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DIMENSIONAL ANALYSIS AND SIMILITUDE 
 

Many real fluid flow problems can be solved, at best, only approximately by using analytical 

or numerical methods. Therefore, experiments play a crucial role in verifying these approximate 

solutions.  

 

Solutions of real problems usually involve a combination of analysis and experimental work. 

First, the real physical flow situation is approximated with a mathematical model that is simple 

enough to yield a solution. Then experimental measurements are made the check the analytical 

results. Based on the measurements, refinements are made in the analysis. The experimental 

results are an essential link in this iterative process.  

 

The experimental work in the laboratory is both time consuming and expensive. The obvious 

goal is to obtain the most information from the fewest experiments.  

 

The dimensional analysis is an important tool that often helps in achieving this goal. 

Dimensional analysis is packaging or compacting technique used to reduce the complexity of 

experimental programs and at the same time increase the generality of experimental 

information. 

 

Consider the drag force on a stationary smooth sphere immersed in a uniform stream. What 

experiments must be conducted to determine the drag force on the sphere? 

  

 

 

 

 

 

 

 

 

 

 

 

We would expect the drag force, F, depend on diameter of the sphere, D, the fluid velocity, V, 

fluid viscosity, µ and the fluid density ρ. That is, 

 

𝐹 = 𝑓(𝐷, 𝑉, 𝜌, 𝜇) 
 

Let us imagine a series of experiments to determine the dependence of F on the variables D, V, 

ρ and µ. To obtain a curve of F versus V for fixed values of ρ, µ and D, we might need tests at 

10 values of V. To explore the diameter effect, each test would be repeat for spheres of ten 

different diameters. If the procedure were repeated for 10 values of ρ and µ in turn, simple 

arithmetic shows that 104 separate test would be needed. Also we would have to find 100 

different fluids. Because we need 10 different ρ’s and 10 different µ’s. Assuming each test takes 

½ hour and we work 8 hours per day, the testing will require 2.5 years to complete. 

Dimensional analysis comes to rescue. If we apply dimensional analysis, it reduces to the 

equivalent form. 

 

F 

V 

µ 

ρ 

D 



2 

 

𝐹

𝜌𝑉2𝐷2
= 𝑓1 (

𝜌𝑉𝐷

𝜇
) 

 

The form of function still must be determined experimentally. However, rather than needing to 

conduct 104 experiments, we would establish the nature of function as accurately with only 10 

tests. 

 

BUCKINGHAM PI THEOREM 
 

The dimensional analysis is based on the Buckingham Pi theorem. Suppose that in a physical 

problem, the dependent variable q1 is a function of n-1 independent variables q2, q3, ….., qn. 

Then the relationship among these variables may be expressed in the functional form as 

 

𝑞1 = 𝑓(𝑞2, 𝑞3, … , 𝑞𝑛) 
 

Mathematically, we can express the functional relationship in the equivalent form. 

 

𝑔(𝑞1, 𝑞2, 𝑞3, … , 𝑞𝑛) = 0 
Where g is an unspecified function, and it is different from the function f. For the drag on sphere 

we wrote the symbolic equation 

 

𝐹 = 𝑓(𝐷, 𝑉, 𝜌, 𝜇) 
 

We could just as well have written 

 

𝑔(𝐹, 𝐷, 𝑉, 𝜌, 𝜇) = 0 
 

The Buckingham Pi theorem states that, the n parameters may be grouped into n-m independent 

dimensionless ratios, or π parameters, expressible in functional form by 

 

𝐺(𝜋1, 𝜋2, … , 𝜋𝑛−𝑚) = 0 
or 

𝜋1 = 𝐺1(𝜋2, 𝜋3, … , 𝜋𝑛−𝑚) 
 

The number m is usually, but not always, equal to the minimum number of independent 

dimensions required to specify the dimensions of all the parameters, q1, q2, ….., qn. 
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DETERMING THE  GROUPS 
 

To determine the π parameters, the steps listed below should be followed. 

