1 i=1 i=1 i=1
n n n ) n n n )
(2) in.yi —Zao.xi —Zalxi =0 => in.yi :in.a0 +in a, (4)
i-1 i-1 i-1 i-1 i-1 i-1
Example: Find the most appropriate linear line for the following data.
I X; Yi X;.Y; x; y (result)
1 0.1 0.61 0.061 0.01 0.46262
2 0.4 0.92 0.368 0.16 0.99198
6 3 0.5 0.99 0.495 0.25 1.16844
n=
4 0.7 1.52 1.064 0.49 1.52135
5 0.7 1.47 1.029 0.49 1.52135
6 0.9 2.03 1.827 0.81 1.87426
> 3.3 7.54 4.844 2.21

According to equation 3, 6a, +3.3a, =7.54

According to equation 4,  3.3a, +2.21a, =4.844
a, =1.7645 and a,= 0.2862
y=a, +a,x

=> y =0.2862+1.7645x
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g > X
%2 O ob 02 o

go 2V 154 oseer
n 6

Determining the Amount of Error in Linear Regression:

a) Standard deviation of the regression line

Syx = - S,/ @ Standard deviation
n-2 /

n—2 : Degrees of freedom

b) Coefficient of determination
2 _ St B Sr
St

n
2
S, =) e
i=1
n

S =2 (yi-y) =20f

i=1

r

S,, is the sum of the squares of the difference from the mean value of the dependent

variable. Here, r is defined as the correlation coefficient.

In case of perfect curve overlap, r=0.

Por=1 2= 0
St

If S, =S, then r’ =r =0, it means the curve did not provide any improvement.
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If we calculate the amount of error for the previous example,

(yi —8, &)X )2 = ei2 01‘2 =(yi _)_’)2
0.02172 0.4181
0.00518 0.1133
0.03183 0.07111
0.000001822 0.06931
0.0026368 0.0455
0.02425 0.598
> 0.08562 1.3153
S, = > e/ =0.08562 and S, => 07 =1.3153
Jix =\/ S, = \/0'08562 =0.14630 (standard error)
n—2 62
c2_Si—S, _13153-0.08562 _ ...
S, 1.3153
=>  r=0.9669
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2. Polynomial Regression

It may be more appropriate to represent the same data as a polynomial rather than a
straight line. In this case, the least squares method can be applied similarly for the mt

degree polynomial.

y=a,+a,.X+a,x* +...+a_ X" +e

m
€ =Y, —ay—a.X, — Ay X] ==, X
2 2 m
S =>e =Z(l. Ay —a,.X; — Ay X; — ... —amx,)
oS,
(1) 67’=—22(yi—ao—al.xi—az.xiz— ...... —am.x,.’”)=0
0
oS
(2) aa’ :—ZZ(y[ —ay—a,.X; — Ay X — e —a,, X" )xi =0
1
oS
(m+1) — =2y, —a,—a,.x, —a,x' —c..—a, x" |x" =0
aa i 0 1% 2+ m*vi i

m

1) an+a, ) X +8, ) X'+ ta, > X" =Dy,
2) 8 X +a Y X A, ) X et ay D XM =D Xy,

m+1) a, > X" +a, ) X" +a, > XM ey > xE =) Xy,

Standard deviation,

S
S _ r
X n—(m+1)

Coefficient of determination,
r.2 _ St _Sr
St
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Example: Calculate the 2" order regression curve for the values given in the previous

example?
I X Yi X;-Yi X}
1 0.1 0.61 0.061 0.01
2 0.4 0.92 0.368 0.16
5 3 0.5 0.99 0.495 0.25
n=
4 0.7 1.52 1.064 0.49
5 0.7 1.47 1.029 0.49
6 0.9 2.03 1.827 0.81
> 3.3 7.54 4.844 2.21
y=2a, +a,.X+a,x* +e
=> e, =y—a,—a, X, —a,X;
_ 2 _ ( 2)2
S,=>e=>(y-a,—a,.x —a,Xx
0S
=0 => —ZZ(y—a0 —a,.X —az.xf):o (1)
0a,
&S,
=0 => —ZZ(y—aO —a,.X —a2.xi2)><i =0 (2)
oa,
0S
p =0 => —ZZ(y—aO—al.xi—az.xf%z:O (3)
a2

1) Na, +a, > X +a, > X\ =Y, =>
2) 8, Y X +a, Yy X +a, ) X0 = XY, =>
3) @ X Ha ) X +a, ) X =>xty,  =>

a, =0.587114
a, =0.059102
a, =1.729537
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6a, +3.3a, +2.21a, =7.54

3.3a, + 2.21a, +1.605a, =4.844

2.21a, +1.605a, +1.2245a, = 3.5102



y =0.587114 + 0.059102 .x +1.729537 .x* 2. degree regression polynomial
y =0.2862 +1.7645x Linear regression polynomial

NOTE: Calculate correlation coefficient. Compare result with the linear regression result.

Probably here r=0.98.

3. Multiple Linear Regression

If there is more than one variable. (assuming there are 2 variables)

Xy

X2i yi

In this case, not the best curve, but the plane that best represents the data will be found.

AY

I = dorapxy t@axatre

X

€ =Y 3 — X, —a,Xy

Sr :Zeiz ZZ(yi — a8y — Xy — Xy )2
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: :O:_ZZ(yi — 8y, — Xy _azxzi) => n'a0+leial+zxzia2:zyi

-=0 :_ZZ(Yi — 8y — A Xy — Xy Xy => D Xl D XGA + DXy Xy 8 = DXy

0S
-=0= _22 (Vi =g =Xy —a,X, )Xy => D Ky D Xy Xply D X508, = D XY,

HOMEWORK

1) Using the least squares regression method, find the first (linear), second, and third
order polynomials for the data set given below. Compute and compare the coefficient of

correlation for each case.

X, ‘ 0 0.1 0.2 0.4 0.5 0.7 0.8 1.0

Yi ‘ 0 1.3 2.0 2.4 2.8 2.7 2.4 2.1

2) Using the least squares regression method, write a computer program that

superimposes a 3™ degree polynomial curve and apply it to the above data.
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6) NUMERICAL SOLUTION OF ORDINARY DIFFERENTIAL EQUATIONS

6.1.1) Numerical Solution of Initial Value Problems

y'=f(x,y) and y(x,)=y,

J |
I
Yo [ ”"'7( kL%
[
i S S S
Ko %4 Xq

MM597 ADVANCED NUMERICAL METHODS IN ENGINEERS / PROF.DR. NURI YUCEL
72/141



Yi=Yo t y!(xo )(Xl - Xo)
Y=Y, + y’(xl )(XZ - Xl)

You = Yo + ¥ (% 00 = %,)
=> Yo=Y, +Y(x)h
y'(%0)= (%, ¥0)
Your = Yo + 0 (x,, v, )+ O(h?)

This method is called the Euler method or the tangent line method.
6.1.2) Three-term Taylor Series Method

In the y'=f(x,y) differential equation, if the initial value Y(X,)=Y, is known, if we

expand y(x + h) to the Taylor series, we get,

2 3

Yx-+ )= Y+ Y G+ y7(0) Ty

If we take first three term in Taylor series and apply chain rule to y'(x) and y"(x)
y'(x)=f(x y)=flx y(x)]

- 2ot e, st

oy [xéi/(X)] Lo [xéyy(X)] [ y(x)]
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y(x+h)=y(x)+ h.f[x, y()]+ =

g

Yoa = Yo +DF[x, y(X)h%{af[X”’y”haf[x”’y”] fl

Example: Numerically solve the differential equation given as y'=Xx+Yy and y(1)=—2

2

ot YOOI, 2t lx el ¢y vy

OX

%y

OX

oy

compare the solution with the analytical solution results.

Analytical solution:

flxy)=x+y

A

y=-x-1

a_,
OX

2

Yo=Y, +hf[x,, yn]+h7{1+1(xn +y )b+ O(h3)

}+o®ﬁ

xm%&+o@ﬁ

=>
If we choose h=0.1,
X, =X, +nh => X,=1+0.1*n
n X, Y, (Analytical) Y, (Numerical)
0 1 -2.0 -2.0
1 1.1 -2.1 -2.1
2 1.2 -2.2 -2.2
3 1.3 -2.3 -2.3
10 1.8 -2.8 -2.8
(0.2)? ;
=>  y, =y, +0101-2)+ ; 1+101-2)}+0(h?)

