INTRODUCTION

Fluid Mechanics in Engineering

Fluid mechanics deals with behavior of fluids at rest and in motion. Many engineering
applications involve fluid in motion or stationary. Examples include home and city water
supply system, transportation of oil and natural gas in pipelines, flow of blood in vessels, air
flow over an aircraft, motion of a ship in water, and many others. Design and operation of all
such devices require a good understanding of fluid behavior when it is stationary or in motion,

and its interaction with the surface in contact.

Definition of a Fluid

Consider imaginary chunks of both a solid and a fluid. Chunks are fixed along one edge, and
a shear force is applied at the opposite edge. A short time after application of the force, the
solid assumes a deformed shape which can be measured by the angle ¢1. If we maintain this
force and examine the solid at a later time, we find that deformation is exactly the same, that
is d2=¢1. On application of a shear force, a solid assumes a certain deformed shape and retains

that shape as long as the force is applied.

Time
F F
—_— —
oy |
' b= 0,
(a) Solid (b) Solid (¢) Solid
Time
F F
—_— —_—
[ o)+ ¢, // //
/ Y
(a) Fluid (b) Fluid (¢) Fluid

Figure 1. Solid and fluid behavior under shear stress.
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Consider the response of the fluid to the applied shear force. A short time after application of
the force, a fluid assumes a deformed shape, as indicated by the angle ¢1'. At a later time, the
deformation is greater, ¢2">¢1', in fact the fluid continues to deform as long as the force is

applied. Thus we can define a fluid:

A fluid is a substance that deforms continuously under the action of applied shear force.

The process of continuous deformation is called flowing.

Scope of Fluid Mechanics

As pointed out above, many engineering applications involve fluids in motion or stationary.
We cannot consider all these specific problems of fluid mechanics. Instead, the purpose of
this course is to introduce the basic laws and associated physical concepts that provide the
basis or starting point in the analysis of any problem in fluid mechanics.

Basic Equations

Analysis of any fluid mechanics problem begins, either directly or indirectly with the basic

laws governing the fluid motion. The basic laws, which are applicable to any fluid, are,

Conservation of mass
Newton’s second law of motion
Moment of momentum

The first law of thermodynamics

o ~ e

The second law of thermodynamics
It should be emphasized that not all basic laws are required to solve every problem. However,

in some problems, it is necessary to bring into the analysis additional relations, in the form of

equation of state or constitutive equations; i.e. equation of state

p=pRT



METHOD OF ANALYSIS

The first step in solving a problem is to define the system that is going to be analyzed. The

basic laws can be applied to a control volume or to a system.

System and Control Volume

A system is defined as a fixed, identifiable quantity of mass.

The boundaries of a system may be fixed or moveable;

- however, there is no mass transfer across the system

boundaries; i.e. the amount of mass in the system is
fixed.

Control Volume

A control volume is an arbitrary volume in space through which fluid flows.
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Differential vs. Integral Approach

The basic laws that we apply in fluid mechanics problems can be formulated in differential
and integral forms. The solution of differential equations provides a means of determining the

detailed (point by point) behavior of the basic laws.



System of Units

The Sl system of units will be used. In the SI system of units

quantity unit

mass kg

length m

time sec

temperature K

force N
FUNDAMENTAL CONCEPTS

Fluid as a Continuum

All fluids are composed of molecules in constant motion. However, in most engineering
applications we are interested in the average or macroscopic effects of many molecules. We
thus treat a fluid as an infinitely divisible substance, a continuum, and do not concern with the

behavior of individual molecule.

For continuum model to be valid, the smallest sample of the matter of practical interest must

contain a large number of molecules so that meaningful averages can be calculated.

The condition for the validation of continuum approach is that distance between the

molecules of the fluid should be smaller than the smallest characteristic length of the problem.

As a consequence of the continuum assumption fluid properties and flow properties can be

expressed as continuous functions of position and time, i.e.

p=p Xyl
u=u(xy,zt)
T=T(xy,z1)
p = p (X,y,Z,t)



The value of a fluid property ar a point is defined as an average considering a volume around
that point.
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VELOCITY FIELD

Continuum assumption led to description of all the fluid properties at every point in the flow

domain.

The fluid velocity at a point C is defined as the velocity of the center of gravity of volume 8V’

surrounding the point C.



The velocity at any point in the flow field is a function of space and time, i.e.

V =V (x,Y,1z1)

Velocity vector V , can be written in terms of scalar components

V =ur +vj+wk, U isx-component of velocity
v is y-component of velocity

w is z-component of velocity
Steady Flow

If properties at each point in a flow do not change with time, the flow is called steady.

Mathematically for any property n

or

—=0 = pzp(X,y,Z)

—=0 = V=V(xy,12)



ONE- TWO- AND THREE-DIMENSIONAL FLOWS

A flow is classified as one-, two-, or three-dimensional depending on the number of space

coordinates required to specify the velocity field.

Example:
SN RT
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Velocity changes with x and y coordinates, hence the flow is two dimensional.

Give example about three dimensional flows.

Uniform Flow

To simplify the analysis, sometimes velocity at a cross-section is assumed to be constant. If

velocity at a given cross section is assumed to be uniform, flow is called uniform flow.




Timelines, Pathlines, Streaklines, and Streamlines

Timelines, pathlines, streaklines and streamlines provide a visual representation of a flow
field.

Timeline:

If a number of adjacent fluid particles in a flow field are marked at a given instant, they form
a line in the fluid at that instant, this line is called a timeline. Observation of the timeline at a
later instant may provide information about the flow field.

Pathline:

A pathline is the path or trajectory traced out by a moving fluid particle. A pathline may be
obtained by following a fluid particle (i.e. by use of dye) in the flow field.

Streakline:

A line joining the fluid particles that pass through the same point in the flow field is called the

streakline.



Streamline:

Streamlines are lines drawn in the flow field so that at given instant they are trangenbt to
direction of flow at every point in the flow field. Streamlines are tangent to the velocity vector

at every point in the flow field.




In steady flow, pathlines, streaklines, and streamlines are identical lines in the flow field.

Example: A velocity given by V =axi —ay] , the units of velocity are m/s; and x and y are

given in meters; a=0.1 sec™.
a) Determine the equation for the streamline passing through the point
(X0, Yo, 0)=(2, 8, 0)
b) Determine the velocity of a particle at the point (2, 8, 0)
c) If the particle passing through the point (Xo, Yo, 0) is marked at time to=0, determine
the location of the particle at time t=20 sec.
d) What is the velocity of the particle at t=20 sec.

e) Show that the equation of the pathline is the same as the equation of the streamline.

a) Equation of streamline through point (2, 8, 0)
Streamlines are tangent to the flow direction (velocity vector). Hence,

dy
dx

_v_—ay_ Y

streamline u ax X

separating variables and integrating

jﬂ:_ ax = Iny=-Inx+C1 orxy=C
y X
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For the streamline passing through point (2, 8, 0), the constant C
C=2x8=16

and the equation of the streamline through point (2, 8,0)
Xy=16 m?

b) The velocity field is V = axi —ayj

at point (2, 8, 0) is V=021-08]

dx tdx
U,=——=ax = j—zjadt = Inizat = X=><oeat
C) X 0 XO
y t
dy d
v,=Z=—ay = [T-[-adt= nL-—at = y=ye™
dt y y
Yo 0 0

at t=20 sec., x=2e029=14.8 m.
y=8 e ®-120)=1 08 m.
.. at t=20 sec., particle is at point (14.8, 1.08, 0) m.
d) t=20 sec particle is at point (14.8, 1.08, 0)

- velocity at this point ¥/ =0-2(14.87 ~1.08]) =148 0.108]

: . : : . x=x.e" and
e) To determine equation of the pathline, we use the parametric equations

y= YOefat

Solving for e,

~.XY = Xoyo=16 m? Equation of pathline for particle passing through (xo, Yo, 0).

— 2
Streamline passing through the point (X0, Yo, 0) can also found as xy=16 m

.. Pathline and the streamline passing through (Xo, Yo, 0) are the same for steady flow.
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STRESS FIELD

Forces acting on a fluid element
- Surface forces

- Body forces

Surface forces include all forces acting on the boundaries of a medium through direct contact.
Forces developed without physical contact, and distributed over the volume of the fluid are

called body forces.

Gravitational and electromagnetic forces are body forces.

gpdv

Gravitational body force acting on a fluid element of volume dV is

&

and gravitational body force acting on per unit volume of a fluid element is 7~ .

The concept of stress field provides a convenient means to describe forces acting on

boundaries of a fluid medium and transmitted through the medium.

— —

Consider an area 6A around point C in a continuum. The force acting oF acting on 5Acan be
resolved into two components, one normal and the other tangential to the area

SFn : normal component

SFn : tangential component

A : normal unit vector

Normal stress on and shear stress t, are defined as

on = lim 2o and 7, = lim 2t
T a0 OA, " oA 0 O,

Note: subscript, n, indicates that the stress are associated with a particular surface

oA through point C.
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Note that a point C in a continuum different surfaces can be drawn. However, for purpose of
analysis, we usually reference the area to some coordinate system. In rectangular coordinate

system, we might consider the stress acting on planes whose outward drawn normals are in

X,y or z-directions.
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Force components on element of area 5Ax  Stress components on element of area 6Ax
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(a) Force components (b) Stress components

Stress components shown in above figure is defined as

_I . 5FZ
m M a!\m (ﬂ\ P =M 5

We have used a double subscript notation to label the stresses.

Tij  I:indicates plane on which stress acts (plane perpendicular to axis i)

J: direction in which stress acts
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Consideration of an area element, 5Ay, would lead to the definition of stresses oyy, tyx, Tyz, and

use of area element 6A; would similarly lead to the definitions of 62z, Tzx, Tzy.
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An infinite number of planes can be passed through point C, resulting an infinite number of
stresses associated with that point. Fortunately state of stress at a point can be described
completely by specifying the stresses acting on three mutually perpendicular planes through

the point. Hence, stress at a point is specified by the nine components.

14



Owx Txy Txz
Tyx Oy Ty
T Ty Og

The planes are named in terms of the coordinate axes. The planes are named and denoted as
positive or negative according to the direction of the outward drawn normal to the plane.

Thus, the top plane for example is a positive y-plane and the back plane is a negative z-plane.

It is also necessary to adopt a sign convention for stress. A stress component is considered
positive when the direction of the stress component and the plane on which it acts are both
positive or both negative. In other words, a shear stress on positive y-plane in positive x-

direction or shear stress on negative y-plane in negative x-direction.

Thus, tyx=2.4 N/m? represents a shear stress on positive y-plane in positive x-

direction or shear stress on negative y-plane in negative x-direction.

VISCOSITY

We have learned that a fluid is a substance that undergoes continuous deformation when
subjected to a shear stress. This shear stress is a function of rate of deformation. For many
common the shear stress is proportional to the rate of deformation. The constant of

proportionality, called viscosity, is a fluid property.

To develop the defining equation for viscosity, we consider a flow in x-y plane in which x-

direction velocity varies with y.
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Consider the fluid element in the figure. The top of the fluid element moves faster than the

bottom, so in time fluid element deform.

We measure shear deformation by the angle ¢, which can be related to the fluid velocity.

R = u+%§y &—u&:%@&
dy dy

also = 09y = %5)/&
dy

tan5¢;6¢=% = & =545

@ = d_u Sheardeformation rate
o dy

Hence shear stress

o¢
Tyx 5_¢
or

du
TyX d_y
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Newtonian Fluid

Fluid in which constant of proportionality in above expression is equal to the viscosity called

Newtonian fluid.

Newton’s law of viscosity:

Ty= ﬂg_;j u: dynamic viscosity (absolute viscosity)
Unit of p
.
L2 L
4 17
dy t
In metric system poise = g
cm.sec
: ki
1 poise =0 1—g
msec
In S| pNSee
m
kgm
" sec
Kinematic Viscosity v
2 2
N s
P t sec
2
. cm
In metric system stoke = —
sec

2

1 poise =0.0001m—
sec
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Non-Newtonian Fluid

Not all fluids follow the Newton’s law of viscosity (stress-strain relation). Such fluids are

called non-Newtonain. Some fluids such as ketchup, are °‘shear-thinning’; that is the

coefficient of resistance decreases with increasing strain rate (it all comes out of the bottle at

once). Others, such as a mixture of sand and water ‘shear-thickening’. Some fluids do not

begin to flow until a finite stress been applied (toothpaste).