 

Step 1 

Select all the parameters that affect a given flow phenomenon and write the functional 

relationship in the form 

 

𝑞1 = 𝑓(𝑞2, 𝑞3, … , 𝑞𝑛) 
or 

𝑔(𝑞1, 𝑞2, … , 𝑞𝑛) = 0 
 

If all the pertinent parameters are not included, a relation may be obtained, but it will not give 

the complete story. If parameters that actually have no effect on the physical phenomenon are 

included, either the process of dimensional analysis will show that these do not enter the relation 

sought, or experiments will indicate that one or more nondimensional groups are irrelevant. 

 

Step 2 

List the dimensions of all parameters in terms of the primary dimensions which are the mass, 

M, the length, L, and the time, t (MLt), or the force, F, the length, L, and the time, t (FLt). Let 

“r” be the number of primary dimensions. 

 

Step 3 

Select a number of repeating parameters, equal to the number of primary dimensions, r, and 

including all the primary dimensions. As long as, the repeating parameter may appear in all of 

the nondimensional groups that are obtained, then do not include the dependent parameter 

among those selected in this step. 

 

Step 4 

Set up dimensional equation, combining the parameters selected in step 3 with each of the 

remaining parameters in turn, to form dimensionless groups. (There will be n-m equations). 

Solve the dimensional equation to obtain the (n-m) dimensionless groups. 

 

Step 5 

Check to see that each group obtained is dimensionless. 
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Example: The drag force, F, on a smooth sphere, which is moving comparatively slowly 

through a viscous fluid, depends on the relative velocity, V, the sphere diameter, D, the fluid 

density, ρ, and the fluid viscosity, µ. Obtain a set of dimensionless groups that can be used to 

correlate experimental data. 

Solution: 

 

Step 1 F V D   n = 5 parameters 
 

Step 2 
2t

ML
 

t

L
 L  

3L

M
 

Lt

M
 

r = 3 primary dimensions 
 
 

Step 3 Select repeating parameters , V, D 
 

Step 4 Then, n-m = 2 dimensionless groups will result. Setting up dimensional 
equations, we obtain, 
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Equating the exponents of M, L, and t results in 
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 Step 5: Check using F, L, t dimensions 
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 The functional relationship is  
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Example: When a small tube is dipped into a pool liquid, surface 

tension causes a meniscus to form at the free surface, which is 

elevated or depressed depending on the contact angle at the 

liquid-solid-gas interface. Experiments indicate that the 

magnitude of the capillary effect, Δh, is a function of the tube 

diameter, D, liquid specific weight, γ, and surface tension, σ. 

Determine the number of independent π parameters that can be 

formed and obtain a set. 

Solution: 

Given:  Δh = f(D, , ) 

 

Find: Determine the number of independent π parameters and obtain a set of π parameters. 

 

 

       
Step 1 h D   n = 4 parameters 

 
Step 2 Choose primary dimensions, use both M, L, t and F, L, t dimensions to illustrate 

the problem in determining m. 
 

 a) M, L, t b) F, L, t 
 

 h D   h D   

 L  L  
22tL

M
 

2t

M
 L  L  

3L
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 r = 3 primary dimensions r = 2 primary dimensions 
 

 Thus for each primary set of dimensions we ask, “Is m equal to r?” Let us check 
each dimensional matrix to find out. The dimensional matrices are, 
 

  h D   

M 
L 
t 
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 1 
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-2 
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L 
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 The rank of a matrix is equal to the order of its largest nonzero determinant. 
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     m  r 
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= -1+3= 2  0 

 

 m = 2 
     m = r 

 *Alternatively, you may use reduced row echelon form of the matrix to 
determine the rank of the matrix. The number of nonzero rows of the reduced 
row echelon matrix give the rank of that matrix. 
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Step 3 m = 2. Choose D,  as repeating 
parameters. 

m = 2. Choose D,  as repeating 
parameters. 