Y =—20-01=-2.1
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Example: y' = y.sin(x?)—cos(x? )+ 2y, y(3)=+2

f(x,y)= y.sin(xz)— cos(x2)+ 2y

= 2Xy. cos(x2 )+ 2x.sin(x2)

=sin(x? )+ 2

SERIE"

2

Vpst =V + h.(y.sin (x2 )— cos(x2 )+ 2y)n + h? {2xy.cos(x2 )+ 2x.sin <x2 )+ (sin (x2 )+ 2Xy.sin (x2 )— cos(x2 )+ 2y)}n + O(hS)

If we choose h=0.1,

X, = X, +nh => X, =3+0.1*n
n Xn Ya
0 3.0 J2 =1.4142
1 3.1 1.7138
2 3.2 1.9156
3 3.3 1.9787
4 3.4 1.9512
5 3.5 1.9238
6 3.6 2.0176
10 4 4.0834
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6.1.3) Runge-Kutta Method

Yoa = Yo +hf(x,,y,)
yn+1 = yn + h'y,(Xn)

It is a very reliable method. The degree of error is extremely low and there is no problem

of derivation.
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Example: Solve the differential equation given by y’=Xx* —sin (yz) and y(1)=4.7
If we choose h=0.1,
f(x,y)=x2—sin(y?) X, =1 y, =4.7

Ay =01 (x0. 7, )} = 0.1%[12 —sin (4.7 | = 0.1099

2
B, =0 1{(1+ 071) —sin (47+01099j } 0.1682
2
C, =0.1 (1+07'1) —sin (47+01682j } 0.1884
D, =0.1{(1+ 0.1 —sin(4.7 + 0.1884)’ |=0.2115

Y, =¥, +é[A0 +2.8, +2.C, +D0]+O(h5):4.7+%[O.1099+2*0.1682+2*0.1884+0.2155]

=> y, =4.8731
X, =X, +nh

X, =1+0.1*n
x=11, y, =4.8731

n X, Ya

0 1.0 4.7 (given)
1 1.1 4.8731

2 1.2 5.0426

3 1.3 5.1313
4 1.4 5.2168
5 1.5 5.4039
6 1.6 5.6797
7 1.7 5.8708

MM597 ADVANCED NUMERICAL METHODS IN ENGINEERS / PROF.DR. NURI YUCEL
77/141



6.2) NUMERICAL SOLUTION OF SECOND DEGREE INITIAL VALUE PROBLEMS
y'=f(xy.y) y(x,)=A y'(x,)=B
6.2.1) Taylor Method

If we expand y(x) to Taylor series at X+ h,

! ” hz L4 hs
y0c+h)=y(x)+ y O+ y 002+ y () S+
and

h? h®
y'(x+h)=y(x)+ y"(x)h + y"’(x)a +y® (X)E S

2

y(x +h)= y(x)+hy'(x)+ % y"(x)+ O(hB)

y'(x+h)= y'(x)+hy"(x)+ O(hz)

=> y;{:f(x‘,,yi,-,){'/)
Xj = %o +(J +1)h

! hz "
yj+l = yj +h'yj +Eyj +O(h3)
Vi =Y; +hy; +0(h’)
First we will take j=0, and calculate y;, Yy, and Yy;. Then take j =1 and calculate Y, ,

y, and y,. By continuing the iteration process, Y,, Y,, Y;, .., Y, Will be obtained
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Example: Solve the differential equation given by y”=x’ —cos(y)+ 2.e7%.y" with initial

conditions y(1)=-1 and y'(1)=3

X, =1 y, =1 y, =3 f(x,y,y)=x*—cos(y)+2e™.y’
If h=0.1is chosen.
Step 1: j=0

yy =1° —cos(-1)+2.e 7.3 =2.666974
X, =X, +0.1*1=1.1

2
y, =-1+0.1*3+ (OTl) 2.666974 = —0.686665

y; =3+0.1%2.666974 = 3.2666974

Step 2: j=1

v =1.1% —cos(—0.686665 )+ 2. *(3.266974) = 2.611405
X, =X +0.1*1=1.2

2
y, =-0.686665+ 0.1*3.2666974 + @ 2.611405=-0.346938

y, =3.2666974+0.1*2.611405 = 3.527838

Step 3: j=2

y, = y(1.3)=0.018939
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6.2.2) Runge-Kutta Method

y'=f,(xy,y) y(Xo)= Yo y'(X,) =P,
y'=p=f(xy,p) => y(Xo) =Y,
y'=p'=f,(xv.p) => p(x,)=P,

If y' =p+x=f,(x,y,p) then
p'+1= f,(x,y, p) is obtained

.= P, +%(Il +20,+21, +1,)
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Example: Solve the differential equation given by X°.y"+5.xy +20.y =0 with initial
conditions y(1)=0 and y'(1)=2. Evaluate y(1.2)="
y 5y" 20
=> y =——y——2y
X X

If y=p= fl(x, Y, p) is assumed

, 5 20
p =7 —Fyz fz(x,y, p)
Yo :y(1)=0
Po = p(1)=2

If h=0.2 is chosen,

k,=02%2=0.4

l, :0.2*(—§2—2—200}:—2
17 1

k, = 0.2{ P, +%|1} = 0.2{2 +%(— 2)} =0.2

l,=0.2 _To 2+__2 _LZ 0+% =-1.570
1 0.2 2 ( 0_2) 2
+— 14+ 2%
2 2

0.292+ %(—1.57)} =0.243

l, =0.2 > (2+_1'57j— 20 2(0+£j =-1.435
1+0.2 2 ( 0,2) 2

1+ —
2

=
w
Il
f—J;\

20
———(0+ 0.243)} =-1.146

(1+0.2)

(2-1.435)-

—
Il
©
N

f_J%\
=

+ |
Oluo
N
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y, =y(1.2)=0 +%[o.4+ 2%0.2+2*0.243+0.113]

y, = y(1.2)=0.233

Analytical solution

y = %xz sin[4.In(x)]

y(1.2)=0.23137
6.2.3) Runge Kutta - Nystrom Method

y'=1(xy.y) y(%,)=K y(x)=L

1
Aj=§h.f(xj,yj,y'j)

A I | 1.(, 1 , ]
szahf XJ-‘rEh,yJ-FEh[yJ+EAJ},yJ+AJ
A I | 1.(, 1 , |
CJZEhf Xl+§h’yl+5h(yl+§AJj’yJ+BJ

D, =%h.f[xj +hy; +h(y; +¢;)y; +2¢)]

, 1
Y=Y, +h{yj +§(A./ +B; +C_/)}

' , 1
yj+l = yj +§[Aj +2'Bj +2'Cj + DJ]

Since it is only for 2" order differential equation, its usage is limited.
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HOMEWORK

1) Differential equation y" =X —4.y? +3.e™” is given with initial conditions of y(2)= 3 and

y'(2)=4. By choosing h=0.1, calculate y(5).

2) Differential equation y” = x> —cos(y)+2.e7*.y’ is given with initial conditions of y(1)=1
y

and y'(1)=3. By choosing h=0.1, calculate y(5).

6.3) Numerical Solution of Second Order Boundary Value Problems

yV'=fXv.yY)  ya-«a y(b)=5

AY
] S ——
2
o
Lo
L
o
T
°N i l [ [
| | { f
| | =8 |
[ Fr P mrr 7 s 7 o 5
3 b
b-a
h=——
n
X;= X, + J.h
Xj=a+ J.h
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Y, =%+0(h2)

2V +V.
y,j, — y]—l h)zll + yJ+l +O(h2)

If we substitute and rearrange the finite difference formulas in the differential equation,

then if j=123,......,n—1 is chosen, we get (n-1) algebraic equations. If we substitute the
boundary conditions y(a): a and y(b):ﬂ properly in this (n-1) equation, we get an (n-
1) set of equations. By solving this (n-1) equation, values of y,, Y,, Y3, -..... , Yo, Can be

found.