In there fluid shear stress-deformation rate (shear strain) relation may be represented by the

power law model,

n
Ty= k(%j n: flow behavior index, k: consistency index

dy

If the above equation is written in the form

n—lﬁ_ d_U
dy ndy

du
dy

Tyx_

-1
du[" . o

then n = k‘d—u is referred to as the apparent viscosity.

y

Bingham
plastic =
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© = o 7
2 z i
& Dilatant 8 -~ Dilatant
Q
<
Newtonian Newtonian
Deformation rate, 44 Deformation rate, 9

dy
(a) ’ (b)

T

Pseudoplastic Fluid (Shear thinning): apparent viscosity decreases with

deformation rate.
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Example: polymer solutions, ketchup

Dilatant (Shear thickening): apparent viscosity increases with increasing deformation rate.

Example: sand suspension

Bingham plastic: deformation (flow) does not begin until a finite stress is applied.

Example: toothpaste, drilling muds, clay suspensions

Rheopectic fluid: apparent viscosity increases with time under constant shear stress.

Thixotropic fluid: apparent viscosity decreases with time under constant shear stress.

Example: paints

Viscoelastic fluid: fluid which partially returns to original shape when the applied stress is

released.

Dependency of Viscosity on Temperature

In liquids, viscosity decreases with increasing temperature. This is a result of the fact that the
distance between liquid molecules increases with increasing temperature, and hence cohesion

between molecules decreases.
In gases, resistance to shear force depends on the momentum transfer between molecules with
increasing temperature, motion of the gas molecules increases and hence momentum transfer

increases, as a result viscosity increases.

Expamle: Consider a fluid flowing on an inclined surface. Its velocity profile is

2
u(y) =U{2YX —[YXJ } Find shear stress at y=0, Y/2, Y.
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For Newtonian fluid,

du dl.y (yY U{ y}
LT R AN B A I e RS 4
Ty udyﬂdy{Y(YJ}uY Y

U
Tyx y=0 = 2/'1?
WY
Tyxy:Y/Z _'uY
Tyx Y:O <astheair abovetheliquid exerts aneglibile force ontheliquid.
y:

DESCRIPTION AND CLASSIFICATION OF FLUID MOTIONS

Since there is much overlap in the types of flow fields encountered, there is no universally

accepted classification scheme. One possible classification,
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Continuum
fluid mechanics

Inviscid
u=0

Viscous

I
I |

Laminar Turbulent

I I

Compressible Incompressible Internal External

Viscous and Inviscid Flows

In an inviscid flow, the fluid viscosity, w, ,s assumed to be zero. Fluids with zero viscosity do
not exist; however, there are many problems where an assumption that u=0 will simplify the

analysis, and at the same time lead to meaningful results.

All fluids possess viscosity and consequently all flows are viscous.
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Figure 3.4 Smoke marks
streaklines in flow over

an airfoil in a wind tunnel
(from the *“NCFMF Book
of Film Notes,"” 1974, The
MIT Press with Education
Development Center, Inc.,
Newton, Mass.).

Figure 3.6 Timelines
marked by hydrogen
bubbles in water flow
through a diffuser (from
the “NCFMF Book of Film
Notes,” 1974, The MIT
Press with Education
Development Center, Inc.,
Newton, Mass.).

Figure 3.5 Difference
between streamlines,
streaklines, and pathlines in
unsteady flow over an
oscillating plate: (a) stream-
line (dotted) and pathline;
(b) streamline and streak-
line. (From the "NCFMF
Book of Film Notes,"” 1974,
The MIT Press with
Education Development
Center, Inc., Newton,
Mass.).

Wires for

~—— electrolyzing ——
o - \ .

Diffuser &
wall

e e Plate oscillates
Flow

g Pivot point

——
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In any viscous flow, the flow in direct contact with a solid boundary has the same velocity as

the boundary itself. There is no slip at the boundary.

Laminar and Turbulent Flows

The laminar flow is characterized by smooth motion of fluid particles in laminae or layers.

The turbulent flow is characterized by random, three-dimensional motions of fluid particles

superimposed on the mean motion.

In laminar flow there is no macroscopic mixing of adjacent fluid layer.

V=ui

y Laminar
A * V=@+u) +v] +wk

Turbulent

23



Figure 3.11 Water flowing in a diverging Figure 3.12 Velocity profiles at three

channel: flow is made visible by generating loatior;s({in wat.:r n:}é;&; g:;gior;gmm
: i i hannel (from the

hydrogen bubbles from a wire spanning c | .

tge I::\gannel (from the "“NCFMF Book of Notes.. 1974, The MIT Press wntl;

Film Notes,” 1974, The MIT Press with Education Development Center, Inc.,

Education Development Center, Inc., Newton, Mass.).

Newton, Mass.).

Figure 3.1 |nstantaneous
velocity profile in pipe flow;
fluctuating velocity is
superimposed on time-
average velocity.

Time-average velocity

\ Turbulent fluctuation
\ } Instantaneous
velocity

/profiie

\

\
Time-average velocity profile

Figure 3.19 A Plume of
cigarette smoke illustrates
laminar flow, transition,

S and turbulent flow (from
the ““NCFMF Book of Film
Notes," 1974, The MIT
Press with Education
Development Center, Inc.,
Newton, Mass.).
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FLUID STATICS

In this chapter, an expression for the pressure distribution in a stationary body of fluid will be

derived, and the pressure forces acting on submerged surfaces will be studied.

In fluids at rest, there is no relative motion between fluid particles. Hence there is no shear
stress acting on fluid elements. Fluids, which are at rest, are only able to sustain normal
stresses. In fluids undergoing rigid-body motion, a fluid particle retains its identity and there
is no relative motion between the particles. Hence, in fluids undergoing rigid-body motion

only stress component present is the normal stress.

THE BASIC EQUATION OF FLUID STATICS

Our primary objective is to obtain an equation that will enable us to determine the pressure
field within the fluid.

Consider a differential element of mass dm, with sides dx, dy, and dz. The fluid element is

stationary relative to stationary coordinate system.

Two types of force may be acting on the fluid element.
- body force <« gravitational force

- surface force « pressure force

dz

op dy _7
(p+ay 2jdxdz( 1)




In general P=P(x,y,z,t)

The force acting on fluid element shown,

dF =dF; +dF, Q)

dFg =dmg = dVpg = dxdydzg )

Let the pressure at the center O, of the element be P(x,y,z,t). To determine the pressure at
each of the six forces of the element, we use Taylor series expansion about the point O. The

pressure at the left face of the differential element is

8p( yj:p_ap dy

Y _
pL_p+ay(yL y)= oy 5

Similarly on the right face

op op dy
Pr=p - (YR=Y)=p v 2

Pressure forces on the other forces of the element are obtained in the same way. Combining

all such forces gives the net surface force acting on the element

= ap op op "
dF, dx |dyd ——dy |dxd dz |dxd
g = ( xijM{ yJXZj (az zjxyk

:(—@T—@]—a—p jdxdydz

oXx oy 0z
_ %P5y pj+—p k |dxdydz
OX ay 0z

The term in parentheses is called the gradient of the pressure is simply pressure gradient and

can be written grad P or VP. In rectangular coordinate system,

gradP=VP = Py pi Py
8x 8y

0z
-.dFs = —grad P dxdydz = -VPdxdydz (3)
gradP=VP=- dF
dxdydz
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Physically the gradient of pressure is negative to the surface force per unit volume due to the
pressure. We note that the level of pressure is not important in evaluating the net pressure
force. Instead, what matters is the rate at which pressure changes occur with distance, the

pressure gradient.

Combining equations (2) and (3) in Eq. (3)
dF = dF; +dF,

= (— grad P + pg )dxdydz
Or on unit volume base
g—gzﬁ:—grad P+ pg
For a fluid particle, Newton’s second law of motion gives dF =dma = pdVva. But for a static
fluid, the acceleration a is zero. Thus,
dF =(—grad P + p§ )dxdydz =0
or

—gradP+ =0
T Lbody force per unit volume at a point
pressure force per unit volume at a point

Components of this vector equation are

op
_ZF -0
aXJr/?gx
op
-—+p9, =0
ay y
op _
pe +P9; =

Above equations describe the pressure variation in each of the three coordinate directions in a
static fluid. To simplify further, it is logical to choose a coordinate system such that the
gravity vector is aligned with one of the axes. If the coordinate system is chosen such that z-

axis is directed vertically, then g, =0, gy =0and g,=-¢g
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P g
OX
op . .
5 =0 ;=pressure is only function of z
op_
o7 ”
"oz dz
dp
dz &
or
dp : : . :
i —y (4) Basic equation of fluid statics
z

Note: The pressure does not vary in a horizontal direction. The pressure increases if we go

down and decreases if we go up.

PRESSURE VARIATION IN A CONSTANT-DENSITY FLUID

If the density of the fluid is constant, we can easily integrate Eq.(4) to give

d

d_p =—pg Z0 < free surface
: '

p z

[dp=—] pgdz Vg

Py 2,

p-po=-p9(z-12)
or z
p—po=p9(z0-2)

e y

For liquids, it is often convenient to take the origin of the coordinate system at the free

v

surface, and measure the distance as positive downward from the free surface with h
measured positive downward, the

Z,—z=h

P = po + poh is called hydrostatic pressure
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where p, is the pressure at the free surface of the liquid.

Example: A tank which is exposed to the atmosphere, contains 2 m of water covered with 1
m of oil. The density of water and oil are 1000 kg/m® and 830 kg/m?3, respectively. Find the
pressure at the interface and at the bottom of the tank. Also determine the pressure

distribution at the tank. The atmospheric pressure is 101.325 kPa.

Z A

v >
1 / = ///' AN
1 ? 7 _
/// . é h=1m
7 oil. p, L
/// <A
7 / AN
/; water. p,. ré
/%/ ’///1 h =2m
. |
Z >
Z >
Z 7
Z <z

i

/ ;
G >y

Basic equation of fluid statics, ? =—pq
z

For p=constant, p = p, + pgh, pressure at any point in the fluid.

N k m
Pint = Pa + 009N, =101325{F} + 830{m—%}9.81[5—2}1[m]

2

Py =109467.3 [ﬁ}
m

By = Py + 20N, :109467.3{%}+1OOO{%}9.81LE2}2[m]

p, =129087.3 [ N }

m2
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Variation of the pressure in oil is

P= Do + 2,90 :101325{%} +830{k—%}9.81{22} h[m]=101325+8142.3h  for 0<h<h,
m m S

Variation of the pressure in water is

p=p,, +p,0h =109467.3{%}+1000{%}9.81Lm2} h[m]=109467.3+9810h  for 0<h<h,

Example: Water flows through pipes A and B. QOil, with specific gravity 0.8, is in the upper
portion of the inverted U. Mercury (specific gravity 13.6) is in the bottom of the manometer
bends. Determine the pressure difference, Pa-Pg.

B
f (A \/: il C ‘
4 I d5
_+_ *‘—H20
ds 10 cm | e l
H,0 — | '
o~ 4 Hor T
d- q d4 di=25cm
Y - \ 2 l d2=75cm
C  LE d:= 10 cm
L

\ , d:=125cm
< ’ /” ds =20 cm
g

Find: the pressure difference between A and B, pa-pe="?
Given:
Pn.0=1000 kg/m?®

sG=—~ - Prg =13.6%1000= 13600 kg/m?
PH,0

o; =0.8%1000= 800 kg/m®

Basic equation @ - _@ _

. dp = —padh
az_ an A T WA

- C— N

2
dp = [-pgh
1
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P, — Py =—pg(h, —hy)

Beginning at point A and applying the above equation between successive points gives
Pc = Pa =+PH2090; Pe — Pp =+P0i 943 Ps = Pe =—pr209ds

Po — Pc =—Phg9d, Pe — Pe =—Prg9ds

Pa—Ps :(pA_ pc)+(pc - pD)+(pD - pE)+(pE - pF)+(pF - pB)
=—P2090, * Prg gd, — 0,;9d; + Phg gd, + py,09ds
= 9.8(—1000>< 25+13600x7.5-800x20+13.6x12.5+1000 % 20)x10_2
= 25407.90 Pa = 25.405kPa
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Pressure Variation in a VVarible-Density Fluid

If the density is variable, we must relate it relate to the pressure /or elevation before we can

integrate the equation.

dp _
dz

-9
A common case might involve an ideal gas. In such gases, density can be expressed as a
function of pressure and temperature. Pressure and density of liquids are related by the bulk

compressibility modulus or modulus of elasticity.

g, - _ap-g ¥
dolp P

If the bulk modulus is assumed to be a constant, then the density is only a function of the

pressure.
P P
Idp=IEvd—p = p—pozEvInﬁ = p=p0+EvIn£
R e P Po Po
dp
—=—00 P z
A S [ el
dp:Ev—p pop z, —V
o,
22D -z
Po P E,
L9y o 19y
pPo P E p pPo E,
Po _q_PoYy
p E,
1
S p=py+E,In
1- P09
E
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Example: The pressure, temperature and density of standard atmosphere at the sea level are
101.325 kPa, 15.2 °C, and 1.225 kg/m?3, respectively. Calculate the percent error introduced
into the elevation of 8 km, by assuming the atmosphere.

a) to be incompressible

b) to be isothermal

c) to be isentropic

d) linearly decreasing temperature with a temperature decrease of -0.0065 K/m.
The actual pressure at an elevation of 8 km is known to be 35.656 kPa. The gas constant of air
is 287 J/kgK.

a) Incompressible air, p=constant

dp
E:_Pg = P=Po = P00z
p= 101325 N/m?-(1.225 kg/m?)(9.81 m/s2)(8000)(m)
p= 5187 N/m?
% Error = Mxloo =85.45%
35656

b) Isothermal

_b
P=RT
dp
dz A9
dp __gdz

P RT
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g
p= poeiRT‘)(Zizo)

~ 9.81(8000 - 0)

p =101325 exp
287(288.2)

j:39232.86 N /m?