Step 4 n-m = 2 dimensionless groups will 
result 

n-m = 2 dimensionless groups will 
result 
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Step 5 Check using F, L, t dimensions Check using M, L, t dimensions 
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 Therefore, both systems of dimensions yield the same dimensionless  
parameters. The functional relationship is 
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DIMENSIONLESS GROUPS OF SIGNIFICANCE IN FLUID 

MECHANICS 
 

There are several hundred dimensionless groups in engineering. Following tradition, each such 

group has been given the name of a prominent scientist or engineer, usually the one who 

pioneered its use. 

 

Forces encountered in the flowing fluids include those due to inertia, viscosity, pressure, 

gravity, surface tension, and compressibility. The ratio of any two forces will be dimensionless. 

We can estimate typical magnitudes of some of these forces in a flow: 
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Inertia forces are important in most fluid mechanics problems. The ratio of the inertia force to 

each of other forces listed above leads to five fundamental groups encountered in fluid 

mechanics. 

 

The Reynolds number is the ratio of inertia forces to the viscous forces, and it is named after 

Osbourne Reynolds (1842 - 1912). 
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where p is the pressure difference between local pressure and the freestream pressure. 
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speed. sonic local  theis  where          
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FLOW SIMILARITY AND MODEL STUDIES 
 

When an object, which is in original sizes, is tested in laboratory it is called prototype. A model 

is a scaled version of the prototype. A model which is typically smaller than its prototype is 

economical, since it costs little compared to its prototype. The use of the models is also 

practical, since environmental and flow conditions can be rigorously controlled. However, 

models are not always smaller than the prototype. As an example, the flow in a carburetor might 

be studied in a very large model. 

 

There are three basic laws of similarity of model and prototype flows. All of them must be 

satisfied for obtaining complete similarity between fluid flow phenomena in a prototype and in 

a model. These are 

 

a) The geometric similarity, 

b) the kinematic similarity, and 

c) the dynamic similarity. 

 

Geometric Similarity: The geometric similarity requires that the model and prototype be 

identical in shape but differ in size. Therefore, ratios of the corresponding linear dimensions in 

the prototype and in the model are the same. 

 

Kinematic Similarity: The kinematic similarity implies that the flow fields in the prototype 

and in the model must have geometrically similar sets of streamlines. The velocities at 

corresponding points are in the same direction and are related in magnitude by a constant scale 

factor. 

 

Dynamic Similarity: When two flows have force distributions such that identical types of 

forces are parallel and are related in magnitude by a constant scale factor at all corresponding 

points, the flows are dynamically similar. 

 

By using Buckingham  theorem, we can find which dimensionless groups are important for a 

given flow phenomenon. To achieve dynamic similarity between geometrically similar flows, 

we must duplicate all of these dimensionless groups. 

 

For example, in considering the drag force on sphere we found that 
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Thus in considering a model flow and prototype flow about a sphere, the flows will be 

dynamically similar if  
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The results determined from the model study can be used to predict the drag on the full scale 

prototype. 

 

Example: A one-tenth-scale model of a derby car, shown in the figure, is tested in a wind 

tunnel. The air speed in the wind tunnel is 70 m/s, the air drag on the model car is 240 N, and 

the air temperature and pressure are identical those expected when the prototype car is racing. 

Find the corresponding racing speed in still air and the drag on the car. 

 

        
 

Solution: 

The functional relation for the drag force can be found by applying Buckingham- theorem 

such that 

















VD
f

LV

FD

22
  



VL
 Re  

 

and the test should be run at  

p

ppp

m

mmm
LVLV










 prototypemodel ReRe

 

 

to ensure dynamic similarity The problem statements show that  m =p and m =p. Then, 
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This speed is low enough to neglect compressibility effects. At these test conditions, the model 

and the prototype flows are dynamically similar. Hence, 
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Example: A jet plane travelling at a velocity of 900 m/s at 6 km altitude, where the 

temperature and the pressure are -24 C and 47.22 kPa, respectively. A one-tenth scale model 

of the jet is tested in a wind tunnel in which carbon dioxide is flowing. The gas constant for 

air and carbon dioxide are 287 J/kg K and 18.8 J/kgK, respectively. The specific heat ratios 

for air and carbon dioxide are 1.4 and 1.28, respectively. Also the absolute viscosities of the air 

at -24 C and carbon dioxide at 20 C are 1.610-5 Pa.s and 1.4710-5 Pa.s, respectively.  