Example: Differential equationy” =Xx—2y+Yy' with boundary conditions y(0)=1 and

y(l): -3 is given. If n =10is chosen, solve the differential equation numerically.

hJ

Nk o 7

|
——>X
1
[
s
4
i
|
i

hzﬂzgzo_l
n 10

Yi =X —2y;+Y,

If we use the central difference formulas,
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Yia—2.Y;+Yja
h2

yj+l - yj—l
2.h

=X, —2.y;+
=> (1+gjyj_1+(—2+2h2)yj+[1—gjyj+1=h2.xj
X; =%+ ]jh => X; =0.1%]

1.05%y, , ~1.98*y, +0.95%y , =0.001* |

Except “j=0" and “j=10", for j=1,2,3..., (n-1) values, the set of linear equations:

1.05*y, —1.98*y, +0.95*y, = 0.001 j=1
1.05%y, —1.98*y, +0.95* y, = 0.002 j=2
1.05*y, —1.98*y, +0.95* y, = 0.003 j=3
1.05*y, —1.98*y, +0.95* y, = 0.004 j=4
1.05%y, —1.98*y, +0.95* y, = 0.005 j=5
1.05%y, —1.98*y, +0.95* y. = 0.006 j=6
1.05*y, —1.98*y. +0.95*y, = 0.007 j=7
1.05*y, —1.98*y, +0.95* y, = 0.008 j=8
1.05*y, —1.98*y, +0.95* y,, = 0.009 j=9

If the boundary conditions are entered, the first and last equations become:
y(O) =Y, =1

1.05*1-1.98*y, +0.95*y, = 0.001 => -1.98*y, +0.95*y, =-1.049
Y(l) =Y =-3
1.05*y, —1.98*y, +0.95*-3 = 0.009 => 1.05*y, —1.98*y, = 2.8590
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Matrix created with equations,

[-1.98 0.95 0 0 0 0 0 0 0 A [—1.049]
1.05 -198 0.95 0 0 0 0 0 0 Y, 0.002

0 1.05 -198 0.95 0 0 0 0 0 Y; 0.003
0 0 105 -198 0.95 0 0 0 0 Y4 0.004
0 0 0 1.05 -198 0.95 0 0 0 y; |=| 0.005
0 0 0 0 1.05 -1.98 0.95 0 0 Ye 0.006
0 0 0 0 0 1.05 -198 0.95 0 Y, 0.007
0 0 0 0 0 0 1.05 -198 095 ||y, 0.008

L 0 0 0 0 0 0 0 1.05 —1.98__y9_ _2.8590_

Yo =1

y, =0.7299 y, =-0.3231 y, =-1.6371

y, =0.4171 ys = —0.7406 Y = —2.0991

y, = 0.0646 Y =—1.1813 y, =—2.5571

Yio = -3
HOMEWORK

1) Differential equation y” = x—2y+ Y with boundary conditions y(0)=1 and y(1)=-3

is given. By choosing n=100, solve the problem.

2) Differential equation Yy"=x*-4.y+4.y'" with boundary conditions y(1)=—2 and

y(2): 4 is given. By choosing n=100, solve the problem.
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6.3.1) Mixed Boundary Condition

The most general expression of boundary conditions that can be encountered in boundary

dy

value problems is ad—+ﬂ.y:y. Here «, f and y are constants. In these boundary
X

conditions; In the case of a # 0 and S # 0, the condition that arises with these conditions
is called the Mixed Boundary Condition. In the case of ¢ =0 and S #0, the previous

boundary condition is obtained and called the Dirichlet Boundary Condition, in the case of

a#0 and =0 a2 and b2 the Neuman Boundary Condition is obtained

Let's formulate the following differential equation for mixed boundary conditions at both

endpoints,

d2
Differential equation is given y +Cy= f(X)

dx?
d
at Xx=a al_y+ﬂ1-y=7/1
dx

Boundary conditions
dy
At x=b a2&+ﬂz-y2=7’z

Under these boundary conditions, nothing can be said between the function values at
X, =a and x=Db. y(a)=y, and y(b)=y, are unknown. In this case, the number of

unknowns is equal to the number of points obtained by dividing the interval into (m) equal
parts, that is (m+1).
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)(?& )(:b
£ -
e W —
(=-1 (=0 (=m AL=rmsf

If we write the finite difference expression of the differential equation, we get

Yi—1_2r-‘32/i +VYia +Cy = f(xi)

Y, + (C.h2 - 2)yi +y,,, =h%f(x) (1)
if i=0 in equation (1),

y,+(Ch?=2)y, +y, =h2.f(x,)
(2)
In this equation, the unknown Yy, y-1 is encountered. This unknown represents an

imaginary point behind X=a to h, i.e. x = a-h. We can make use of the first boundary

condition to eliminate this imaginary point outside the range.

d
ald_z—i_ﬂl.y:}/l

al(%;—hylj"‘ﬂl-)’o ="

2.h
=> Y—lzyl__(71_ﬂ1-yo)

a,

If this expression is substituted in equation (2) and summed under common factors, the

difference equation for the left endpoint is,
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{h2.<:—2+2'hﬂ1]y0+2.y1=h2.f(x0)+m for i=0

a, a,

Likewise, if 1=m is written in equation (1) to obtain the difference equation of the right

endpoint,
ym_1+(C.h2 _z)ym +ym+l=h2'f(xm) i=m (3)

In this equation, Y,,,,, represents an imaginary point X=b+ h. This imaginary point can

be eliminated using the second boundary condition.

aZ(%j_kﬂZ'ym =7

2h
> ym+1:ym—l+a_(7/2_ﬂ2'ym)

2

If this expression is substituted in equation (3) and summed under common factors, the

difference equation for the right end point is,

2.ym1+(h2.C—2—2'hijym:hz.f(xm)—z'hi i=m

a, a,

For midpoints 1=1,2,3,......,m =1, equation (1) is valid.

[hz.c-2+2'hﬂ1]y0+2.y1=hz.f(x0)+m i=0
2 2

Yo +(Ch? =2}y, +y, =h2.f(x) i=1
y, +(Ch? =2}y, +y, =h2.f(x,) i=2
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y, +(Ch? —2)y, +y, =h.f(x,) i3

Y-z +(C'h2 _Z)ym—l T Yn =h2'f(xm—1) i=m-1
2y s +(h2-C—2—ijm _h2f(x, ) 2N72 -
a, a,

Example: Solve the following differential equation for decreasing h values under the given

boundary conditions by means of a computer program and compare with the analytical

solution.

Differential Equation ; X.y”—(x+ 2).y'+ 2y =0

Boundary conditions ; y'(0)=0 y'(1)= y(1)+%
. . X 1 2

Analytical Solution ; y(x)=¢* - 5 (x2 +2x+2)

First, let's divide the interval "0-1" into m equal parts, since both of the boundary

conditions are of mixed type, the unknown number is (m +1). A general formula for any
point X; is produced by using central difference formulas instead of derivatives in the

differential equation.

i h2

{h + (1+ gj.xi }yi_l + 2.(h2 — X )yi + {— h+ (1— gj.xi }ym =0

xA|:y"_1 —2.y, + Vi }_(xi +2{y[+12_hy[—l }+2.y,~ —0
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X; =X, +1.h

X, =1.h

If x; =i.h is substituted divide side by side h,

{1+(1+gj.i}yi_l +2(h—i)y, + {—1{1—2)1}% =0 ,1=012,....,m

If we put i =0in equation (1), we get,

y_1+2-h-yo_y1:0 i=0

If the left boundary condition is used,
yo=0 => Yo =>  y,=Y

=> y, +2.hy, -y, =0

If we put I =m in equation (1),

{1+ (1+ gj.m}ym_l +2(h—m)y, + {—1+ (1— gj.m}ymﬂ =0 i=m
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From the second boundary condition,

ym+1 - ym—l 1
Zmel Jm=l + =
2.h Ym 2

=> Yo =Yaa +2hy, +h

If this expression is replaced and arranged above;

2my,,, +(2n-h* —2)my, Z_h{_l{l_g}m}

For i=1,2,

fori=m

,m—1, from the equation (1), (m —1) equations are also obtained. Thus, the

solution is completed by solving m equations with m unknown Gauss method.

Numerical Solution

« Analytical
h=0.1 h=0.05 h=0.0025 h=0.001 Solution
n=10 n=20 n=400 n=1000

0.2 0.000935 0.001285 0.001375 0.001398 0.001402
0.4 0.010563 0.011508 0.011745 0.011813 0.011824
0.6 0.039696 0.041510 0.041960 0.042098 0.042110
0.8 0.101570 0.104547 0.105290 0.105508 0.105541
1.0 0.212410 0.216810 0.217915 0.218230 0.218280
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6.3.2) The Boundary Condition Given at Infinite

Some differential equations may have a limit value at infinity. If we give an example of
this,
Differential equation ; y'+C.y= f(x)

Boundary conditions ; y(0)=0 , y(o)=p

In order to solve this problem by creating difference equations, we need to know what order the
value specified as infinity is. Since we cannot form an idea about the order of X, we need to solve

the problem as an initial value problem. But there is another problem here as well. The one of the

initial condition, I mean (y') is missing. In other words, in order to solve the above differential

equation, not only y(O), we need to know y'(O) initial value as well as . However, y'(O) value is
unknown. By the way, we solve the problem as an initial value problem by making an estimation for
the initial condition y'(O) and see where y'(O)is going on the way to X —> c0. In other words, when
y’(O): ais taken, it converges to a value such as Y — A when it goes to X — o0 . Then let's make
a second guess for the initial condition; When y'(O):b is taken, it converges to a value such as
Yy = B when it goes to X —> 0 . Then a new predict value is calculated for y(oo)= B when it goes
to infinity . This is a kind of Newton-Rapson application,

A—
c=da-— ﬂ S (x,)

(4-B)/a—b) TGy

AC)
S - )

xn - x/rl

xn+1 =X

P e

| /// - ~ .