% Error = 39232 — 35656 %100 =10.03%

35656

c) lsentropic

1/k
dpo_ (P
e (POJ Po9

P d Z,
I 15)k :I—P&’kpog
P p z

0

or

_k=Dag 1
kP, °

_ (L4-1)(L.225)(9.81)
1.4(101325)

p= p{l

14/1.4-1
P= 101325{1 (8000 — o)} =33503.66N /m?

Percent error

% Error = 35656 —33503.66 x100 = 6.04%

35656
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d) Temperature decreases with increasing height

T=T,+mz,

_ P _
RT R

(Ty +mz)

m< 0,

P

dp pg

dz R,
Pdp
f_:

+mz)

N
5P R, (T +m2)

P_ g

In—=

Ty +mz Ty +mz

In = p=py| ———

Po Rm T, +mz, Ty + Mz,
9.81

p= 101325(

282.5 + (~0.0065)(8000) sz(oooss»

282.5 + (~0.0065)(0)

p =35587.36N / m?

Percent error

% Error =

35656 — 35587

%100 = 0.19%
35656

90

m =-0.0065K /m

9

B

80 —

-92.5°C

70—

60 —

Elevation (km)

0 | |

-120 -100 -80

-60 -40
Temperature (°C)

35

-20

0



ABSOLUTE AND GAGE PRESSURE

Pressure values must be stated with respect to a reference level. If the reference level is a

vacuum, pressures are termed as absolute. Pressure levels measured with respect to

atmospheric pressure are termed gage pressure.

Pressure level

——————————————— Atmospheric pressure
101.3 kPa (14.696 psia)

Pabsolute At standard sea level

T=288 K

p=1.225 kg/m?

AL

Pabsolute = Pgage t Patmosphere

Pressure level

Pabsolute
——————————————— Atmospheric pressure:
101.3 kPa (14.696 psia)
at standard sea level
conditions

Vacuum
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HYDROSTATIC FORCE ON SUBMERGED SURFACES

When a surface is in contact with a fluid, fluid pressure exerts a force on the surface. This
force is distributed over the surface; however, it’s often helpful in engineering
calculations to replace the distributed force by a single resultant. To completely specify
the resultant force we must determine its magnitude, direction and point of application.

We shall consider both plane and curved submerged surfaces.

1. HYDROSTATIC FORCE ON A PLANE SUBMERGED SURFACE

Liquid surface
/ 0 Ambient pressure, pg

il

Liquid, F \l
density = p R

Edge view

xy plane viewed from above

Point of application of Fp
(center of pressure)

- Magnitude of resultant force
=

- Point of application

X'=?,y=?

Force acting on surface dA

dF =—pdA - sign indicates that force dF acts againstthe surface dA

The resultant force acting on the surface is found by summing the contribution of the

infinitesimal forces over the entire area.

Thus,
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In order to calculate the integral, both pressure, p, and the element area of dAmust be
expressed in terms of the same variables. The basic pressure-height relation for a static fluid

can be written as

% =09, h is measured positive downward from the liquid free surface.

p h

[dp= [pgdh = P=Pg+ 00 oo (2)
Po h=0

po is the pressure at liquid free surface (h=0)

This expression can be substituted into Eq. 1. Then to perform integration, h and DA should

be expressed in terms of x and/or y. (h =ysin @, 6 = constant). Integration of Eq. 1 gives the

resultant force due to the distributed pressure force.

The point of application of the resultant force must be such that the moment of the resultant

force about any axis is equal to the moment of the distributed force about the same axis.

Let 7’ be the position vector of the point of application of the resultant force Fpand T be the

position vector of any point on surface A.

ﬂl
'I'h
I

r=[Fx
=£

According to coordinate system used,

x dF
% PdA

'I'Il

F=x7+y]

F=XT+Y]
................................... - Rk

dA = kdA

(X7 +yT)x (~Fgk) = [ (x7 + y]) x PdAK
A
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Evaluating the cross product, we obtain,

X'Fr ] +Y'Fel = [ (xP] + yP7)dA
A

Considering the components of this vector equation, we obtain

! ’ 1
Y'Fr =] ypdA = y'=—[ypdA
A R A

X'Fr = [ xpdA = x' = i.[xpdA
A FR A

NOTE: Fyq =‘IER‘ = [ pdA < Magnitude of Fq
A

— Direction of Fy is normal to the surface
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Example: The inclined surface shown, hinged along A, is 5m wide. Determine the resultant

force F, of the water on the inclined surface.

. _
= lh ‘
D=2m
water ‘
30° |-
707, /\/L‘4m
w =5m
Z
dF
y
dA = wdyk

We now need P as a function of y to perform the integration.

p=po +pgh
Po = Patm = p:pa+(D+ysin30°)gp
h=D + ysin30°

Since we are interested in the force of the water on the gate, then we drop Pa and obtain,

P=(D+ysin30°)gp

L
<. Fg =—[ pdA=—[ pg(D + ysin 30" )wdyk
0

y’ = L? B,
=—pgw{Dy+75in 30‘1 k :—pgw{DLJr?sin 30°}k
0
2
=-999 k9 x9.81 M *5[m]* 2[m]*4[m]+ﬂm_]l K
m® s? 2 2

=588k kN <« Theforceis in negative z — direction.
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Point of application of resultant force

Fry'=[ ypdA
A

1 1k wk o
=—jypdA=—j ypwdy:pg;.[y(D + ysin 30°)dy
I:R A FR 0 F 0

R

3 L 3
y =Y y 2, Y singor | =2 D2 L ginaoe
Fe 3 . Fe |2 3

3
y’:999{k—g}*9_8j{ﬂ}* Sm] . 2[m]16[mz]+ 64|m*|1
m’ s?] 588*10°[N] | 2 3 2

=2.22[m]

XpdA
ki

Since the area element is of constant width, x=w/2

1 w1
X'=— pdA=—— | pdA=—=25m
rl2" 2
Thus,
r'=257+2.22][m]. <« line of action of Fy
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ALTERNATIVE APPROACH FOR CALCULATION OF HYDROSTIC FORCE
(ALGEBRAIC EQUATIONS)

Free surface
AV . 0

-
;/ -~ Location of
- resultant force
. (center of pressure, CP)

Note: Origin of the coordinate system is placed at the intersection of the plane
of the gate and the free surface.

Now we will formulate an approach to determine the resultant hydrostatic force and its point
of application. Consider the expressions developed before, i. €.

Fq =—j pdA
A

Considering the free surface is open to atmosphere, the magnitude of the resultant force can
be written as
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IfR = jpghdAz jpgysin 0dA = pgsin ej ydA= pgsin8y A= pgh. A
A A A

NOTE: IydA =Y. A is the first moment of the area with respect to the x axis.
A

Where yc is the y coordinate of the centroid of the area A measure from the x axis, which
passes through O, and ycsin6=hc.

hc is the vertical distance from the fluid surface to the centroid of the area.

Point of Application of the Resultant Force

Expressions for the coordinates of the point of application of the resultant force can be
obtained by equating the moment of the resultant force to the moment of the distributed
pressure force.

F.Ye = J' ydF = _[pg singy’dA
A

A

ijdA

— | pgsin@y*dA= A
TR

1 .
= sin@y’dA =
=g {pg y —

Iysz: I, is the second moment of the area (moment of inertia), with respect to an axis
A

formed by the intersection of the plane containing the surface and the free surface (x axis).
Thus, we can write

yR:ycA

Using parallel axis theorem
|, =1 +Ay

where Ixc is the second moment of the area with respect to an axis passing through its
centroid and parallel to the x axis. Thus,

=281
Ry AT
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The x coordinate, Xg, for the resultant force can be determined in a similar manner as follows

Xg =

where Ixyc is the product of inertia with respect to an orthogonal coordinate system passing
through the centroid of the area. The point through which the resultant force acts is called the
center of pressure.

Geometric properties of some common shapes

' A= ha
)
2 R
f@—x : | = lT."J.r"
il -
¥ 'd I.= ﬁ.f.ﬁ-'J
- b e h J
2 2 =0
{r) Rectangle (M Circle
A= IR
‘ b
i, =0.1098R
4 il
I =03927R
1 4R
1 3T 1. =0 '
- " - R -
= I - -
[’} Semicircle (ef) Triangle

i) Quarter-circle
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Example: Solve the previous example using the algebraic equations method.

In

Kl

water

1114

water

a= _D =2D
sin30

h, = D+%sin30

A=Lw
F: = pgh.A
L . kg m 4 .
F. = pg (D+Esm 30)(LW) =999{F}9.81L—2}(2+§sm 30)[m](4-5)[m2]

F. =588011.4[N]=588[kN]

|
—_x
yR y A yc

c
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-
-—
~
I
-~
=

NS

.\.
h le b )

IN g I, =0
(a) Rectangle
I, :iba3 ERWE

12 12

L
yc = E + 2D

l..=0
Xyc
X, = 2.5[m] depending on the coordinate system axis
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PRESSURE PRISM METHOD

The concept of the pressure prism provides another tool for determining the magnitude and

point of application of the resultant force on a submerged plane surface.

111

Considering the gage pressure at the free surface is zero, the infinitesimal pressure force, dF,

acting on the submerged plane surface is,
dF = —PdAk =—pghdAk =—dV -k

where dA and pgh are infinitesimal base arae and imaginary height of the pressure prism,

respectively. Thus, product of dA and pgh represents the infinitesimal volume dv, of the

pressure prism. After integration, the magnitude of the resultant force may be obtained as,

Fr =k Idvp =,k Vp is the volume of the prism.
VP

Therefore, the magnitude of the resultant force acting on a submerged plane surface is equal

to the volume of the pressure prism.

Point of application of the resultant force,
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x’:iijdAzijx,oghdAzi [xdv = Xg
R A Ve A Ve v,

and
1 1 1

y'=— | yPdA=—| ypghdA=— | ydV =Y,
Fo AT, sy o=t

where Xg and Yg are the coordinates of the centroid of the pressure prism.

Example: solve the previous example using the pressure prism method.

: ‘

D+Lsin6

Net hydrostatic pressure distribution on gate.

Fr = -Vpk

£ - _[WLpg(D+ LS|2n 30)+pgD}lZ
Fr :—ngL[D+ Lsin 30}2

Fr =588 kN

Point of application of the resultant force

-The gate is symmetrical about its centroid axis.

X =Xg =N - 25m
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The y-coordinate of the point of application of the resultant force can be found considering
the triangular pressure prisms. Let y; be the centroid of the rectangular pressure prism and y;
be the centroid of the triangular pressure prism.

y'=Ys

Y'Fr =YiFr +YoFg,

2 -
y'Vp = (%)(pg DwL)+ (% L] pglwsin30 v;sm 30

y'=2.22m
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HYDROSTATIC FORCE ON CURVED SUBMERGED SURFACES

Consider the infinitesimal curved surface shown in

figure. The hydrostatic force on an infinitesimal
element of a curved surface, dA, acts normal to the
surface. However, the differential pressure force on

each element of the surface acts in a different

direction because of the surface curvature.

Usually, to sum a series of force vetors acting in different directions, we sum the components

of the vectors relative to a convenient system.

The pressure force acting on area element dA is

dF =—pdA
The resultant force is
A

F- can be written as

r=iFp +]Fp +kFy

n

where Fg ,Fz and F; are components of F inx,y and z directions.

To evaluate the component of the force in a given direction, we take the dot product of the
force with the unit vector in the given direction. For example, taking the dot product of each

side of the above equation with unit vector 7 gives

Fr-7=-[pdA-7
Fr = —I pdA,
In general, magnitude of the component of the resultant force in the | direction is given by

Fr = _[ pdA
A
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where dA is the projection of the area element dAon a plane perpendicular to I-direction.

The line of action of each component of the resultant force is found by recognizing that the
moment of the resultant force component about a given axis must be equal to the moment of

the corresponding distributed force component about the same axis.

Because we are dealing with a curved surface, the lines of action of the components of the
resultant force will not necessarily coincide; the complete resultant may not be expressed as a
single force.