 

Solution: 

 

Determine  

a)The required velocity in the model, and  

b)The pressure required in the wind tunnel.    

 

a) As long as the model jet plane is moving in a compressible fluid, then a free surface does not 

exist. Therefore, it is not necessary to concern either with the wave or surface tension effects. 

The Froude and the Weber numbers play no role for the dynamic similarity. In order to achieve 

dynamic similarity, the Reynolds numbers and Mach numbers must be equal on the model and 

on the prototype. 
 

m

m

m

m

p

p M
c

V

c

V
M   

 

Then the velocity of the model jet plane is 

 

m/s14.755
2492874.1

2938.18728.1
900

2
12

1






























ppp

mmm
p

m

p

pm
TRk

TRk
V

c

c
VV  
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b) The other requirement for the dynamic similarity is the equality of the Reynolds numbers 

 

mp ReRe 
m

mmm

p

ppp LVLV








 

 

The density of air may be evaluated by using equation of state for a perfect gas 

 

3m

kg
661.0

249287

47220





pp

p

p
TR

p
  

 

Now, required density of the carbon dioxide may be evaluated as  

 

35

5

m

kg
24.7

1060.114.755

1047.1900
10661.0 










mmm

ppp

pm
VL

VL




  

 

Finally, the required pressure of the carbon dioxide is 

 

   kPa38.3982937.18724.7  pmmmm TRp   

  



12 

 

INCOMPLETE SIMILARITY 
 

To achieve complete dynamic similarity between geometrically similar flows all of the 

dimensionless numbers in prototype and in the model (that is Re, Eu, Fr, We, M,.. ) should be 

equal. 

 

Fortunately, in most engineering problems, the equality of all of dimensionless groups is not 

necessary. Since some of forces 

 

i. may not act 

ii. may be negligible magnitude or 

iii. may oppose other forces in such a way that the effect of both is reduced. 

 

In some cases, complete dynamic similarity may not be attainable. Determining the drag force 

of surface ship is on example of such a situation. The viscous shear stress and surface wave 

resistance cause the drug. So that for complete dynamic similarity, both Reynolds and Froude 

numbers must be equal between model and prototype. This requires that 

 

 

𝐹𝑟𝑚 =
𝑉𝑚

(𝑔𝐿𝑚)
1
2

= 𝐹𝑟𝑝 =
𝑉𝑝

(𝑔𝐿𝑝)
1
2

 

 

𝑉𝑚

𝑉𝑝
= (

𝐿𝑚

𝐿𝑝
)

1
2

 

 

 

To ensure dynamically similar surface wave patterns. 

 

From the Reynolds number requirement 

 

𝑅𝑒𝑚 =
𝑉𝑚𝐿𝑚

ν𝑚
= 𝑅𝑒𝑝 =

𝑉𝑝𝐿𝑝

ν𝑝
 

 
ν𝑚

ν𝑝
=

𝑉𝑚

𝑉𝑝

𝐿𝑚

𝐿𝑝
 

 

 

If we use the velocity ratio obtained from matching Froude numbers, equality of Reynolds 

number leads to a kinematic viscosity ratio of 

 

ν𝑚

ν𝑝
= (

𝐿𝑚

𝐿𝑝
)

1
2

(
𝐿𝑚

𝐿𝑝
) = (

𝐿𝑚

𝐿𝑝
)

3
2

 

 

 

If Lm/Lp equals 1/100 (a typical length scale for ship model tests), then νm/ νp must be 1/1000. 