'/ / M, N N

/ N\
e NN Ny

i A g 1
ﬁ(o?:&

;;{m;b

5'["-’1)‘(}

This method, which is applied, is called the shooting method.
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Example: Solve the following differential equation,
Differential equation ; y'—4y=1

Boundary conditions : y(O):O ) y(oo)=—1

To solve the problem as an initial value problem, we reduce the differential equation to a

first-order system of equations,

y'=p="f(xy p)
p'=1+4y=",(x,y,p)

y(0)=0

1f y'(0) = p(0)=a =1is chosen

If the solution is made,

V()= y(6)= A=8242

If y'(0)= p(0)=b=-1 is chosen,
If the solution is made,

o) =(5)= B =-2749

If we put these values into the expression given for “c” above, we get a new predict for

the derivative,

c=1- 8242 -(-1/4) =—0.499818

(8242 —(—2749))/(1-(~1))
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If we repeat the solution with this new value,

It is found at y(4.6)= y(o0)=-0.25, we see that the solution is fixed. In reality the value

of "c” is 0.5. Some equations can be solved several times with the number of predictions

Newton-Rapson.

The second boundary condition is not necessarily like y(oo)= K. The shooting method can

be applied similarly to boundary value problems such as y(L): K.
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7. NUMERICAL SOLUTION OF PARABOLIC EQUATIONS
7.1. Transform into Dimensionless Form

Numerical solutions of problems involve quite a lot of arithmetic operations. Therefore, it
is desirable that a solution be valid for as many problems as possible. This solution can be
achieved by bringing the desired equation into dimensionless form. For example, although
the swing of a pendulum in a viscous medium and the discharge of voltage across a
capacitor through resistance and inductance are physically separate, the differential
equation governing these two different expressions is exactly the same.

oU o*U

o o

X=— (The size of the object has been made dimensionless)
=> X =xL
u= Y => U=ul,
U0
ouU o°uU 2
> 0 K 20 > u, Moy, -2
oT a(x.L) oT L®.0x
2 2 2
= L_@ZG_U ,ift:ﬁ, T:L—t becomes
K oT ox? L2 K
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Lvoa o N a_ou
Ka["th ox? ot ox?

7.2. Explicit Solution Method

The one-dimensional, time-dependent conduction heat equation is a parabolic equation

and its formula is as follows,

a_o
ot ox?
u(x,t)=ul.,j i=X and ] =1

The first-degree derivative expression on the left side of the equation must be opened with
the forward difference formula (Due to stability and convergence problem). Although the
right side of the equation is usually opened with the central difference formula, it can also

be opened with the forward and backward difference formulas, if desired.

”i,j+1 _ui,j . ui—l,j _z‘ui,j +uz‘+1,j _
St (é‘x)z , FTCS (Forward Time Central Space)
ot
Upjor =T Uy + Q=20 +1uy,y and r:W

Ui jias (i, J +1) is the unknown temperature at the lattice point. If the temperatures in the

J step are known, the temperatures in the j+1 time step can be calculated with the finite

difference formula above. Since the temperatures at the first moment, that is, at the

moment j=0, are given, the temperatures in the step j=123,...... ,N are calculated step

by step. This method is called the explicit solution method.
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Example: The initial temperature of the stick (in dimensionless form) whose ends are in

contact with a melting ice block is given by

u(x,0)=2.x OSXS%

u(x,0)=21-x) %£x£1

Calculate the change in temperature of the rod with time.

Initial condition

Boundary conditions

Finite difference expression,

Upjor =T Uy +(@L=20)ug +1uy,y and r=

Since the system is symmetrical, it will be sufficient to solve half of it.
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Case 1: Let's take n =10 (divide the bar into 10 parts)

Let’s choose 5X:i:O.1 and A :L
10 1000
r= A > = 0.1
(%)
=>  U,,=01%u,,+08%u;; +0.1%u,,,
ui,j+l = E(ui—l,j +8'ui,j +ui+1,j)
X; = X, + 1.0X => X; =0.1%i
i= i=1 i=2 i=3 i=4 i=5 i=10
x=0 | x=01| x=02| x=03 | x=04 | x=05| x=1
t =0.000 0 0.2 0.4 0.6 0.8 1
t=0.001 0 0.2 0.4 0.6 0.8 0.96 | .....
t =0.002 0 0.2 0.4 0.6 0.7960 | 0.9280 | .....
t=0.003 0 0.2 0.4 0.5996 | 0.7816 | 0.9016 | .....
t=0.01 0 0.1996 | 0.3968 | 0.5822 | 0.7281 | 0.7867 | .. ...
t=0.02 0 0.1938 | 0.3781 | 0.5373 | 0.6486 | 0.6891 | .....
If X, =0.1*i,
1 ) 1
u(x,0)=2.x OSXSE =>  U,=2Xx=02%] 0< <>
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u(x,0)=2.1-x)

l3x31
2

=>

u(x,0)=2.1-x)=2.1-0.1%i)

Analytical solution of differential equation,

= % i%(sm n. zz)(sin nzx)e "
=l

N |-
IA
>
IA
=

Finite Difference Analytical
) _ Percentage
Solution at Solution at Difference
Error
x=0.3 x=0.3
t=0.01 0.5822 0.5799 0.0023 0.4
t=0.02 0.5373 0.5334 0.0039 0.7
t=0.1 0.2472 0.2444 0.0028 1.1
Case 2: Let's take n =10 (divide the bar into 10 parts)
1 5
Let’s choose X =—=0.1 and A=——=0.005
10 1000
= iz = 05
(%)
*u T )
=> Ij+1_05 -1,j +0.5 l"li+1,j =§ ui—lj +u|+lj
i= i=1 i=2 i=3 i=4 i=5 i=10
x=0 | x=0.1| x=02 | x=03 | x=04 | x=05| x=1
t =0.000 0 0.2 0.4 0.6 0.8 1 ...,
t=0.005 0 0.2 0.4 0.6 0.8 0.8 |.....
t=0.01 0 0.2 0.4 0.6 0.7 0.8 |.....
t=0.015 0 0.2 0.4 0.55 0.7 0.7 |.....
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"

0 0.0949 | 0.1717 | 0.2484 | 0.2778 | 0.3071
Finite
Analytical
Difference Percentage
Solution at Difference
Solution at Error
x=0.3
x=0.3
t=0.005 0.6 0.5966 0.0034 0.57
t=0.01 0.6 0.5799 0.0201 3.5
t=0.02 0.55 0.5334 0.0166 3.1
t=0.1 0.2484 0.2444 0.0040 1.6
Case 3: Let's take n =10 (divide the bar into 10 parts)
1 1
Let’s choose & =—=0.1 and aA=—=0.01
10 100
a
r= 5 =1
(6%)
=> Ui g = Uiy — Ui Uiy
i= i=1 1=2 =3 1=4 i=5 i=10
x=0 | x=0.1| x=02 | x=03 | x=04 | x=05| x=1
t =0.000 0 0.2 0.4 0.6 0.8 1.0 |.....
t=0.01 0 0.2 0.4 0.6 0.8 0.6 |.....
t=0.02 0 0.2 0.4 0.6 0.4 1.0 |.....
t=0.03 0 0.2 0.4 0.2 1.2 -0.2
t=0.04 0 0.2 0.4 1.4 -1.2 2.6 |.....
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The solution is completely pointless. These 3 case studies show that the r value is an
1
important parameter. In the explicit method, the solution range is valid for 0<r < E . Later,

this limitation will be analytically demonstrated on stability and convergence issues.

ou 0°u ol i & _ 1
~ ==t => rn= >, [, =—— and it must be r,r, <—
o ox* oy (&) (%) 4
@_62u+82u+82u => r = A r,= a r __ and r,r,,r. <1
ot ox* oyt ozt e ()t (&) B

7.3. Crank-Nicolson Implicit Method

Although the Explicit method is computationally simple, it has a very important

shortcoming. The time digit & must be taken very, very small. Because the calculations
1
are valid for the OSrSE range. Therefore, & should be taken very small in order to

obtain sufficiently accurate results. If the Jt value is taken too small, the computational
load increases. In 1947, Crank-Nicolson proposed a method that reduces the
computational volume and is valid for all values. They thought that the partial differential

equation was valid at the midpoints of the lattice points and took the finite differences of

o%u _ .
y as the mean of the approximations at the lattice points J and ] +1.
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B
Mt kT d T dagerlen
| — T
T o S\J Unon bilineq
ST S i e 1 ﬂeSQriQr‘;
|
“ ¢ w X
ou o%u
ot ox?
Uijsg —Uij LUy =27 Ui Uiy LUy = 27U Ui g
& 2 () 2 (6)
ui,j+l _ui,j _,B ui—l,j - z*ui,j + ui+l,j +(1_ﬁ)ui—1,j+l _Z*Ui,j+l + ui+l,j+1
& ()’ (6)°
p=1 Explicit method
1 : -
p :E Crank-Nicolson Implicit Method
£=0 Full Implicit Method

1
If f=— is chosen,

- r-ui—1,j+1
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There are 3 unknown | +1terms on the left side of the finite difference expression and 3
known (j) expressions on the right side. If there are (n—1) inner lattice points during
each time step (For example, j=0 and i=12,....,n-1) (n—l)sets of interconnected

equations are obtained and (n —l) will be unknown. Since the U values are given as the
first condition and the boundary conditions are given during the time at the first time
(j=0), the u values at the j =1 order are found from the data at the j=0 time order.