Example: An open tank which is shown in the figure is filled with an incompressible fluid of
density, p. Determine the magnitudes and lines of action of the vertical and horizontal

components of the resultant pressure force on the curved part of the tank bottom.

k]

NOTE: the width of the tank is w.

FIND: Fp =2, Fy =2
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N/
— ]
xl
Fr. h L
dFrv dFe
dFes — 1
Y _ do
3 Fr. v
<

Consider the area elementdA. The resultant force acting on this area element is

Fr =—[ pdA, dA=dRw, p=p, + pgh
A
Po = Patm
p=(L-Rsiné)pg

Horizontal component of this force is
dF; =dF; cosd

Vertical component is

T
dRy =dR cos(E —-6)

7l2 212 -
o.Fg =—pgwR [(L—Rsin@)cosadd=—pgwR | (Lcos6 - RSI;] Ze)de
0 0
712
. Rcos26 R R R
=—pgWR| Lsin @ — =—pgWR| L————|=—pgWR| L — —
9 { 4 L A { 2 4} g { 2}

Similarly, vertical component of the resultant force
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712
:—pgij (L- Rsm&)co{g—@jde Note : co{;—@j sin

7l2 B
=—pgwR [(Lsin@—Rsin®@)do sin? g = 160520
0

72

=—pgwR | {Lsin9—5+500326}d0
; 2 2
72

= —ngR{— Lcos¢9+59+53in 29}
2 4 0

= —ngR{L cosé — ?}

Note: Horizontal and vertical components of the resultant pressure force are both negative, so
that they are acting in a direction opposite to x and y axis, respectively.

Line of action of vertical component

= j xpdAcos(— - 0) Note:x = Rcosé
FRV A

,09 7l2

- J’(Rcose)(L Rsm&)xcos(——@)Rd@

R, 0

pg wR”

zl2
[(Lsin@cos6 —Rsin? fcosg)do
0

~ ,ogwR[(Lsin2 6 Rsin® 6?]”2
Fe 2 3|,
CR(L/2-L/3)

(L—R14)

53



y':ijypdAcose
FRH A
pgwﬂ/Z
= [ (Rsin 6)(L - Rsin 6) cosel &
R, 0

7l2
_ pEWR [ (Lsin 6coso —Rsin? 6 cosg)do
R 0

H

ml2
B ngR{(Lsinz 9 Rsin® 9}

Fr. 2 3 |
_R(L/2-L/3)
(L-R/2)
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ALTERNATIVE APPROACH FOR CALCULATION OF RESULTANT
FORCE ACTING ON CURVED SURFACES

The resultant fluid force acting on a curved submerged surface can be determined by
integration as in the above example. This is generally a rather tedious process, and no simple
general formulas can be developed. As an alternative approach we will consider the
equilibrium of the fluid volume enclosed by the curved surface of interest and the
horizontal and vertical projections of this surface.

1171 (a)

VFE 2 + (F )R B

@

(b)

(d)

Consider the section BC shown in the figure above. This section has a unit length
perpendicular to the plane of the paper.

- We first isolate a volume of fluid that is bounded by the surface of interest, in this
instance section BC, and the horizontal plane surface AB and the vertical plane surface
AC.

- Draw the free-body diagram for this volume as shown in Fig. c.

- The magnitude and location of forces F1 and F2 can be determined from the
relationships for planar surfaces.

- The weight, W, is simply weight of the fluid in the enclosed volume.

- Forces FH and FV represent the components of the force that the tank exerts on the
fluid.

- From the force balance, we can obtain FH and FV as follow:
F,=F, F =FR+W

The resultant force of the fluid acting on the curved surface BC is equal and opposite in
direction to that obtained from the free-body diagram.

Example: Solve the previous example using the second method.
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I}

FR'.' L

Fr. v

Solution:
Draw the free body diagram of the isolated liquid.
From the free-body diagram

Fo =F,  Fi =FR+W

FRH :_FF‘:H ! FP«/ :_FF":/

W: weight of the isolated liquid

F1: the hydrostatic force acting on surface AB

F2: the hydrostatic force acting on surface BC
F, © the vertical component of the force exerted

by curved surface AC.

Fs,: the horizontal component of the force

exerted by curved surface AC.

’ R R
FRH =F, = p.Asc = pah, Agc =pg(|—_5j RW=ngR(L_E)

’ 1
I:Fe,v =F +W = p Ay + pgV = pgh A, +pg(R2W_Z”R2Wj
1
:pg(L—R)RW+pgRW(R—Z7ZRj

:pgRW(L—R+ R—%;r Rj:png(L—%R)

o Fe =F :—ngR(L—gj
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, 7R
R, =-F = —pgRW(L—TJ

X' = Fij. XpdA cos(% —-0)
A same as calculated in the previous example.

y' = i.[ ypdAcosd
FRH A
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BUOYANCY

When a body is either fully or partially submerged in a fluid, a net force called the buoyant
force acts on the body. This force is caused by the difference the pressure on the upper and
lower surface of body. Consider the object shown in the figure immersed in a static fluid. We

want to calculate the net vertical force that pressure exerts on the body.

_"JCI
7
I l =
dA- hy
i h
- I
z - Liquid,
d¥ density = p

Fig. 3.9 Immersed body in static liquid.

dF, =(pg +pgh, )dA—(py + pghy )dA= pg(h, —h;)dA= pgdVv
%/_/

dav

Thus the net vertical force on the body is

F, =[dF, =[ pgdv = pgv
\4
where V is the volume of the object.
Thus the net vertical pressure force, or buoyancy force, equals the force of gravity on the

liquid displaced by the object. This relation was reportedly used by Archimedes in 220 B.C.,

it is often called ‘Archimedes Principle’.

The line of action of the buoyancy force may be found using the methods that used in the

previous section.

L
Pav Y

XB:ijxsz xdV
FB
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Note: The line of action of the buoyant force passes through the centroid of the displaced

volume. This centroid is called the center of buoyancy.

Stability of Submerged and Floating Bodies

The location of the line of action of the buoyancy force and the line of action of the force due

to gravity determines the stability.

STABILITY

The location of the line of action of the buoyancy force and the line of action of the force due

to gravity determines the stability.

Stability of a Completely Immersed Body

11K

Restoring
Stable couple

Center of gravity below centroid

59

11K

7 A

overturning

couple
Unstable

Center of gravity above centroid



AV
= cG ¢ TN
Barge f Cc Restoring
e couple
Stable
w W 7 A
)4 .
cG CG overturning
couple
AV
= C: centroid of original displaced
volume
Slender $ c C’: centroid of new displaced
Bodv
= volume
Unstable
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FLUIDS IN RIGID BODY MOTION

A fluid in rigid body motion moves without deformation as though it were a solid body. Since
there is no deformation, there can be no shear stress. Consequently, the only surface stress on
each element of fluid is that due to pressure. Hence, as in the case of static fluid, the force
acting on a fluid element in rigid body motion is

dF = (—grad p + pg)dVv
or force on a fluid element of unit volume

f——grad P+ 9
dv

Using Newton’s second law, we can write

dF =adm

—grad p+pg = pd

The physical significance f each term in this equation is

—gradp + A = pa

pressure force body force mass acceleration
perunitvolume ¢ +< perunitvolume ; =< perunitvolume ¢ x< of fluid
ata point ata point particle

From the above vector equation, following scalar equations can be written

_op _
+ Py = 3y
OX
~ P\ g, = pa
ay y y
_op _
+,ng _paz
0z

Example: An open tank is used to transport liquid. What should be the maximum height of
the liquid in tank to be sure that it will not spill over during the trip?
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b
d=?
Basic equation

—gradP + pg = pd
@ _,

a, =0 9,=0 Sz

a, = 0,=0 (==, 1= p=p(xY)
_=_pg
oy

Then the total change in pressure with change in x and y with dx and dy, can be written as

@dx+@dy:0
ox oy

Since the free surface is open to atmosphere, the pressure is equal to atmospheric pressure and
it is constant. Thus

dp=0
@dx+a—pdy: 0
OX oy
dy a, : I
-pa,dx—pgdy=0 = — =——2 = freesurfaceisastraightline
dx freesurface g

From the figure
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tan @ = E
2
b
H >, e= Etan o
tan @ = _dy
dx
dy __a
b dx g
d=H-e
d=H —g% < maximum allowable liquid height
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FLUID ROTATING ABOUT A VERTICAL AXIS

A cylindrical container, partially filled with liquid, is rotated at a constant angular velocity o,

about its axis.

After a short time there is no relative motion; the liquid rotates with the cylinder as if the

system were a rigid body. Determine the shape of the free surface.

Since there is a circumferential symmetry, the pressure is not

I—R—» function of 6. Then,
w p=p(r.z)
# ‘ : h} /10 dng) dr+%) dz (1)
;

q:)w

In order to obtain pressure distribution, we need to find

expression for ?) and ?j . This can be obtained by writing Newton’s second law in z and
r z Z r

r directions (or writing equation—grad p + pg = pa in cylindrical coordinate system).

From equation

op
_6_j +09; = P,
z), 5
g, =g :—a—pj — g )
Z r
a,=0
Similarly,
op
——+t 00, = pa,
or 5
g, =0 == po't 3)
a, =—’r
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The same expression can also be obtained by applying Newton’s second law in the r-direction

to a suitable differential element.

The pressure at the center of the element is P. Using a Taylor series expansion, we express

forces acting in the r6 plane on the element as shown in the figure.

Writing Newton’s second law in the r-direction, we have
> dF, =a.dm

=a, pdV

= —w’rpdV

= —w’rprd@drdz

From the figure
op dr dr op dr dr . do
> dFR, :(p——p—j(r—7)d6dz—(p+8—|:7)(r+?jd6dz+2pdrdzsm7

Expanding and canceling like terms, recognizing sin d; = %gives

dr opdr opdr dr opdr op(dr ?
dF. =d&dzipr-—-r——+——-pr—-p——-r————| — dr
2.dF; Z{p 2> a2 a2 PP T 2 Tal2) TP

op
dF =d&z{—r—dr
205 { or }

Then
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—r%drdédz:—a)zrprdédrdz

op 2
X o 3
or @ (3)

Substituting (2) and (3) into (1), we get
dp = pew’rdr — pgdz

To obtain the pressure difference between a reference point (r1,z1), where the pressure is Py,

and arbitrary point (r,z), where the pressure is P, we must integrate

jpdp = jpa)zrdr - fpgdz
o P,

2
(p-py) =%(r2 —12) - py(z-2,)

Taking the reference point on the cylinder axis at the free surface gives

P1 = Pam: I'-1:0! Z1:hl

Then
2

2
r
p—patm=pw7—pg(z—hl)

Since the free surface is a surface of constant pressure (p=pam), the equation of the free

surface is given by

2.2 2
Ozpa)zr ~m(z-h) = z=hl+(02)—r) = Equation of the free surface.
g

(parabolawith vertex ontheaxisatz =h,)
We can solve for the height hy in terms of the original height ho and R. To do this, we use the

fact that the volume of the fluid must remain constant.

with no rotation v = 7Rh,
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Rrz R
with rotation V= j j27zrdzdr = [27rzdr
00 0

Then equating these two expression for volume,

Ry = 7{th2 + szﬂ

49
2
49
Finally,
(@R)” _ (ar)®
=hy —~—1 L
49 29
2 2
Z=hy— (<R) F —(Lj } Equation of the free surface
20 |2 \R
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FUNDAMENTAL CONCEPTS FOR FLOW ANALYSIS

We covered methods of analysis of nonflowing fluids in the previous chapter. In this chapter,
we develop the fundamental concepts of flow analysis, including way to describe fluid flow,
natural laws that govern fluid flow, different approaches to formulating mathematical models
of fluid flow, and methods that engineers use to flow problems.

The Fundamental Laws

Experience have shown that all fluid motion analysis must be consistent with the following

fundamental laws of nature.

e The law of conservation of mass. Mass can be neither created nor destroyed. It can

only be transported or stored.

e Newton’s three law of motion:

1. A mass remains in a state of equilibrium, that is, at rest or moving at constant
velocity, unless acted on by unbalanced force.

2. The rate of change of momentum of mass is equal to the net force acting on the
mass.

3. Any force action has an equal (in magnitude) and opposite (in direction) force
reaction.

e The first law of thermodynamics (law of conservation of energy) Energy, like mass,

can be neither created nor destroyed. Energy can be transported, changed in form, or

stored.

e The second law of thermodynamics: The entropy of the universe must increase or, in

the ideal case, remain constant in all natural processes.

e The state of postulate (law of property relations): The various properties of a fluid are

related. If a certain minimum number (usually two) of fluid’s properties are specified,

the remainder of the properties can be determined.

NOTE: These laws apply to all flows. They do not depend on the nature of the fluid,

the geometry of the boundaries, or anything else. As far as we know, they have always
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been true and will continue to be true unless they are suspended by the creator of the

universe. Hence, we can firmly base analysis of all flows on these laws.

