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INTRODUCTION 

 

Fluid Mechanics in Engineering 

 

Fluid mechanics deals with behavior of fluids at rest and in motion. Many engineering 

applications involve fluid in motion or stationary. Examples include home and city water 

supply system, transportation of oil and natural gas in pipelines, flow of blood in vessels, air 

flow over an aircraft, motion of a ship in water, and many others. Design and operation of all 

such devices require a good understanding of fluid behavior when it is stationary or in motion, 

and its interaction with the surface in contact. 

 

Definition of a Fluid 

 

 

Consider imaginary chunks of both a solid and a fluid. Chunks are fixed along one edge, and 

a shear force is applied at the opposite edge. A short time after application of the force, the 

solid assumes a deformed shape which can be measured by the angle 1. If we maintain this 

force and examine the solid at a later time, we find that deformation is exactly the same, that 

is 2=1. On application of a shear force, a solid assumes a certain deformed shape and retains 

that shape as long as the force is applied. 

 

 

Figure 1. Solid and fluid behavior under shear stress. 
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Consider the response of the fluid to the applied shear force. A short time after application of 

the force, a fluid assumes a deformed shape, as indicated by the angle 1. At a later time, the 

deformation is greater, 2>1, in fact the fluid continues to deform as long as the force is 

applied. Thus we can define a fluid: 

 

A fluid is a substance that deforms continuously under the action of applied shear force. 

 

The process of continuous deformation is called flowing. 

 

Scope of Fluid Mechanics 

 

As pointed out above, many engineering applications involve fluids in motion or stationary. 

We cannot consider all these specific problems of fluid mechanics. Instead, the purpose of 

this course is to introduce the basic laws and associated physical concepts that provide the 

basis or starting point in the analysis of any problem in fluid mechanics. 

 

Basic Equations 

 

Analysis of any fluid mechanics problem begins, either directly or indirectly with the basic 

laws governing the fluid motion. The basic laws, which are applicable to any fluid, are, 

 

1. Conservation of mass 

2. Newton’s second law of motion 

3. Moment of momentum 

4. The first law of thermodynamics 

5. The second law of thermodynamics 

 

It should be emphasized that not all basic laws are required to solve every problem. However, 

in some problems, it is necessary to bring into the analysis additional relations, in the form of 

equation of state or constitutive equations; i.e. equation of state 

 

RTp =  
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METHOD OF ANALYSIS 

 

The first step in solving a problem is to define the system that is going to be analyzed. The 

basic laws can be applied to a control volume or to a system. 

 

System and Control Volume 

 

A system is defined as a fixed, identifiable quantity of mass. 

 

The boundaries of a system may be fixed or moveable; 

however, there is no mass transfer across the system 

boundaries; i.e. the amount of mass in the system is 

fixed. 

 

 

Control Volume 

 

A control volume is an arbitrary volume in space through which fluid flows. 

 

 

 

Differential vs. Integral Approach 

 

The basic laws that we apply in fluid mechanics problems can be formulated in differential 

and integral forms. The solution of differential equations provides a means of determining the 

detailed (point by point) behavior of the basic laws. 
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System of Units 

 

The SI system of units will be used. In the SI system of units 

 

quantity unit 

mass  kg 

length  m 

time  sec 

temperature K 

force  N 

 

FUNDAMENTAL CONCEPTS 

 

Fluid as a Continuum 

 

All fluids are composed of molecules in constant motion. However, in most engineering 

applications we are interested in the average or macroscopic effects of many molecules. We 

thus treat a fluid as an infinitely divisible substance, a continuum, and do not concern with the 

behavior of individual molecule. 

 

For continuum model to be valid, the smallest sample of the matter of practical interest must 

contain a large number of molecules so that meaningful averages can be calculated. 

 

The condition for the validation of continuum approach is that distance between the 

molecules of the fluid should be smaller than the smallest characteristic length of the problem. 

 

As a consequence of the continuum assumption fluid properties and flow properties can be 

expressed as continuous functions of position and time, i.e. 

 

 =  (x,y,z,t) 

u = u (x,y,z,t) 

T = T (x,y,z,t) 

p = p (x,y,z,t) 

… 
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The value of a fluid property ar a point is defined as an average considering a volume around 

that point. 

 

 

 

VELOCITY FIELD 

 

Continuum assumption led to description of all the fluid properties at every point in the flow 

domain. 

 

The fluid velocity at a point C is defined as the velocity of the center of gravity of volume  

surrounding the point C. 
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The velocity at any point in the flow field is a function of space and time, i.e. 

 

),,,( tzyxVV


=  

 

Velocity vector V


, can be written in terms of scalar components 

kwjvıuV


++= , u is x-component of velocity 

    v is y-component of velocity 

    w is z-component of velocity 

 

Steady Flow 

 

If properties at each point in a flow do not change with time, the flow is called steady. 