This method is defined as the Implicit method.

Example: Solve the previous example using the Crank-Nicolson method.

a_otu
ot ox?

1
u(x,0)=2.x 0<x<

} Initial condition
u(x,0)=2.1-x) %s x<1
u(0,t)=0
Boundary conditions

u(Lt)=0
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Ifn=10 i.e. é‘X:i =0.1 and if we choose &t :i =0.01
10 100

=> —Ui g FAU; g — Ui =Uig U

If we take j=0, i=123,.....,n=1(9) (It is sufficient to calculate up to i=5 since it is

symmetrical)

If we take =0,

—Ug, +4U; —U,; =Ug, + Uy, i=1
—Up; +4U,; —Uy, =Uy +Ug, i=2
—U,; +4Uy, —U,, =U,, +U,, i=3
—Ug; +4U,; —Ug; =Ugo +Ugg i=4
— U,y +4Ug, —Ug; =U,q +Ug i=5

Since X, =0.1*i,

u(x,0)=2.x ngg% => U, =2Xx=02%] ngg%
u(x,0)=2.1-x) %3xsl =>  u(x,0)=2(1-x)=2(1-0.1*i) %£x£1
—Uy, +4u;, —U,, =0.0+0.4 i=1 (Up, =0)

—Uuy, +4uU,, —U,;, =0.2+0.6 i=2

—U,, +4U,, —u,, =04+0.8 i=3

—Uy, +4u,, —U;; =0.6+1.0 i=4
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—Uy, + 4.u5]1 —Ug, =0.8+0.8 (Uyo =Ugo and Uy, =Ug,)

Unknowns Knowns

| '

—U, +4.U;, —U, =U, +U, =1 (Up, =0)

—Uu, +4U, —Uy; =U; + Uy =2

-u,+4uU,—-u, =U, +U, =3

—U;+4.U, —U; =U; +U;, 1=4

—U, +4.U; —Ug; =U, +Uq I=5 (Uyo =Ugo and Uy, =Ug,)
u, u, u; u, U

4 -1 0 0 O07Ju, | [00+04]

-1 4 -1 0 O |u 0.2+0.6

0 -1 4 -1 0 |u, 04+0.8

0O 0 -1 4 -1ju, 06+1.0

10 0 0 -2 4 |u;| [08+038

u, =0.1989 u, =0.3956

u, =0.5834 u, =0.7381

u; =0.7691

If j=1,

—U, +4u, —u, =u, +u, =0+ 0.3956 =1 (Up, =0)

-u, +4.U, —u; =u, +u, =0.1989 + 0.5834 =2

-u, +4u, —u, =u, +u, =0.3956 + 0.7381 =3

—U; +4.u, —Ug; =U, +U; =0.5834 +0.7691 =4

-u, +4.U, —u, =u, +u, =0.7381+0.7381 =5 (Uyo =Ugo and Uy, =Ug,)
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i=0 i=1 i=2 i=3 i=4 i=5 i=10
x=0 Xx=0.1| x=02 | x=03 | x=04 | x=05 . Xx=1
t =0.000 0 0.2 0.4 0.6 0.8 1.0
t=0.01 0 0.1989 | 0.3956 | 0.5834 | 0.7381 | 0.7691
t=0.02 0 0.1936 | 0.3789 | 0.5400 | 0.6461 | 0.6921
0
t=0.1 0 0.0948 | 0.1803 | 0.2482 | 0.2918 | 0.3069
t=0.1
(Analytical 0 0.0934 | 0.1776 | 0.2444 | 0.2873 | 0.3021
Solution)

The Crank-Nicolson method is stable for all r values. But for large values of r (around 40),
undesirable finite oscillations occur in numerical solutions. The problem can be solved

systematically with the method of Gauss and Gauss-Jordan elimination.
HOMEWORK:
1) Solve the question in the previous Example with the fully implicit (closed) method.

7.4. Derivative Type Boundary Conditions

In practice, derivative-type boundary conditions are frequently encountered. For example,

if a surface is thermally isolated, that is, there is no heat transfer perpendicular to this

ou
surface, the boundary condition is 8_ =0 everywhere on this surface. Similarly, if a surface
n

with temperature U is in contact with a fluid with temperature v, the condition that the
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heat transfer by conduction equals the heat transfer by convection can be given as
ou

—-K=—==H.(u-v).
on (u V)

Here, K is the heat transfer coefficient (thermal conductivity) of the material and H (film
coefficient) is the heat transfer coefficient of the surface.

,«/ 0 ( vaewia norenali )
/ i
P
(/
\
\ HAg
|
Noq L2 b
\ n
ou
—=-h(u-v)
on
h=

E (positive coefficient)

Let the surface of a rod of length L be thermally insulated and allow the heat to be

transferred by convection at Xx=0. At time t, the temperature at this end will be unknown.
It can be determined this by using the boundary condition.

L
P S
— -t L —
n i1 5 L=t L= o
[Xe)
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Since X =0is the left end and in the opposite direction to the normal X -axis outward from

the boundary condition, the (—) sign is placed at the beginning of the expression.

Z—Z= h(u—v)

x=0
If we write the forward difference finite difference expression,

Uy — U,

'T" =hu,,; -v)

Thus we get an additional equation for U ;.

ou
If we want to express 6_ more precisely, we can open the first derivative with the central
n

difference formula,

u,. —u_
= = :h(uoj _V)
2.0 ‘
U, ; is an imaginary temperature and is the temperature of the outer lattice point outside

the domain (- &, jét). U ;is an unknown temperature and another equation is needed

for the solution. This can be achieved by obtaining one more equation, assuming that the
finite difference expression of the differential equation is also satisfied at the point X =0 of

the bar. Similar equations can be used for the point of the bar at x=1.
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2

u o°u
Example: Solve the equation _:6_2 with the explicit method for the following
X
boundary and initial conditions. Use the central difference expression for the boundary
conditions.
u(x,0)=1 => Initial condition
ou(0,t
0.8 _y0.0)
OX
Boundary conditions
ou(lt
LY _ )
OX
Upjm —U; ;0 Uiy _2*”i,j U,
ot (5x)2
ot
=> Ui =U; + V(Ui_l,,- —2U;; +ui+1,j) and r= (5)()2
i=012,...,n=1n Since the derivative type is the boundary condition and central

differences are used in this equation, it is valid for the values
of *0”and“n ".

Up i =Ug; + r(uflyj —2.u0‘j +u1'j)

From the general equation U, ;,; =Ug; + r(ul,j —2.0KU, ; —2Ug; + Uy ),
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Uy i1 zuo,j+2”(”1,j_(1+5x)”o,j) for i=0

If n=10 is chosen,

Uy, Uy,

2.0x

="y, => Uy j =Ug; —2.KUyg ;

Ugg jyg = U + r(ugvj - 2.u10'j +Ug; — 2.5x.u10’j)

Uio,jar =Ugoj + 2r'(u9,j - (1+ 5X)U10,j ) for i=n=10,

The first and last boundary conditions show that the equations are symmetrical. In this

case, it is sufficient to take half of the system and make a solution.