Constitutive Relations

In addition to these universal laws, several less fundamental laws, such as Newton’s law of

viscosity, Fourier’s law of conduction, are needed to solve flow problems.

These laws are true for some fluids.

Mathematical Formulation

The fundamental laws are the basis of our understanding of fluid motion. However, besides
understanding, an engineer needs to know qualitatively the velocity, and the pressure to
calculate the effects of the fluid on surfaces that it contacts, such as force exerted by the fluid

on a surface, pressure drop in a pipe flow, etc.

To obtain predictive capability, the fundamental laws must be expressed mathematically and

they must be solved to predict velocity or pressure.

To formulate the fundamental laws, we choose both a point of view and a mathematical

method.

System versus Control Volume

We may apply the fundamental laws to either a system or a control volume.

System : a specific fluid mass selected for analysis.

Control Volume : a specific region of space selected for analysis.

System and control volume may be either infinitesimally small or finite.
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finite system

Finite
control volume

flow

mfmitesimal control
volume

X

The system of point of view is related to a Lagrangian description of flow. Its advantages is
that all the fundamental laws may be expressed directly in terms of a specific collection of

mass.

Control volume point of view is related to an Eulerian description of flow. Its advantage is

that control volumes are easier to use for problem solution.
Thus we adopt the system point of view to formulate the fundamental laws, but use the
control volume point of view to apply them to problems. Fortunately, we can formally

connect the two points view by purely mathematical relationships.

Differential versus Integral Formulation

We must now consider the level of detail of the resulting flow analysis. We must choose

between a detailed point by point description and a global or lumped description.

When a point by point (local) description is desired, fundamental laws are applied to an
infinitesimal control volume. The result will be a set of differential equations with the fluid
velocity and pressure as dependent variables and the location (X, y, z) and time as independent
variables. Solution of these differential equations, together with boundary conditions, will be
two function V(X, y, z, t), and P(X, y, z, t) that can tell us velocity the velocity and pressure at
every point.
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When global information such as flow rate, force and temperature change between inlet and

outlet is desired, the fundamental laws are applied to a finite control volume.

The result will be a set of integral equations.
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BASIC LAWS FOR ASYSTEM

Conservation of Mass

System dM
dt system
v

where

My, = [dm= [pdv
mass V sys
(sys)

Newton’s Second Law
- dP .
F :?j_t P :linear momentum

P= j\idm: j\?,odv
mass V sys
(sys)

The First Law of Thermodynamics

X -OoW =dE
in the rate form

.. dE
W = —
Q dt

sys

The total energy of the system is given by
Eys = J'edm: jepdv

mass Y sys
(sys)

V2
e=U+—+9z
2

The Second Law of Thermodynamics

If an amount of heat & is transferred to a system at temperature T, the second law of

thermodynamics states that the change in entropy ds of the system is given by
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R

ds>—=
T
on the rate basis

ds ZEQ

dtf, T

Total entropy of the system is

Ses = Isdmz Ipsdv

mass v
(sys) (sys)

RELATION OF SYSTEM DERIVATIVES TO THE CONTROL VOLUME
FORMULATION

The above equations involve the time derivative of an extensive property of the system (mass,
momentum, energy, entropy). All the above equations can be expressed in terms of a general

intensive property 7. Thus

Ny = I?]dm: jnpdv

v
(sys) (sys)

Comparing this with the above equations, we see that when

N=M then #=1 N=E then 7=e

N=P then 7=V N=S then 7=s

Consider a system and control volume whose boundaries coincide at to.
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Streamlines Subregion (3)
at time, 15 ™\ Subreglon ) of region III
of region I

y b 4

\Control volume
(a) Time, 1y (b) Time, 1o + At

L. dN . I . : .
Objective: To relate the — to the time variations of this property (N) associated with

system

the control volume.

From the definition of a derivative,

dN - Ns)t0+At_NS)to
dt At—0 At

1)

At t+4t, the system occupies regions Il and Ill, at to, the system and the control volume

coincide, we can write

N,), =(Nc,), = [nedv 2
Ns)tO+At =(N, + NIII)tO+At =(Ney =N, + NIII)tO+At
N, ), x = [ | npdv} { [ npdv} {Inpdv} (3)

Substituting these expressions snto the definition of the system derivative

L e ] e
_j — lim Cv ty+At I t, +At 1 ty+AL Cv ;

dt At

0

or
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| Al ]| [fue] (]

dN — % 4 lim — lim (4)
dt —— At—0 At At—0 At At—0 At
1 2 3
Term 1 in Eq. 4 simplifies to
jnpdv —[ I npdv} )
. LCV dtg +At Cv L, O
llr—rjo At ot I nedv ©)
Inpdv
I|m L1 dty +at _ I|m Nlll)t0+At
At—0 At At—0 At

To evaluate N,,,)

to+At

let us look at an enlarged view of a typical subregion of region IlI.

System boundary
at time 15 + Ar

Control surface III

N, { npdv}
g+ At |'!-| o (= NI“)t0+At = J-npAI cosadA
dV = Al cosadA o o

Note: the angle « will always be less than 7 5 Over the entire area of the control surface

bounding region IlI.

In the above expression, Al is the distance travelled by a particle on the system surface during

the interval At along the streamline that existed at t0.
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U npdv} |
lim ==t — Jim | np N cosadA
CSIII At

At—0 At At—0

Note im 3 =N| and - cA=loA

Hence

]
fim === = [0V cosjdA

CsIII

The term 3 in Eq. 4 simplifies to
)tO+At

— fim =T i et
At—0 At At—>0 At

Toevaluate N,) look at an enlarged view of a typical subregion

to+AL !

Streamline at 7,

System boundary
at time 1y + At

Control surface 1

dVv = Al(—cosa)dA

[ .I npdv} [ oAl cosadA

fo+At _ Iim Cs,
At—0 At At—0 At

= +1im c'[. np % cosadA =+ [npV|cosaldA

cs,
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Substituting Egs. (5),(6) and (7) into (4)
d—Nj _9 jrypd‘v’ + anMCOSa‘dA‘ + IUpMCOSa‘dA‘
dt Sys ot Cv CS\ Cs,

CS=CS, +CS,,
Hence we can write,

dN

0 - -
il d
m lys o Cj;npdv + C_L?]pMCOSa‘ A‘

Recognizing that M cosw‘dﬂ‘ =V -dA

de 0 + w
— | =— |npdV+ 5oV -dA
it ), "]

It is important to recall that in deriving the above equation, the limiting process (taking the
limit as At—0) ensured that the relation is valid at the instant when the system and control

volume coincide.

dN . .
Ej - the total rate of change of any arbitrary extensive property of the system.
Sys

% j nedv  : the time rate of change of the arbitrary extensive property N within the
Cv

control volume

Iryp\7 .dA  :the net rate of flux of the extensive property N through the control surface.
CS

Evaluating the scalar product

- dA dA

~t

CS CS CS

V.« dA = VdA cos V. dA = +VdA V. dA =-VdA
(a) General inlet/exit (b) Normal exit (¢) Normal inlet
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CONSERVATION OF MASS (Continuity Equation)

Combining the law of conservation of mass with the transport theorem yields one of the most

useful equations in all fluid mechanics: the continuity equation.

Recall that conservation of mass states simply that the mass of a system is constant,
au)

dt
The system and control volume formulation of the conservation of mass, we set

N=M then 7n=1

with this substitution, we obtain

=0, Mg, = [ pdv

sys

dM o S
les:aé';pdv+‘|-pv-dA=O

Cs

o v+ [ pV-dA=0 Continuity equation for a finite control volume
at P

Ccv Cs

° dev rate of change of mass within the control volume
Cv

j oV -dA net rate of flus through the control surface
CS

NOTE: V is the velocity measured relative to the control surface. The sign of the dot product

pV -dA depends on the direction of velocity vector V, relative to the area vector dA.

pV -dAis positive where flow is out through the control surface, negative where flow is in

through the control surface, and zero where flow is tangent to surface.

78



Special Cases

1.  Incompressible Flow:
For incompressible flow, p = constant

—pjdijv .dA=0

Cv

—[pv V.dA= V.dA=
at[p]+pc-|; dA=0 :>CJ; dA=0

0 p = constant
—|pVv]|=0
A

VY = constant

J\7 -dA is called the volume flow rate of flow over a section of the control surface.

2.  Steady Flow

Z -0
ot

Hence the continuity equatson becomes,

Ip\7 .dA=0, [flow could be compressible]

CS
3. Uniform Flow

The velocity is constant across the entire area at a section when density is also constant at a

section, then at section n

[PV -dA=pV,-A =4pV,A|
A

Example:
A constant density fluid flows in the converging, two-dimensional channel shown in the

figure. The width perpendicular to the paper is quite large compared to the channel height.
The velocity in the z-direction is zero. The channel half height y and the fluid velocity in x-

direction are given by

- w13

where up=1.0 m/s
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Show that the flow field satisfies the continuity equation.

General continuity equation
o [pdv+ [pV-dA=0

6t Cv CS

9 Ipdv =0 [p=constant]
at Cv

[V-dA=0

CS

For the control volume shown in the figure, along the walls of the channel, u=v=0, hence

j\7-d/l=j\7-d/X+ jv.dAlo
CS

An Aot
:—judA+ judAio
An Avut

ol o e o

y3 +Yy y3 —+Y|?
—Wu{y—w} +2wu{y—ﬁ =0

0

Yo Iy,

_Awu,Y, N 8wu,Y, * 0 4 4 7
3 3 :>——W+§W:0
U, =1m/s, Y, =1m,Y, =0.5m



..Flow satisfies the continuity equation.

Example:
Water is being added to a storage tank at the rate of 2000 It/min. At the same time, water
flows through a 5 cm inside diameter pipe with an average velocity of 18 m/s. The storage

tank has an inside diameter of 300 cm. Find the rate at which the water level rises or falls.

Qin

GIVEN
in flow rate 2000 It/min.

storage tank diameter 300 cm

T A 5 discharge pipe diameter 5 cm
h Vs ' < discharge velocity 18 m/s
1 | Basic Equation

Continuity equation

ﬁjpdwjp\i.dli:o

ot Cv CS

9 [PV =0 [p=constant]
ot Cv

)
SISV INNINNYe ST

Continuity equation,

%jpdV+é|.sp\7-dA:O

Cv

oV S S
pE+A[pV-dA+A)J;pV-dA=O

ov
p—+(—|pVA1n|)+(+|pVA)ut|) =0 d

a = (V% Ah)=Q, +(VA),, =0
V=V, +V,=V,+Ah

dh
AT a - Qin - (VA)out

81



M{mﬂ_w[m} 700 e

dh Q,-(VA), 60 |s s| 4
dt A - 732 2
. &m]
dh_ ;g0 P}
dt S
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MOMENTUM EQUATION FOR INERTIAL CONTROL VOLUME

In this section we will develop mathematical formulation of Newton’s Second Law for an

inertial control volume.

Inertial control volume is the control volumethat is not accelerating relative to a stationary

frame of reference (inertial control volume).

Recall that Newton’s second law for a system moving relative to an inertial coordinate system

was

F :—J where  P= [VpdV linear mometum, F total resultant force
sys v

sys

Using the relation between the system and control volume formulations

de 0 = F
— | == |nedV+ |npV -dA
a ), ~a i)

and setting N =P and 7=V, we obtain

dP
& Vodv + [VoV -dA
dtJ atcj\7 I P

Sys

Note:
dP -
E] =F )on sys
sys

Since, in deriving the relation between the system and control volume formulation, the system

and control volume coincided at to

F

)on sys =F )on control volume
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Hence, we can write,

O .- - -
== JVpdv + [VpV -dA \omeTUM EQUATION
Cv CS

F=F+Fg
This equation states that the sum of all forces (surface and body forces) acting on a
nonaccelerating control volume is equal to the sum of the rate of the change of momentum
inside the control volume and the net rate of efflux of momentum through the control surface.

Fs = [- pdA surface force due to pressure

A

Fg = [ »§dAbody force due to pressure
Cv

Sometimes surface force Fs may also include shear force.

The momentum equation is a vector equation. From this vector equation, a scalar component

in each direction can be written, i.e.

F,=Fo +Fy, =2 [upav+ [uoV A
atCV CS

. - -0 ;o

Fy=Fs +Fs =— [vpdv+ [vpV-dA
atcv CS

. . - B ;i

F,=Fs, +Fg, =— [wpdV+ [wpV -dA
atCV CS

The momentum equation is usually used to calculate force interactions between a moving

fluid and solid objects in contact with it.
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Example:
Water from a stationary nozzle strikes a flat plate as shown. The velocity of the water leaving

the nozzle is 15 m/sec. The nozzle area is 0.01 m?. Assuming the water is directed normal to

the plate; determine the horizontal force on the support.

v
I /
e 1\,

Nozzle : T_, l

X

FIND: Horizontal force Kx=?