Mercury, which is the only liquid, its kinematic viscosity is less than water. Thus, we cannot 

simultaneously match Reynolds number and Froude number in the scale-model test. Then one 
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is forced to choose ether the Froude number similarity, or the Reynolds number similarity. For 

this reason, the experiments with the model are performed so that Frp = Frm which results 

Rep >> Rem. The test results are then corrected by using the experimental data which is 

dependent on the Reynolds number. 

 

Example: The drag force on a submarine, which is moving on the surface, is to be determined 

by a test on a model which is scaled down to one-twentieth of the prototype. The test is to be 

carried in a towing tank, where the model submarine is moved along channel of liquid. The 

density and the kinematic viscosity of the seawater are 1010 kg/m3 and 1.310-6 m2/s 

respectively. The speed of the prototype is 2.6 m/s. 

 

a) Determine the speed at which the model should be moved in the towing tank. 

b) Determine the kinematic viscosity of the liquid that should be used in the towing tank. 

c) If such a liquid is not available, then the test may be carried out with seawater by 

neglecting the viscous effects. In this case, determine the ratio of the drag force due to 

the surface waves in the prototype to the drag force in the model. 

 

 

a) Because of low speed of the submarine, the compressibility has no effect on the dynamic 

similarity, and the Mach number plays no role. 

The Froude numbers for the prototype and the model may be equated to yield. 

 

𝐹𝑟𝑝 =
𝑉𝑝

(𝑔𝐿𝑝)
1
2

=
𝑉𝑚

(𝑔𝐿𝑚)
1
2

= 𝐹𝑟𝑚 

𝑉𝑚 = 𝑉𝑝 (
𝐿𝑚

𝐿𝑝
)

1
2

= 2.6 (
1

20
)

1
2

= 0.58 𝑚/𝑠 

 

b) To determine the kinetic viscosity of the liquid that should be used in the towing tank, 

one may equate the Reynolds number in the model and prototype. 

 

𝑅𝑒𝑝 =
𝑉𝑝𝐿𝑝

ν𝑝
=

𝑉𝑚𝐿𝑚

ν𝑚
= 𝑅𝑒𝑚 

 

Rearranging one may obtain 

 

ν𝑚 = ν𝑝 (
𝑉𝑚

𝑉𝑝
) (

𝐿𝑚

𝐿𝑝
) = 1.3x10−6 (

0.58

2.6
) (

1

20
) = 1.45x10−8 𝑚2/𝑠 

 

c) However, one should note that a liquid with a given kinematic viscosity cannot be 

practically formed. Then the test in towing tank may be carried out with seawater by neglecting 

the viscous effects. In this case, only the equality of the Froude number is sufficient for the 

dynamic similarity and the drag force is only due to the surface waves. 

By using Buckingham π theorem one may obtain. 

 
𝐹

𝜌𝑉2𝐿2
= 𝑓(𝑅𝑒, 𝐹𝑟) 

 

But in this case only the equality of the Froude number is sufficient, then 
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𝐹

𝜌𝑉2𝐿2
= 𝑓(𝐹𝑟) 

 

Frmodel=Frprototype  

 

(
𝐹

𝜌𝑉2𝐿2
)

𝑚𝑜𝑑𝑒𝑙

= (
𝐹

𝜌𝑉2𝐿2
)

𝑝𝑟𝑜𝑡𝑜𝑡𝑦𝑝𝑒

 

 

𝐹𝑝

𝐹𝑚
=

𝜌𝑝

𝜌𝑚

𝑉𝑝
2

𝑉𝑚
2

𝐿𝑝
2

𝐿𝑚
2 

 

𝑉𝑚 = 𝑉𝑝 (
𝐿𝑚

𝐿𝑝
)

1
2

                           
𝑉𝑚

𝑉𝑝
= (

𝐿𝑚

𝐿𝑝
)

1
2

 

 

𝐹𝑝

𝐹𝑚
=

𝐿𝑝

𝐿𝑚
(

𝐿𝑝

𝐿𝑚
)

2

= (
𝐿𝑝

𝐿𝑚
)

3

= 203 = 8000 

 

This result must be corrected for viscous effects. 

 

 

 