The solution is valid for r < .
2+ X

If r= 1 is chosen, I = iz => & =r(5x)* =0.0025
4 (%)
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uO j+1 U

[u1J 11*uoj]

U i =%[0.9*u0,]. +uw] i=0
L *y ] i=1,2345
ui,j+1=Zui—l,j+2 g T Ui 1=12,34,
X; =X, +1%X X; =0.1%i
i = i=1 i=2 i=3 i=4 i=5
X = x=0.1 x=0.2 x=0.3 x=0.4 x=0.5
t=0.000 1.0 1.0 1.0 1.0 1.0 1.0
t=0.0025 0.95 1.0 1.0 1.0 1.0 1.0
t=0.0050 0.9275 0.9875 1.0 1.0 1.0 1.0
t=0.100 0.7175 0.7829 0.8345 0.8718 0.8942 0.9017
t=0.250 0.5542 0.6048 0.6492 0.6745 0.6923 0.6983
t =0.500 0.3612 0.3942 0.4205 0.4396 0.4512 0.4551
t=1.000 0.1534 0.1674 0.1786 0.1867 0.1917 0.1933
The analytical solution of this differential equation is
® SecC Ag
u=4> ( ) “'Cos2a (x——) (0<x<1)

n=1

(+4a)

1
Here «, is the positive roots of the «a.tan «a :E function.
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= =1 =2 i=3 i=4 =5

X= x=0.1 x=0.2 x=0.3 x=04 x=0.5
t=0.000 1.0 1.0 1.0 1.0 1.0 1.0
t=0.0025 0.9400 0.9951 0.9999 1.0 1.0 1.0
t=0.0050 0.9250 0.9841 0.9984 0.9999 1.0 1.0
t=0.100 0.7176 0.7828 0.8342 0.8713 0.8936 0.9010
t=0.250 0.5546 0.6052 0.6454 0.6747 0.6924 0.6984
t=0.500 0.3619 0.3949 0.4212 0.4403 0.4519 0.4558
t =1.000 0.1542 0.1682 0.1794 0.1875 0.1925 0.1941

Example: Solve the same problem with the forward (backward) finite difference expansion

for boundary conditions and the differential equation with the explicit method.

a_on
ot ox?
=> U

i,j+1

=u; + r.(ui_lvj - 2.ui’j + um'j)

In this case, it is valid for i1 =1,2,3,

Ui = Uiy Uigy =205 +Ujy
A (6%)°
X
d r=
an )

applied to the boundary conditions)

Ifi=1,

Uy =Up;+ r.(uovj — 2.u1'j + uzyj)
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If we write the forward difference expression of the boundary condition at x=0,

au(0,t)
X

:u(O,t) =>

Uy -
_ o
Up g = Uy +r{1+5x 2.ul'j +u2’jJ

r
U i =(1—2r +—1+5x)u” +rU,

If X=0.1and r =% is chosen,

o =0.0025 becomes,

8
u11+1 ﬁul,j + 4u21
_ ul,j+1
l"IO,j+1 - 1 1
1
Ui =Z(ui—l,j +2U; +ui+1,j)

for i =1,

1=2,345

Uy
Uy i =

1+ x
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For x=0.1*i,

i=0 i=1 i=2 i=3 i=4 i=5
x=0 x=0.1 x=0.2 x=0.3 x=0.4 x=0.5
t=0.000 1.0 1.0 1.0 1.0 1.0 1.0
t =0.0025 0.8884 <= 0.9773 1.0 1.0 1.0 1.0
t =0.0050 0.8734 <= 0.9607 0.9943 1.0 1.0 1.0

t=0.100 0.6869 <= 0.7556 0.8102 0.8498 0.8738 0.8818

t=0.250 0.5206 <= 0.5727 0.6142 0.6444 0.6628 0.6689

t =0.500 0.3283 <= 0.3611 0.3873 0.4063 0.4179 0.4218

t=1.000 0.1305 <= 0.1435 0.1540 0.1615 0.1661 0.1677

HOMEWORK

1) Solve the same problem with the Crank-Nicolson method. For derivative boundary

conditions, use the forward (backward) difference expansion.

2) Solve the same problem with the Full Implicit method. For derivative boundary

conditions, use the central difference expansion.
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Example: Solve the same equation using the Crank-Nicolson method. For derivative
boundary conditions, use the central difference expression.

=>

i —2.ui’j +u

a_U_ o%u Ui i — Ui _E Uiy
ot (ox)’ & 2

i+1, l ui—l,j+1 - 2-Ui,j+1 + ui+1,j+l
2 (6)°

—rU gt (2 + 2.r).ul.’j+1 — Py g =TU (2 — 2r).u[’j +ru (1)
ou(0,t U — U
( ):u(O,t) = A => U, =U;; —2.5KUy (2)
oX 2.0% ’ ’ '
and U, =U;,—2&KUy;;  (3)
— Uy +(2420)Ug g — Ty =Tl +(2-2r)ug + 1y, (4)

if &x=0.1 is chosen and r =1 is taken, when equations (2) and (3) are substituted and

arranged in equation (4),

2.1%Ug . — Uy =—01%uy; +uy

for i=0,

Equation (1) can be used for the remaining points.

* —
=Ui g A% = Ui g = Uiy Ui

1=12345
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If j=0,

2.1%uUy, —u;; =-0.1%uy, +ug,
—Ugy +4™* Uy, Uy, =Ug +U,g
—Uy, +4*U,; —Ug, =U; o +Ug,
—U,, + 4"‘u3’1 —Uy; =Uy o + Uy,
—Uz; + 4*U4,1 —Usy =Uzo +Usy

—U,, + 4*u5,1 —Ugy =Uyo +Ug,

When the initial condition is entered,

21*uy, —u,, =-0.1+1.0

—Uy, +4*Uy; —U,, =1.0+1.0
—Uuy,; +4*U,;, —U,; =1.0+1.0
—U,, +4*uy, —u,, =1.0+1.0
—Ug; +4*U,; —Uy, =1.0+1.0

—U,; +4%Ug, —Ug, =1.0+1.0

If matrix editing is done,

21*u, —u, =-0.1*u, +u, =-0.1+1.0
-U, +4*u; —u, =u, +u, =1.0+1.0
-u, +4*u, —u; =u, +u; =1.0+1.0
-u, +4*u, -u, =u, +u, =1.0+1.0
—U;+4*u, —U; =uU; +U; =1.0+1.0

-u, +4*u, -u, =u, +u, =1.0+1.0

Ugy =U,, and Ugy =Uy,
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Uy U, U, Uy U, Us
21 -1 0 0 0

Oluy | [-0.1+1.0]
-4 -1 0 0 O0fu | | 1.0+1.0
0 -1 4 -1 0 0fu| | 1.0+10
0 0 -1 4 -1 0]y, 1.0+1.0
0 0 0 -1 4 —1|uy, 1.0+1.0
10 0 0 0 -2 4 |us] | 1.0+1.0 |
u, = 0.8908
u, =0.9707
u, =0.9922 For & =0.01,
u, = 0.9979 r=1 and &x=0.1=r=a/(X)
u, =0.9994
us = 0.9997
Ifj=1,
2.1*u, —u, =-0.1*u, +u, =-0.08908 +0.9707 1=0
—U,+4*u, —u, =u, +u, =0.8908 +0.9922 i=1
—Uu, +4*u, —u, =u, +u,; =0.9707 +0.9979 =2
—Uu, +4*u, —u, =u, +u, =0.9922 + 0.9994 =3
—U;+4*u, —u;, =u, +u, =0.9979 +0.9997 =4
—Uu, +4*u; —us =U, +Us =0.9994 + 0.9994 i=5
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uy | [—0.08908 + 09707 |
u, 0.8908 +0.9922
u, 0.9707 +0.9979

0 s 0.9922 +0.9994
0 0 0 -1 4 —1u, 0.9979 +0.9997
0

0O 0 0 =2 4__u5_ _0.9994+0.9994

i=0 i=1 i=2 i=3 i=4 i=5

x=0 x=0.1 x=0.2 x=0.3 x=04 x=0.5
t=0.000 1.0 1.0 1.0 1.0 1.0 1.0
t=0.01 0.8908 0.9707 0.9922 0.9979 0.9994 0.9997
t=0.02 0.8624 0.9293 0.9720 0.9900 0.9964 0.9979
t=0.10 0.7179 0.7834 0.8349 0.8720 0.8944 0.9018
t=0.25 0.5547 0.6054 0.6458 0.6751 0.6929 0.6989
t=0.50 0.3618 0.3949 0.4212 0.4404 0.4520 0.4559
t=1.00 0.1540 0.1680 0.1793 0.1874 0.1923 0.1940

NOT: a—u:@+2x6—”+u+x
ot ox’ ox

When the equation is opened with Crank-Nicolson, the values other than the second

derivative become:

L —Uy, 1 Ui g — Uiy s 1 1
...:...+2.x{5 1"’2& L/ + 1"’12& L/ I}{EMJJFEM"J“}FX"
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7.5. Convergence and Stability

It is very difficult to estimate the accuracy of the results of finite difference equations.
However, if the two criteria known as convergence and stability are met, accuracy can be

achieved by increasing the number of steps and thus increasing the number of operations.

If the time and size steps goes to “"0”, the approximate numerical solution converges to the
analytical solution, the solution is said to be convergent. If the numerical method
converges to the analytical solution in the limit, it can be said that the method has achieved

the convergence criterion.