Since the force interaction between the fluid and the solid object is the point of interest, we

have to use momentum equation.

We must choose a suitable control volume. A number of possible choices are,

T T <1 Patm
| I
I
2 /A, Patm { | B, R,
I ' =—
[
l | : R,
: i
L -

Regardless of our choice of control volume, the result should be the same.
I. Use CV|

Momentum equation in x-direction

F=Fy +Fy =2 [updv+ [upV -dA
atCV CS
%/_/

=0
Steady flow

Fg =0 No body force in x-direction
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Fs. = PaA— PAA+R,

FSX = PaA - PAA Ry
—_— —— -~
pressureforce  pressureforce  forceonthesupport
onleft face onrightface onCV (assumed positive

NOTE: Left and right faces of the control volume are equal.

st - RX
and
R, = [upV-dA= [upV -dA [No mass crossing top and bottom surfaces, u=0]
cs A
R, = ju{— |pV1dA|} {at1 pV -dA=—{pV,dA], since direction of V, and dA are 180° apart.}
A
R, = —u1|leA&| {properties uniform over A:}
R, = —15[ﬂ} 999['(—93} x 15{ﬂ} x 0.01[m1
sec m sec
R, =—2.25[kN] {Rx acts opposite to positive direction}

Force on the support K, =—R, =2.25[kN ]

1. Use CV 1l

Left and right face areas of the control volume are equal and hence this leads to the equation

directly for CV

I11. Use CV 11

Left and right face areas of the control volume are equal.
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Patm

for CVy

Fs. = PAA+R, = [upV -dA= [u{-|pV,dAl} = —2.25[kN]
A A

PAA+R, =—2.25[kN]

R, =—psA—2.25[kN]

and

K, =—R, = paA+2.25[kN |

To determine the net force on the plate, we need take into account pressure (atmospheric)

force of the right face of the plate.

F.=K, —piA
4‘_ net X A
) Pam Foot= PaA+2.25— p,A
‘ Foot = 2.25[kN |
Kx r
_b._
——
—
\_/ a—
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Example: A metal container, which has a height of 0.6m and an inside cross-sectional area of
0.1 m?, is placed on a scale. Water flows into the tank at a velocity of 6 m/s through an
opening at the top with a cross-sectional area of 0.01 m?, flows out the openings on the side
walls with equal cross-sectional areas. Under steady flow conditions, the height of the water
in the tank is 0.5 m. The pressure is atmospheric across all openings, and the container weighs

50 N when it is empty. If the frictional effects are negligible then determine the reading on the

scale.
V‘H,—r@ Ar=0.1m?
2
I Vi=6m/s

® h @ _ )
B =7, A:1=0.01m
L | L L |/Scale Ar= A3

! h=0.5m
Ky =7

The force exerting on the control volume in the y-direction may be found by applying the

momentum equation in y-direction.

y

R, Ry = 5 [vedv+ [vol oA
cv CS

=0
Steady flow
Fsy+FBy:IVpV-dA+IVpV-dA+IVpV-dA (1)
A A, =0 A =0
FBy =-W,, -W, =-pghA-W,
W,, :weight of water (2)
W, :weight of the tank

FSy = |:ay - path (3)
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Substituting (2) and (3) into (1)

Ry — PamA-W, — pghA= \ {—|pV1A1|}

Vi =-6 m/s

R, =V, {~| AV, A} + Py A+W, + pghA force exerted by scale on the control volume.
To find the net force acting on scale, consider the free body diagram of the scale

Ry

Vv

Ky ==Ry + PamA

PEEMIIPA PP K, =l | oA+ Pagn AW, + pgAL+ Py A

Ky

K, = -[(~6){-[1000 x 6 x0.01/}+ 50 + 1000 x9.81x 0.5x 0.1]

K, =-900.5 N

Note: If no water was flowing in, the reading of the scale would be,
K, =—[50 N +1000x9.81x0.5x0.1]

K, =-540.5 N
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Example: A shallow circular dish has a sharp-edged orifice at its center. A water jet of speed
V strikes the dish concentrically. If the jet issuing from the orifice and from the surface of the
dish also has speed V, evaluate the external force needed to hold the dish in place for
V =5 m/s, D=100 mm and d=20 mm.

|9 45°

ol Y

—V —>V

Assumptions:
- No body force in x-direction

- Steady flow

D— - Uniform flow in all sections
- No pressure force
-Vi=V,=V;
—_—
|
X
Momentum equation in x-direction.
o .
Fe+ F;, =— | updV+ |upV - -dA
R g ]
Body force -0
Steady flow
R.=u, {_|pV1A1|}+U2 {|pV2A2|}+U3 {|pV3A3|}
7zD2 7d?
where u, =V, u, =V, u,=-Vsing, A = 2 = , AA=A-A
D? d? . T
R =—oV2 22y w2 pv2(sing)Z(D? —d?
=PV VP S VP (sin ) 4( )

R, :pVZ%[—D2+d2—sint9(D2—dz)]
R, :%pV2(1+sin9)(d2 -D?)

R, =%(999)(52)(1+ sin 45)(0.02 ~0.1?)

R, =-321.45N <= Force exerted by dish on CV

Force acting on dish K, =-R, =321.45 N
Force to hold the dish in place = -K, =-321.45 N
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BERNOULLY’S EQUATION

Bernoulli’s equation may be developed as a special form of the momentum or energy

equation.

Here, we will develop it as special case of momentum equation. Consider a steady

incompressible flow without friction. Apply the control volume equation to the control

volume shown.

Streamlines .

< )}

N

The control volume chosen is fixed in space and bounded by flow streamlines, and it is thus

an element of a stream tube. The length of the control volume is ds.

Because the control volume is bounded by streamlines, the flow across bounding surfaces

occurs at the end sections.

The properties at outlet section are assumed to increase by a differential amount.

Continuity Equation

—jpdV+jpv .dA=0

C‘v’ CS

% [ pdV = O[Steady flow]

C 1oV, AL+ {p(v, +dv, YA +dA)}=0
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or
PV A= p(V, +dV, (A+dA)

s-component of the momentum equation

0 -
Fs, + Fa. == [uspdv + JugpV -dA
cv CS e )

Fo. = pA—(p+dpA+dA) + (p+d_2pJ(dA)

%,—/
pressureforceacting
on theboundingstream
surfaceof thecontrol
volume

Note: No friction flow, Rs=0

Then,

Fs, = —Adp—%dpdA

The body force component in s-direction is,

Fg, =—p0,d¥ = p(~ g sin 0)(A+d7A]ds

Note:
sin@ds=dz

Therefore,

The momentum flux will be

[ugpV - dA =V, |V Al + (v, +aV, )| oV +dV, XA+ dA)|
CS

from continuity
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From continuity,

|V A = p(V, +dV, A+ dA)

Hence

[ugpV - dA =V, (= PV A)+ (Vg + AV, NoVeA) = VAV, oo (5)
CS

Substituing Eg. (3), (4), and (5) into (2)

— Adp - %dpdA— PYAdz — %pgdAdz = pV,AdV,

— R
~0 ~0

Dividing by pA and noting that products of differentials are negligible compared to the

remaining terms, we obtain

_dp_ gdz=V,dV,
2

or

2
_%_gdzszV_SJ
P 2

or

2
%+d(\/—SJ+ gdz=0
P 2

For incompressible flow (p = constant), this equation can be integrated to obtain

VZ
P +——+ gz = constant
p 2
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Dropping the subscript s,

VZ
£+7+ gz=constant BERNOULLI EQUATION

This equation subject to restrictions:
1. Steady flow
2. No friction
3. Flow along a streamline

4. Incompressible flow

Example:

ORI ©

P1 V2 Ps

Water at 10°C enters the horizontal venturi tube, shown in the figure, with a uniform and
steady velocity of 2.0 m/s and an inlet pressure of 150 kPa. Find the pressure at the throat, 2,

where d = 3.0 cm and at the exit where D = 6.0 cm.
Find: P, =?and P3=?
Assumptions:

- Incompressible flow
- Negligible friction
- Steady flow
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Solution:
We assume constant density and uniform velocity over planes 1 and 2.

Applying the continuity equation between plane 1 and 2, we obtain

A
VA =V,A, =V, =L
A, [

Applying Bernoulli equation to a streamline connecting cross-sections 1 and 2,

2 2

Vi P2

Py +gzlz—+v—2+gz2
p 2

p 2

Assuming that z; = z, and solving for p2, we obtain

P>= Py +§6/12 _sz)

D 2
Substituting V, = (Hj \

DY
P, = p1+§|:1_(g] :lvl2

kg
- 1000{3} 4 2
p, =150x10°| 1\ | LM J}, | Slem] z[m}
L m” ] 2 3[cm] S
p, =150x10° % —3Ox103[%}
p, =120x10° % =120[kPa]

Similarly, applying the continuity equation and Bernoulli equation between planes 1 and 3,

we can obtain ps.

ViA :VsAa} V=V
A=A 1= V3
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Y2
Because, we assumed the water is
Nozzle Diffuser inviscid, the static pressure drop (p:-
| p2) is fully recovered in the diffuser
p F 3

by decreasing the fluid velocity to

ps V1. However, full pressure recovery

net pressure drop  would not occur in a real venturi

tube. Viscous effects would produce
a net pressure drop between 1 and 3.

Example: A city has a fire truck whose pump and hose can deliver 60 It/sec with nozzle
velocity of 36 m/sec. The tallest building in the city is 30 m high. The firefighters hold the
nozzle at an angle of 75° from the ground. Find the minimum distance the firefighters must
stand from the building to put out a fire on the roof without the aid of a ladder. The
firefighters hold the hose 1 m above the ground. Assume that the water velocity is not
reduced by air resistance.

©)

water jet

H=30m
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1
S
o

Given:
Q=60 It/s
V1 =36 m/s
H=30m
0=75°
Hi=1m

—
1
D

Assumptions:
- Steady flow

- There is no friction
- Incompressible flow

The slope of the water jet is ? = \\%

z
[NOTE: The centerline of the water jet is a streakline, pathline and a streamline]

z

Writing Bernoulli equation between points 1 and any point on jet

2 2
&+\/L+gzl:£+—+ 0z
p 2 p 2

NOTE:atanypoint p=p, = p,,,
Taking z, =0 and solving for V.

V2=V2-2gz, z,=30—1=29[m]

With negligible air resistance, there is no force on the fluid in x-direction. Hence,

V, =V, =V, cosd
VZ=V?+V?=V}?-29z
V> cos? 0 +V,}? =V} —2gz
V} =V/?(1-cos’ 0)-2gz
<

sin?@

V2= V7 sin?0-2gz

.. The jet trajectory equation
dx _V, _ V, cosd

dz 'V, (stinzé?—2gz)1/2

multiplying by dz and integrating gives

V, c0s 6 —V,2sin? 6 - 29z

X =V, coséd
9
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rearrangement gives,

2 s
X=V1 sin20 1- h- 22.gz2
29 V,°sin“ @

substituting, z=29 m, #=75°, V1 =36 m/s

‘o 36%sin150 L \/1_ 2(9.81)(29)
2(9.81) 36°sin® 75

X=9[m]
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MOMENT OF MOMENTUM

(The Angular Momentum Equation)

To derive the moment of momentum equation we use the similar method that we use for
derivation of continuity and momentum equation, i.e., first we write moment of momentum
for a system, then obtain an equation for the control volume.

Moment of momentum for a system is

_ dH
F_4dH 1
dt ]sys ( )

H T : Total torque exerted on the system by its surrounding
where _
H : Angular momentum of the system

H= .[ r xVdm = J FxV pdV
M (sys) v (sys) (@)

The position vector r, locates each mass and or volume element of the system with respect to
the coordinate system.

¥ A

Moy

=Y

The torque T applied to a system may be written

T= FxF + I Fxgdm+ T, (3)

Torquedueto  Msys Torque applied

surface forces ~——~—"
Torque due to by a shaft

body forces
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The relation between the system and fixed control volume formulation is

dN
dt

Ny = j ndm = I ndv

M sys V'sys

and setting N =H and 7 =rxV , then

) zgj-npdv+.|.77p\7-d,&
Sys Cv Cs

aH :éjrprdV+J.Fx\7p\7-dA
dt atcv cS
sys

Combining Egs. (1), (3), and (5), we obtain
PxF+ [ FxgpdV +Tyy =< [ FxVpd¥+ [ FxV v -dA
at Cv CS

s|
M sys

Torque acting on control volume

L= _ = 0 . - D,
rxF, + I rxgpdv+Shaﬂzacj;rprdv+C£rprv.dA

M sys

Rate of change of angular momentum

(4)

()

Moment of momentum equation for an inertial control volume

Example: Consider the pipe mounted on a wall shown in figure. The pipe inside diameter is
20 cm, and both pipe bends are 90°. Water enters the pipe at the base and exits at the open
end with a speed of 10 m/s. Calculate the torsional moment and the bending moment at
the base of the pipe. Neglect the weight of water and pipe.