When the differential equation and boundary conditions are written as a finite difference
equation, operations are performed for a finite number of time and dimension steps.
Rounding errors are also processed during these operations. If these errors do not grow
as the solution progresses, it can be said that the solution is stable. Stability is also a

necessary condition for convergence in reality.

ou _ o’u
ot  ox°
N .o =2*Uu. . L
s U|,]+1& u|,J +O(&)= u|71,1 (5XU)IZJ +U|+1’J +O(5x)2

1- the finite difference equation cannot be represented

2- rounding error

u

ru;+ (1_ 2r)'ui,j RRETY and - (éit)z

ij =

At any instant t, the solution can be expanded to the Fourier series. If we neglect the

constants, the general term of solution of the differential equation will be in the form of

MM597 ADVANCED NUMERICAL METHODS IN ENGINEERS / PROF.DR. NURI YUCEL
120/141



u(x,t)=¢(t)e"”~ . By substituting this expression in the finite difference equation, ¢(t) can

be determined, and as t gets larger, the criterion for ¢(t) to be limited can be determined.

1=+-1 and e =cos Bx+i.sin B.x

As time progresses must be (convergence condition).

u, ;= ¢(t).e;ﬂ‘x

ey = B0
Uiy j = ¢(t)_eiﬂ-(><+5><)
U o = Bt + o )e

Substituting these in the finite difference equation expression, we get

He+ ) = r ()™ 1+ (1-2r)pt)e™ + r.g(t)e 0+
If we divide both sides by ¢(r)e”* expression,

#r+ )
#t)

—re P 4 (l - 2r)+ re'PE

e = cos B +1.sin f.0x
e P = cos B.Sx —i.sin B.&

il e ¥ 1P =2 cos Bk
=> = (1 - 2r)+ r.(e_i'ﬂ'& + el P )

=>  =(1-2r)+r(2.cos 8.5)
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If we arrange,

¢(t+5t_)=1_4{M} and MZS"‘Z@
o0 : ? i

L.OX

=> =1—4r.sin? ==
2

For stability, the value of ¢(t) should be limited as & and & go to 0.

‘—¢(t+&)‘§1 => ‘1—4r.sin2—ﬁ'§X <1
#(t) 2
(sin? @=1), maximum value it can take
[1-4r|<1  in other words —1<1-4r<1
1
=> 0<r and rSE has a range.
ot - .
= Explicit method is therefore not used.
(6)°

This approach is called the Von Neumann approach.

The term with ¢(t) should not go to « and take a limited value.
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7.6. Formulation of Two-Dimensional Unsteady (Time-Dependent) Heat Transfer
Problems in Cartesian Coordinates

ot ox*  oy?

u(x,y,t)—>u?

,n

A flt) m—f(x) n— f(y)
un/;\,;l _ur':,n un/;\—l,n _2'urﬁ,n +urﬁ+l,n n urﬁ\,n—l _Z'Urﬁ,n +u£,n+1 (E I .t)
= XPplICI
a (60 (&) i
= A I Zi r,r. <1
oy Ter

If a fully implicit solution is desired, the A's on the right side of the equation become
(A+1).

7.7. Formulation of Unsteady (Time Dependent) Heat Transfer Problems in
Cylindrical Coordinates

u_
ot
ou o 1au 1 6%u ol
P L R R
ot or ror r°o60 0z

Vau

u(r,0,z,t)>us

Ao ft) m— f(r) n-f@) |, k- f(z)
ur:;:,k - us.n,k — ur/n“—l n,k 2‘u£,n,k + u;:-ﬁ—l n,k 1 ”ﬁﬂ n,k u;:—l n,k
P o) PRy
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A A A A A A
+i um,n—l,k _2'um,n,k +um,n+1,k um,n,k—l _2'um,n,k +um,n,k+l

z (6) : ()

m

(Explicit)

r, =m.or
If a fully implicit solution is desired, the A's on the right side of the equation become

(A+1).

Here u,, is the weighted average of the temperatures at the lattice points surrounding

r =0. (Because at r = 0the equation is unsolvable)

2
u u u
My 28—2+a—+x2u
ot OX OX
u, .., —Uu u,.—2U  +U., . U, —U_,;
= ij+l ij :2'Xi2 i1, j l,; i+1, ] + i+1,] i-1j +Xi2'uij (Explicit)
A ((Sx) 2.0X '

If a fully implicit solution is desired, the A's on the right side of the equation become

(A+1).

8. HYPERBOLIC EQUATIONS
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8.1. Explicit Method and Courant-Friedrichs-Lewy Condition

The wave equation is a hyperbolic equation.

0’u 0’u
ot ox’
u(x,t)=u; and i —>x, Jjt

Initial conditions for t=0

ot
u(0,t)=0
It is homogenous, Ifitis“a” and “b”,
u(Lt)=0

When an analytical solution is desired, we can write V(X,t)zu(x,t)—a+(a—b).x

uHA—ZmJ+uuﬂ_uHJ—ZWJ+u

(&)° . (6x)°

i+1,]

if arranged,

2 2 2
uuﬂ:r.mij+2@—r)mJ+r.m%j—uH4
X
r=—
X

2 2 2
Um:r-wio+2@_r)Wp+r-mﬂo_WA
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Initial conditions,

u(x,0)= f(x) => U = f,
GU(X,O) _ _ ui,l - u|’_1 _
a 9 = ox 0
=> Uy = U, —2.0L0;

If we substitute it in equation (2),

Ui,1 = r2-ui—l,o + 2-(1_ r2)Ui,o + r2-ui+1,o _(ui,l - 2'&'gi)
Uip = % {rz'ui—l,o + 2-(1_ r2)ui,o + 170 + 280G, }

(3)

Analytical solution of the wave equation by D'Alembert is that

u(x,t):%{f(x+t)+ f(x—t)+xfg(§).d§}

| R\ ‘
| |
II [ ||
| [ /\ I \ ;'
| &7 | i ‘
. i‘ ,,,,,,, __T,;,,.;/ )f ,_ & \_*N\ [ 2 1 ‘i
VAR i b |

s _,4’;?%,_,_7_ T, o v:«,‘{.{"}__. d
i Va / { | ’ \\ t\.\ i

ol 748 [ NN

& T 1 L .
/ . Jame l | { | % ?
Dlptp) A B Elxprtp)
Xp
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If the wave equation is solved numerically with the help of equations (1) and (3), U, ;value

at the P point will depend on the value of the remaining lattice points within the ABP .
Suppose the initial conditions in DA and BE are changed. Although the change made in
these initial conditions changes the analytical solution result in P, the numerical solution
value at the point P found with the help of equations (1) and (3) will not change. In this

case, the numerical solution will not converge to the analytical solution. Then the value of

ot
r ZE should be chosen such that while there is a numerical solution at the point P, the
X

initial conditions between DE should also reflect the solution.

o
This condition, known as the Courant-Frendrich-Lewy condition, is r =—. Usually r =1is

X
taken.
2 2
Example: Solve the ¥:7 equation.
1 .
u(x,O):gsm zx=f(x)
Initial conditions (t=0)
au(x,0)
"~ =0=0gl(x
- g(x)
u(0,t)=0
Boundary conditions (t>0)
u(Lt)=0
1-0 . . ot
X =——=0.1 (divided into 10 parts) r=—-=1 => At =0.1 becomes
10 X
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u

ij =

u

Uy +U

i1~ %{uil,o +Uu

i+,j

i+1,

Ui ja

0 +2.8.0; )

1
U, = E{UH'O + ui+l,0}

1.
U, = f; =§sm7r.xi

X; = Xy + 10X

Upo =0

Uy = %sin(o.l*ﬁ) =0.03863

Upo = ésin(o.z*ﬁ) =0.07347

9io=0

i,0

X, =0.1%i

U, = %sin(o.l*zz*i)

(1)

(2)

(3)

U, =0.10113
u,, =0.1189
Us, =0.125
Ugo =0.1189
u,, =0.10113 (Since there is symmetry in the values, it will be sufficient to solve
for half of the wire.)
i= i=1 i=2 i=3 =5 i=10
x=0| x=01| x=02 | x=03| x=04| x=05| x=1.0
Initial
t=0.0 0.0 | 0.03863 | 0.07347 | 0.1013 | 0.1189 | 0.125 | ..... 0.0 o
condition
From Eq.
t=0.1 0.0 0.0367 0.0699 | 0.0962 | 0.1131 | 0.1189 | ...... 0.0 3)
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t=0.2 0.0
t=0.3 0.0
t=04 0.0
t=05 0.0
t=0.6 0.0

Analytical
Solution 0.0
t=0.3

Analytical Solution:

0.0312

0.0227

0.0119

0.0

-.0119

0.0227

1.
u= gsmzz.x*cos;r.t

0.0594

0.0432

0.0227

0.0

-.0227

0.0432

0.0818

0.0594

0.0312

0.0

-.0312

0.0594

0.0962

0.0699

0.0368

0.0

-.0368

0.0699

0.1011

0.0735

0.0386

0.0

-.0386

0.0735

0.0

0.0

0.0

0.0

0.0

0.0

From Eq.
(1)

In the first step, we use equation (3). Then we find the solution using other equations.
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9. ELLIPTICAL EQUATIONS

9.1. Formulation and Solution of Heat Conduction Equation in Steady State in

Cartesian Coordinates

o’T  0°T
—+ =0
ox®  oy?
T(Xy)>T,, m— f(x) n— f(y)
Tm—l,n - 2'Tm,n +Tm+1,n n Tm,n—l - 2'Tm,n +Tm,n+1 -0
(6%)° (&)
m.n+1
m-1.n m.n m-+1.n
oy
m.n-1
Y Ox
X
If X=0y,
Tm—l,n +Tm+1,n +Tm,n—1 +Tm,n+l :4'Tm,n
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o°T . o°T q

a2 6y2 +E =
= Tm—l,n - 2'Tm,n +Tm+1,n n Tm,n—l - 2'Tm,n +Tm,n+1
G (%)
If x=0y,
Tm—l,n +Tm+1,n +Tm,n—1 +Tm,n+1 + E(éx)z = 4'Tm,n

9.2. Boundary Conditions

We have obtained the finite difference equation for the two-dimensional system. This

equation is valid for every node of the lattice inside the rigid body. The boundary conditions

must be known to calculate the boundary temperatures as they approach the boundary.

Let us now examine how the boundary conditions are written in terms of finite differences.

9.2.1. The Boundary Condition for Given Fluid Temperature and Film Coefficient

m.n+1

T
m-1.n m.n

h

- sistem

oy
m.n-1
y OX
X

Akiskanin Sicakligi

Akiskanin
Film Katsayisi
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Thickness of Solid b
dT
Fourier's Law of Heat Conduction : 0= _k'A'E

Newton's Law of Cooling Q=hAT-T,)

Too =T Too T T, —T
_ k5yb m,n m-Ln k Qb m,n mn-1 k ﬁ b m,n m,n+1 _ hbd/(Tm ) _TOO)
5 2 & 2 & '
If X=0y,

If the boundary consists of a corner, as shown in the figure below, the heat conduction

law, together with the Fourier and Newton rules, can be applied to the system shown in

the figure,
Too2
h-
m-1.n m.n
——sistem
dy
Tchl
m.n-1 hs
y 5)(
X

T, =T T, =T
B FLLSLL S R A LL LTSS 1Y, S S PN S )
2 P 2 & 2 " 2

If the variable expressing the thickness of the solid body is eliminated on both sides of the

equation, the system of equations takes its final form.

MM597 ADVANCED NUMERICAL METHODS IN ENGINEERS / PROF.DR. NURI YUCEL
132/141



9.2.2. Given Boundary Temperature
This is used exactly as the temperatures are given at the boundary.

9.2.3. Isolated border

It is assumed that there is no heat transfer from the boundary.

R I

EEEEEEES

—Hsistem

5 TRTTRT WY
FRET PR T |

m,n-1 |

——

simetrik

Tmn_Tm—ln Tmn Tm—ln Tmn_Tmn—l Tmn_Tmn+l
—kSpb Tl g Sy el g Sepmn matl g Sep—m ml
5 5 5 5

In systems with isolated boundary conditions, the solution can be made by taking the
symmetry of the system. as well as the expression found in “The Boundary Condition for

Given Fluid Temperature and Film Coefficient” case, the film coefficient* h” can be set to

“0"”, the equation is obtained.
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— —
fl’ | }1_' GG B |
..........
R O \I\
qqqqqqqqqqq
| e 4444 J1 |
EIEIE I L L
Fx ta LRk 444444 I1
— EIEIE I L L
[ N O
o m-1n +1n
m d 1t 3+ + + T _t+ l
¢¢¢¢¢¢
E m.m .t
wll A+" 4T T T
? LRk
— ottt
wn

simetrik __ —

In this case, the general heat conduction equation becomes:

_ kQTm,n _Tm—l,n K ﬁTm,n _Tm,nfl
2 X 2 &

=0
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9.2.4. Given Boundary Heat Flux
If the heat flux is given at the boundary, the expression (,,.dy.b is put in place of the last

term in the expression obtained for the boundary where the film coefficient is given. Here,

g, is the heat flux from the system to outer space.

m.n+1

% qW
m-1.n m.,n

s sistem
oy

m,n-1
Ox
Example:
m,n+1

m-1.n ;ﬂ,l/a/ m+1.,n

—+——sistem

dy

m,n-1

[

Tmn_Tm—ln Tmn_Tm+ln Tmn_Tmn—l Tmn_ m,n+1
KT sy s omn mnd g s mn T Tmet
& P &

If the variables kand b are eliminated and the equality divided by .0y ,
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Tm—ln_z‘Tmn+Tm+ln Tmn—1_2'Tmn+Tmn+1 azT aZT
, n T mrln | o o T ml =0
(&) () ox® oy
Example:
m.n+1
6Y2
m- 1,1'/ m,n m+1,n
|
R
Oy sistem
mn-1
OX1 OXa
—k. 5)/1 +§Y2 b Tm,n _Tm—l,n _k. &/1 +§)/2 b Tm.n _Tm+1,n
2 X, 2 X,
_ k( 5)(1 + 5X2 ]b Tm,n _Tm,n—l _ k( 5)(1 + 5)(2 jb Tm,n _Tm,n+l -0
2 %, 2 ¥,
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9.3. Curved Borders

The main benefit of the finite difference method is that it can also be used for complex

boundaries. If the boundaries of a solid body are not parallel to the coordinate axis,

m+1.,n
£d
-0y Sy
Dimensions of the system, (ﬁ + 77—5)() :§(1+ 1)
2 2 2
d S _
T, oYN_9(
[2+ 2] 5 (1+¢)
5)/ Tm,n m-1,n 5)/ Tm n Tm+l,n
-k.—(1 b -k.—(1 b
L+¢) o 5 L+ e
X Tmn _Tm n-1 X Tmn Tm n+l
—k.—(1+7n)b— — —k.—(1+7)b— — =0
R
If X=0y,
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2 2 2 2 2 2
—T T ST — & T . -5+5T,, =0
KNS e L e L K e

If n=1and & =1,

Tong T 1T

m,n+

+Tona + Toan — 4T, =0 (general formula)

m-+1,n
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10. GAUSS-SEIDEL POINT BY POINT ITERATION METHOD

It is the simplest of the iteration methods, and the calculation is made by considering the
variable values at each grid point. If the finite difference equation for the grid point“ P " is

given as follows,
a,T,=>a,T,+b
Here, the index nb denotes neighboring points.

AT, =3T, ., +2T

m,n

+8T, .1 +3T, ..+ K (Example)

m+1,n

DA, Ty, +h

ap

p

Tn*b, are the values of neighboring points before iteration or the first estimated values. For

each lattice point, new values can be found with the above equation. Iteration is continued

until the difference between the iterations is less than a certaine .

Example: T, =04*T,+0.2
T,=T,+1.0 , Find the T, and T, values using the Gauss-Seidel

iteration method.

Iteration
0 1 2 3 4 5 o0
No
0 (initial
T, o 0.2 0.68 0.872 0.949 0.98 1
prediction)
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0 (initial
T, 1.2 1.68 1.872 1.949 1.98 2
prediction)

As the iteration continues, the last values that emerged in the iteration are used.

Example: Find the temperature distribution in the solid body under the boundary

conditions given in the figure, using the Gauss-Seidel iteration method. (X =dy)

T=500°C
4T, =100+500+T, +T
U 1’ 2 'ﬁ 1 2 4
o % 4T, =500 +100 +T, +T,
<
T 4 3 < AT, =T, +T, +100 +100
—~ . @
4T, =100 + T, + T, +100
T=100 °C
T AT T AT
T, =24 1150 T, =12 1150
4 4
T AT T AT
T, = 2Z“+5o T, =-13 50
0
Iteration
(initial 1 2 3 o0
No
prediction)
'I'l 300 275 257,33 252,25 250
T2 300 268,75 256,13 251,61 250
T3 200 167,19 154,17 151,12 150
T4 200 160,55 152,88 150,84 150
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The Gauss-Seidel method does not always converge, it is sufficient to meet the

Scarborough criterion for convergence.

<1 for all equations

Scarborough criterion ;

<1 for at least one equation

For example, Tl=0.4*T2+0.2:>0—i4 and T2=Tl+l.0:>£ satisfies Scarborough

criterion

But if we change the order of equations,

1.0 2.5
T,=T,-10 :ﬁ and T,=25*T — 0.5:>E =2.5 does not satisfy Scarborough
criterion.
Iteration No 0 1 2 3
T, 0 -1 -4 -11.5
T, 0 -3 -10.5
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