V4
4/ 1.0 m
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Assumptions:
- Incompresible flow

- Flow is uniform at all cross-
sections.

- Steady flow

- Negligible body force

Find:
- Torsional moment Ty =?
- Bending moment Ty =?




Writing the moment of momentum equation
PxF+ [ Txgpa¥+To =< [ FxVpdv+ [ FxV oV -dA
M sys at Cv (O]

=0 =0
negligible steady

(RX1+ plAi|)+r x(pzAzk)+T| +TJ_.[r xV pV - dA+IF xV pV -d
A

r =0, F, =0.75i +1j —0.5k [m]
V,=10j [m/s], V,=-10k [M/s], P,g =0

wD?

TP +T,j=(0.751 +1j -0.5k ) x(~ 1012)(1000)‘10

Ti +T,j =2356]—3142i [Nm]

Bendingmoment T, =—3142 [Nm
Torsionalmoment T, = 2356 [Nm

Moment acting on the base
TX)B =-T, =3142 [Nm]

T,), =-T, =—2356 [Nm]
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APPLICATION TO TURBOMACHINERY

The equation of moment of momentum is used for analysis of rotating machinery. A
turbomachine is a device that uses a moving rotor, carrying a set of blades or vanes, to
transfer work to or from a moving stream of fluid. If the work is done on the fluid by the
rotor, the machine is called a pump or compressor. If the fluid delivers work to rotor, the
machine is called a turbine.

fl';:'-'f f 77 Sketches of
typical turbomachines.

|
|
!

Axlal-flow pump

TR

=

Axial-flow compressor

&
Centrifugal (radial-flow) pump Propeller turbine

Steam or gas turbine

5
By
iy

Blades
Si mounted
ingle on wheel
i /—muvung
: blade
‘ Nozzle
! $ . A simple
twrbine made of several Stationary
moving vanes for fluid jet nozzle

deflection. (a) Top view
(h)
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(a) Centrifugal pump

Inlet

Impeller _
Rotor vane Diffuser
Outlet vane
Eye —> =
K -—e=—o—+-
Casing
(b) Centrifugal blower (c) Centrifugal compressor
Inl ide v
/Outlet Backplate nlet guide vanes

Cutoff Blades

4

Inlet bell

Stationary inlet

Turbomachines are classified as axial flow, radial flow or mixed flow depending on the
direction of fluid motion with respect to the rotor’s axis of rotation as the fluid passes over the
blades. In an axial-flow rotor, the fluid maintains an essentially constant radial position as it
flows from rotor inlet and to rotor outlet. In a radial-flow rotor, the fluid moves primarily
radially from rotor inlet to rotor outlet although fluid may be moving in the axial direction at
the machine inlet or outlet. In the mixed-flow rotor, the fluid has both axial and radial velocity
components as it passes through the rotor.

For turbomachinery analysis, it is convenient to choose a fixed control volume enclosing the
rotor for analysis of torque reaction.
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(c) Velocity components

at outlet
V,1
Vrbl V1114_> Vl
I
U]. = rl(U ﬁl < al
> U
(a) Absolute velocity as sum _ 1
of velocity relative to blade (b) Velocity components
and rotor velocity at inlet

The angle of the absolute fluid velocity o is measured from the normal.

Blade angles 3 are measured relative to the circumferential direction.
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As a first approximation, torques due to surface forces may be ignored. The torques due
to body forces may be neglected by symmetry. Then for a steady flow, moment of
momentum equation becomes

Ton = [ FXV AV dA= [ FxVV -dA+ [ FxV oV dA
Cs

inlet outlet

Taking the coordinate system in such a way that z-axis is aligned with the axis of rotation of
the machine, and assuming that at the rotor inlet and outlet flow is uniform, we get

T:shaft = (rzvtz - rlvtl) mR

or in scalar form

T = (B — £V, )M EULER TURBINE RQUATION

Si

where V,, and V,,are tangential components of the absolute fluid velocity crossing the
control surface at inlet and outlet, respectively.

The rate of work done on a turbomachinery rotor is

W =0 '-I_;shaﬁ = (()lz 'Tshaftlz = a)TShaﬂ
w

( rZVtZ - ertl) m

NOTE: wr =U tangential velocity of the rotor.

Dividing both sides by mg , we obtain head added to the flow.
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W, 1
mlg =5(U2Vt2 _Ulvtl) [m]

Ah =

The above equation suggest that fluid velocity at inlet and outlet and also rotor velocity
should be defined clearly. It is useful to develop velocity polygons for the inlet and outlet

flows.

Exit
Vi veloaity
diagram

U shaft

Rotor inlet

Normal vciocv‘y/
components
Figure 4.30  Details of flow carry fluid
entering and leaving a into and out of
radial-flow rotor. the rotor

Blade angles B are measured relative to the circumferential direction.

Velocity polygon at inlet
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Vi

V’bl\‘/”l*ZV].
1
B, 10 .
> U,

(b) Velocity components
at inlet

At the inlet the absolute velocity of the fluid V, is equal to vectoral sum of the fluid velocity
with respect to blade and the tangential velocity of the rotor, i.e.

V., is the normal component of the fluid velocity which is also normal to the flow area.

The angle of the absolute fluid velocity o is measured from the normal.

Note: V., =V,

Velocity polygon at inlet
A similar velocity polygon can also be developed for the outlet such that

(¢) Velocity components
at outlet
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The inlet and outlet velocity polygons provide all the information required to calculate
the torque or power absorbed or delivered by the impeller. The resulting values represent
the performance of a turbomachine under idealized conditions at the design operating point;
since we have assumed that all flows are uniform and that they enter and leave the rotor
tangent to blades.

Example: The axial-flow hydraulic turbine has a water flow rate of 75 m%/s, an outer radius
R =5.0 m, and a blade height h = 0.5 m. Assume uniform properties and velocities over both
the inlet and the outlet. The water temperature is 20°C, and the turbine rotates at 60 rpm. The
relative velocities Vrl and Vr2 make angles of 30° and 10°, respectively, with the normal to
the flow area. Find the output torque and power developed by the turbine.

Given:

Q=75m?s

R=50m
h=05m
water temperature 20°, p = 998 kg/m?®

Find: T=?, W =?
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T =m(RV, —RV,)
M= pg = (998)(9.81) = 74850 [kg / 5]

For an axial flow machine where the blade height h is small compared to the diameter, an
average radius may be utilized.

R =R, = R—%h=5—%0.5=4.75[m]

The tangential components of the absolute velocity can be calculated from the velocity
triangles,

\71 = U1 +\7rbl

U =Ro= 4.75[m]%[rad /sec]

. U, =29.85[m/s
Va . [m/s]

Q. Q Q 75

"TA 7R -zR. z(RP-R}) 7z(5.0°—45)
= V., =5.03[m/s]

\ nl

From the velocity triangle,

V,, =U, +V,, cos(180—- 4, ) =U, -V, cos 3,

- . V
Vi =(V,), =V SIN(180—5,) =V, sin g, = V,, =—"-
sin B,
1
Vy=U;-Vy——
tan g,
Vi 03 _ 35 75[m/s]

. =29.85—
tan120

Similarly, for the outlet
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10° 5, =100°

V.=V, =503[m/s
"Trbz nl n2 [ ]
[ Vi = (Vn )rb2
U,=U, =29.85[m/s]
. Vi
Uz V2
V,, =U, +V,,cos(z—B,)=U, -V, cos 5,
) ) Vv,
Va2 V.= (Vn )rbz =V, 8N (”‘ﬁl) =Vy,sing, = V,,= m
1
Vt2 = Uz _Vn2 t—
an 5,
V, =20.85-—9__3074[m/s]
tan100
Hence,

T =m(R,V,, —RYV, )=74850 [kg / s][4.75[m]30.74[m/ s]— 4.75[m]32.75[m/ s]|
T =—7.15x10°[Nm]

The significance of the negative sign is that the torque is in direction opposite that assumed to
be positive. (T is load torque that resists rotation of the turbine.)

The magnitude is T =7.15x10°[Nm]

The power output

: 60(2

W = ot = 22C7) (7 15,107

60
W =4.49x10°[Nm/s]
or
W = 4490[kW]
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Example: Water at 0.6 m3/min enters a mixed-flow pump impeller axially through a 5 cm
diameter inlet. The inlet velocity is axial and uniform. The outlet diameter of the impeller is
10 cm. Flow leaves he impeller at a velocity of 3 m/s relative to the radial blades. The
impeller speed is 3450 rpm. Determine the impeller exit width b, the torque input to the
impeller and the horsepower supplied.

Assumptions:

- Neglect torques due to body and surface forces
- Steady flow

- Uniform flow at the inlet and outlet sections

- Incompressible flow

Continuity equation -2 [ pdv+ [ pV-dA=0
at Cv CS
=0
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IpV-dA:O
CS

jp\7~dA+Ip\7-dA=0
1

2
{—|pV1A1|} + {|pV2A2|} =0
{=|aR2[}+ {+ |V, 270R b, |} =0
Vo 27R, 0, = pQ

MM
- -2 - %° ~0.0106[m]

2RV, 27(0.1[m]) 3[”‘})

S
b, =0.0106[m]

Tshaft = ?

From Euler turbine equation

Tshaft = ( sztz - Rivtl) m
V, =0, V,, =U, =wR,

2 277(3450) 0.6
60

< Toart = R,@R, M = RZ0pQ = (0.05)
T, . =9.03[Nm]

27(3450)

W =al = (9.03)

W =3262.4[W]
W 32624
7457

= 4.375[HP]
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flow area.
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THE FIRST LAW OF THERMODYNAMICS

(Energy Equation for a Control Volume)

We obtain the general energy equation by combining the first law of thermodynamics and the
transport theorem. For a system, conservation of energy can be written as,

Net rate of transfer of | | Rate of change of
energy to the system | | the energy of a system

W) Qe

Q) W (+)

with mathematical terms

. dE
-W="— 1
Q dt ]system ( )

NOTE: Heat and work are both energies. In general energy can be classified in two groups

1. Mechanical Energy - Chemical energy
- Work - Nuclear energy
- Kinetic energy
- Potential energy

2. Thermal Energy
- Heat
- Internal energy

Mechanical energies are associated with force and motion. Thermal energies are associated
with temperature, molecular structure and heat transfer.
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E,.= | edm= [ epdv

mass A sys
(sys)

and
2

e=u+V?+gz (2)

The system and control volume formulations are related by Reynolds transport theorem

dN

B S
— | =— | nedV+ | npV-dA
), Gl

To derive energy equation for a control volume, we set N=E and 5=e, then

dEj 0 o

— | =—|epdV+|epv-dA 3)
), o) 9]

Note that in deriving transport equation, the system and control volume coincided at t = t0,
hence we can write

[Q -W :Lystem - |:Q -W :Icontrolvolume (4)
Substituting Egs. (3) and (4) into Eq. (1), we obtain
Q—V\’/:gjepdv+jep\7-d,& (%)
at Cv CS
Q=? W=?

Rate of Work Done on a Control VVolume

work done by shear stress

TV vVt
[ T S e -
4—
1 Control Volume 1
work done I work done
by pressure % moving fluid \@Ip/‘against pressure
articles
—] P —
—! —

work transmitted by a
rotating shaft

Note: Rate of work =power

If we neglect electrical and other equivalent forms of work, three types of work might be done
on or by the fluid inside the control volume as shown in the figure above
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1. Shaft Work (WS)_: is transmitted by a rotating shaft such as pump drive shaft or a turbine

output shaft that is “cut” by the control surface. This work is done by shear stresses in the
“cut” shaft, so it is somewhat similar to shear work. Shaft work is sometimes called ‘pump
work’ or ‘turbine work’ if these devices are present.

2. Work Done on the Control Surface by Normal Stresses (Pressure Work):
Pressure work is done by fluid pressure acting on the boundaries of the control volume.

The work done by force F moved through distance ds is
OW =F-ds

Rate of work W = lim oW _ lim——=F.V
At—0 At At—0 At

The rate of work done on an element of area dA of the control surface by normal stress is
given by
dF -V =, dA-V

The total rate of work done on the entire surface by normal stresses is given by (Since the

work out across the boundaries of the control volume is the negative of the work done on the

control volume)

Wnormal = _[ O dAV = _I O-nn\7 ' dA’
CS CS

Note: o, =—p

Hence, W, ., = I pdA-V (6)
CS

3. Shear Work (W,.,):

Shear work is done by shear stresses in the fluid acting on boundaries of the control volume.
Similar to normal work,

=—[ 7-VdA
CS
Shear force acting on an area element dA is

W

shear

dF =7dA
7: shear stress acting in plane of dA

We often choose a control volume with control surfaces lying adjacent to solid boundaries,

and with control surfaces cutting through inlet and outlet ports. Hence, the shear work can be

expressed as two terms

=— [ #VdA- [ 7-VdA
A(solid A(ports)
surface)

W

shear
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At solid surfaces V =0, so the first term is zero (for a fixed control volume)

The last term can be made zero by proper choice of control surfaces. If we choose a control
surface that cuts across each port perpendicular to the flow, then dA is parallel to V and

hence, 7 is perpendicular to V. Thus, for control surfaces perpendicular to V
7V=0 and W, =0

shear

Hence, energy equation for a control volume becomes

N . - - a - N
Q-W,— | pV-dA-W, ., —W, .. =— | epdV+ | epV -dA
(';[3 h th at(:'"v é';

where
V2
e=u+?+gz, u+pd=nh
Substituting
J. pV -dA = I pIpV -dA
CS

Cs

Q-W,-W, . —W,. = 9 j epdV + I (e+p3)pV -dA
at Cv CSs

Note: W, is zero if there is no control surface that lies within a moving fluid

Fluid is at rest at solid boundary. Shear stress
does no work

If the control surface is

//////// perpendicular to the flow, shear

stress does no work,

Shear stress does work on
moving fluid
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Example: A compressor compresses 6 kg/s of air from inlet conditions T1 = 300 K and P1 =
90 kPa to discharge conditions T2 = 390 K and P2 = 310 kPa. The air in the inlet pipe has a
uniform velocity profile. The air in the discharge pipe has a parabolic velocity profile given
by

where R2 is the inside radius of the of the discharge pipe. Elevation changes are negligible,
and the internal energy change of the air is given by

u,-u = Cv (Tz _Tl)

Assuming steady flow and negligible heat transfer, find the power required to drive the
compressor.

T,=390 K

i
i P,=310kPa
| R,=0.25m
T,=300K m =6 kg/s
P,=90 kPa
R,=0.25m

Assumptions:
- Elevation changes are negligible

- Steady flow
- Heat transfer is negligible

Basic equation:Energy equation:

Q-W,-W, . —W,. = 9 I epdV + I (e+p3)pV -dA
at Cv CSs

Simplifying the energy equation to the assumptions we obtain,

Q _Ws _Wshear _Wother = 2 J- epdv_“ I (e+ ng)deA
=0 =0 =0 atCV CS
=0
. - V2
Ws:—_[(e+p9)pv-dA e=U+—+09z
CS 2 =0
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=_C‘£Ku+v72j+pg}pv.d,&:_i[(UJrV?z}rp9}p\7~dﬂ—%{[(u+\§j+pg}p\fd:&

Assuming that temperature and pressure are uniform at the inlet and outlet, we get

W, :—j[(u +V?2j+ pS}pV-dA:—A[Hu+V?2j+ pg}pﬁd/&—%fﬂuﬂg} pg}pv-d,&

.- v: oo
u, + J+ p4 { |VAL - [ [u+ pS]pV-dA—I7pV-dA
Aot Aot

2 —
W, =— (uﬁ J+ ] { VA= [ [u+ pl9]p\7~dA—IV?p\7-dA
Abut Asul

W, =— u1+ 2 +pl j( m)+(u2+p292){|pV2A2| _[p—dA
%Ul

2 3
Ve r o R?
dA —27rdr =2 max |1 _| | | rdr = 2F2max™
A{tp IP V4 ﬂ_[,D 5 [ (RJ] 3

We relate u_,, to the average velocity by,

R, 2
m=p\,A, = '[pzusz = I P2 [l_[RLJ :lzm’dr
0 2

_ u _
PN, 7R; = p, —2 = Ung =2V,

[N A AL

> R AN L

2
Ws =—rh(u2 _ul)_m(p2‘92 - pl‘gl)_m(vzz _\%j

Assuming air is an ideal gas,
u,—u, =C, (Tz _Tl)

p2192 - p1‘92 = R(Tz _Tl)

Also,
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2
pZAZ :>\72 — mRT2
p, =P P.A
* RT,
6{@]}287{[\"“}390[@
— S kgK

v, = 5 :11{9}
310000{}0.196[m2] S
m

2
o 6[kg}287 LUREWES
m mRT, |s kgK

| =——= = =29.3P}
AN PA 90000[N}O.196[m2] s

mZ
Substituting back into expression for W,

2
Ws :_m(uz —Ul)—m(p2192 - plgl)_m(vzz _\%j

W, = —6[“?9} 720{@%}(390—300)[“—6[%} 2807{@%}(390—300)[“—6{%9}(11.22 -29.3°)

W, = —(388800+155000—1800)[ﬂ

W, =—| 388800 + 155000 — 1800 —}
H—/

— Lo
internal energy  flow work kinetic energy
"mechanical
pressure enrgy"

W, =-542[kW |

Note that a large portion of the compressor input work appears as an increase in the thermal
(internal) energy and the mechanical “pressure energy” of this comnpressible fluid. The
Kinetic energy change is much smaller.

Example: Turbines convert the energy contained within a fluid into mechanical energy or
shaft work. A turbine is installed in a dam as shown in the figure. Water is permitted to flow
through a passage way to the turbine after which the water drains downstream. For the data
given in the figure, determine the power available to the turbine when the discharge at the
outlet is 30 m¥/s.
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Assumptions:
« Steady flow

* Incompressible flow
* No heat transfer
« Internal energy change can be neglected

Basic equation:Energy equation:
Q _Ws _Wshear _Wother = g _[ epdv"‘ _[ (e+ p'g) p\7 : dA
at Cv CS

With these assumptions, energy equation becomes
W, :—I(e+ pg) pV -dA
CS

W, :—I(e+ p19)p\7~d,5\—'[(e+ pg) pV -dA
A A,

2
e=u +7 + gz assuming also flow is uniform
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=—[(e+ p9){~|oVAl} ] ~[(e+ p&){|oVAl}],
=—[(e+pd)(-m)] ~[(e+p9)m],

V2
=— [u2+ +0z, + p,4 j (u+ 2+gz L+ P ﬂm

V2
+(p,% p1191)+g(22—21)}m

== (uz_u)

Note: u, —u, =0 negligible internal energy change.

4 =8, incompressible flow

: V2V
W, =—m{72—?+g(22—21)}

V, can be found using Bernoulli equation, between free surface and nozzle exit

2
&+V—A+ng pl+—+gz
p 2 p 2

p1~ pA patm

V,=0

2 V2
ng:?+gz1 = é:g(zA—zl)

. V.2

Ws :_m|:?2_g(zA_zl)+g(22 _Zl):|
. V.2

Ws :—m{?z—g(ZA—Zz)}

From continuity equation

Q=V1A1=V2A2 :>V2=2= 30 > :5.24{9}
A, S

Substituting these values into energy equation,
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. V2
W, :_m|:72_g(ZA_ZZ):|

Ws :_PQ|:V72_9(ZA_22):|

5.24°

W, = —(1000)(30){ ~9.81(20- 6)}

V\'/s = +3708336[M} = 3.7[MW] plus sign indicates that work is done by the system.
S

Average Properties and Velocities

Usually, the uniform flow assumption is only an approximation and we use average velocities
and property values to calculate flow of energy at various inlet and outlet planes. For accurate
calculations, we must carefully define the averages so that they truly represent associated
energy flows. In most cases, appropriate average values of u, p, p and z are readily apparent
because these properties are often closely uniform across the section. However, determination
of average velocity and hence kinetic energy flux requires a careful attention.

[V-dA
Average Velocity is defined as V =2

Average Kinetic Energy
Since velocity is usually non-uniform, representing the kinetic energy flux in terms of
uniform velocity slightly more complicated.

2
E, :Ip\/?v-dA
A
72

Since velocity is not uniform, E, # pV?VA

hence, a kinetic energy correction factor o is defined by

The true kinetic energy flux across a plane is E, = a(%pvsAj

122



For flow in a circular pipe, a ranges from 2 for fully developed laminar flow to about 1.05 for
fully developed turbulent flow.

F i Il
! parabolic
| curve _
L U - TLaminar flow
| a=20
—V
y. o I 7
(a)
i~ — rs
Ly
uv | Turbulent flow
— Upnax
a=1.0
ri r
(b)
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INTERNAL INCOMPRESSIBLE VISCOUS FLOW

Energy Equation for a Flow in a Pipe

Assumptions
N6 - 1. No shaft work
| 1g 2. Incompressible flow
: 3. Steady flow
: 4. Internal energy and pressure
| are uniform at cross sections 1
: z and 2

Q_Ws _Wshear _Wother :g J‘ e,OdV'F J (e+ pg)deA
0 0 0 ot e, cs
=0
V2
e=uUu+—+0z
5 g

Considering, u, p and p are uniform over inlet and outlet cross-sections, we can write

) = 1y - al Pa_ Py i - V_ZZ V. dA — \ﬁ V.d
Q=m(u,—u;)+m +m(z, 21)"'_[ PV,dA, I PV, dA
p P A 2 A 2

Note: At cross-sections 1 and 2, velocity profiles are non-uniform. However, integrals in the
above equation can be expressed in terms of average velocity and kinetic energy correction
factor, i.e.

2 72 72
J-V— VdA=aV—p\7A=aV—m
5 2 2 2

Therefore, energy equation becomes,

72 72
Q=rh(uz—ul)Jrrfl(%—%jer(z2 —zl)+m(azv72—alej
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dividing by mass flow rate and rearranging, we get

—2 \/ 2 _
[&+al +le ( P, +a2—+z ] U~ 0Q
pg 2 pg 2 g gom

9_ heat transfer rate per unit mass of moving fluid.
m

For incompressible flow (combining the first and the second law of thermodynamics),

ghf =u,—-u,—q

Here hr represents the loss of potential to perform useful work. It shows us that the internal
energy (and hence temperature) of an incompressible fluid can be increased by two ways: heat
transfer to the fluid and friction. Only one effect can cause an internal energy decrease;
namely heat transfer from fluid, as ghs cannot be negative.

_2 _2
[ p; 17+zj (p—;+a27+z J+hf EXTENDED BERNOULLI EQUATION
p p

ht is called head loss

Example:

¥ S T ------------------

1= 1000 Pa
=850 kg/m?3

An incompressible viscous fluid flows between two horizontal parallel plates as shown. The
plates are spaced 0.5 cm apart and are very wide perpendicular to page. Flow is laminar and
velocity profile at any cross section is given by,
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where AP is the pressure change that occurs in length L. Calculate average mechanical energy
loss hr between the pressure gages. Then show that mechanical energy loss also satisfies the
equations

ou

f ﬂ(ay] & (V" 0

gh, =2%4——-—— and gh, = Re(—j(—] where Re:’o—
m Y )\ 2 7

Using the energy equation (extended Bernoulli equation)

72 72
ﬁ+a1VL+zl = &+a2\/_2+22 +h,
P9 2 Jols) 2

=1,
Note: Velocity profiles are identical.

hf — pl_ pZ
P9
~1000-0

= ———=0.119
" 850(9.81) [m]

P 850 kg
__ﬁ(A_P] 1_(1)2
2u\ L Y
u_yap
oy wuL
2 Y 2 2
ou y AP AP
— | dV  2u||=——| WLdy L|—=—
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m PV 2YW PIVY 0 3oV \ L
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CLASSIFYING THE FLOW IN A PIPE OR DUCT

Laminar and Turbulent Flow
If the flow in a pipe is laminar, the fluid moves along smooth streamlines.

If the flow is turbulent, a rather violent mixing of the fluid occurs, and the fluid velocity at a
point varies randomly with time.

The difference between laminar and turbulent flows were classified by Osborne Reynolds in
1883. Reynolds performed a series of experiments.

1 »dye filament
needle e /
——

tank o

R

(a)

(c)

Pipe-flow transition experiment. (a) laminar flow. (b) High ReD, turbulent flow. (c) Spark photograph
of turbulent flow condition. (After O. Reynolds, an experimental investigation of the circumstances
which determine whether the motion of water shall be direct or sinuous and of the law of resistance in
parallel channels, Phil. Trans. Roy. Soc., London, A174:935-982, 1883)
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Reynolds’ experiments showed that the nature of the pipe flow depends on the Reynolds
number,

_pvd
U

Re

Developing and Fully Developed Flow

The flow in a constant area duct or pipe is said to be fully developed if the shape of the
velocity profile is the same at all cross sections.
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Up b—> B s r—— e — T Eme—— ] -—-- D
> — -7 —,
s — = |

! Fully developed
velocity profile

| Entrance length

The length L. is called entrance length or the developing length.
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0.06 Re laminar flow

€

12

4.4(Re)]/G turbulent flow
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