Mathematically for any property  
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ONE- TWO- AND THREE-DIMENSIONAL FLOWS 

 

A flow is classified as one-, two-, or three-dimensional depending on the number of space 

coordinates required to specify the velocity field. 

 

Example: 

 

 

 























−=

2
1

max R

r
uu  velocity depends on only r, hence the flow is one-dimensional. 

 

 

  

Velocity changes with x and y coordinates, hence the flow is two dimensional. 

Give example about three dimensional flows. 

 

Uniform Flow 

 

To simplify the analysis, sometimes velocity at a cross-section is assumed to be constant. If 

velocity at a given cross section is assumed to be uniform, flow is called uniform flow. 

 

  at all points at given cross section velocity is same. 
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Timelines, Pathlines, Streaklines, and Streamlines 

 

Timelines, pathlines, streaklines and streamlines provide a visual representation of a flow 

field.  

 

Timeline: 

 

If a number of adjacent fluid particles in a flow field are marked at a given instant, they form 

a line in the fluid at that instant, this line is called a timeline. Observation of the timeline at a 

later instant may provide information about the flow field. 

 

Pathline: 

 

A pathline is the path or trajectory traced out by a moving fluid particle. A pathline may be 

obtained by following a fluid particle (i.e. by use of dye) in the flow field. 

 

 

Streakline: 

 

A line joining the fluid particles that pass through the same point in the flow field is called the 

streakline. 
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Streamline: 

 

Streamlines are lines drawn in the flow field so that at given instant they are trangenbt to 

direction of flow at every point in the flow field. Streamlines are tangent to the velocity vector 

at every point in the flow field. 
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In steady flow, pathlines, streaklines, and streamlines are identical lines in the flow field. 

 

Example: A velocity given by jayiaxV


−=
, the units of velocity are m/s; and x and y are 

given in meters; a=0.1 sec-1. 

a) Determine the equation for the streamline passing through the point 

 (x0, y0, 0)=(2, 8, 0) 

b) Determine the velocity of a particle at the point (2, 8, 0) 

c) If the particle passing through the point (x0, y0, 0) is marked at time t0=0, determine 

the location of the particle at time t=20 sec. 

d) What is the velocity of the particle at t=20 sec. 

e) Show that the equation of the pathline is the same as the equation of the streamline. 

 

 

 

a) Equation of streamline through point (2, 8, 0) 

Streamlines are tangent to the flow direction (velocity vector). Hence, 

x

y

ax

ay

u

v

dx

dy

streamline

−=
−

==  

separating variables and integrating 

 

 −=
x

dx

y

dy
  ln y= -ln x + C1  or xy=C 
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For the streamline passing through point (2, 8, 0), the constant C 

 C=28=16 

 

and the equation of the streamline through point (2, 8,0)  

  

 xy=16 m2 

 

b) The velocity field is jayiaxV


−=  

at point (2, 8, 0) is 
jiV


8.02.0 −=
 

 

c) 
ax

dt

dx
up ==    =

tx

x

dta
x

dx

0
0

      at
x

x
=

0

ln        atexx 0=
 

   −=
ty

y

dta
y

dy

0
0

     at
y

y
−=

0

ln       ateyy −= 0  

 

at  t=20 sec.,  x=2e(0.120)=14.8 m. 

  y=8 e-(0.120)=1.08 m. 

 at t=20 sec., particle is at point (14.8, 1.08, 0) m. 

d) t=20 sec particle is at point (14.8, 1.08, 0) 

 velocity at this point 
jijiV


108.048.1)08.18.14(2.0 −=−=
 

e) To determine equation of the pathline, we use the parametric equations 
atexx 0=  and 

ateyy −= 0  

 

Solving for eat, 

 

xy = x0y0 = 16 m2 Equation of pathline for particle passing through (x0, y0, 0). 

 

Streamline passing through the point  
(x0, y0, 0) can also found as xy=16 m2 

 Pathline and the streamline passing through (x0, y0, 0) are the same for steady flow. 
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STRESS FIELD
 

 

Forces acting on a fluid element  

- Surface forces 

- Body forces 

 

Surface forces include all forces acting on the boundaries of a medium through direct contact. 

Forces developed without physical contact, and distributed over the volume of the fluid are 

called body forces. 

 

Gravitational and electromagnetic forces are body forces.  

Gravitational body force acting on a fluid element of volume d   is 
dg


 

and gravitational body force acting on per unit volume of a fluid element is 
g



. 

 

The concept of stress field provides a convenient means to describe forces acting on 

boundaries of a fluid medium and transmitted through the medium. 

 

Consider an area A around point C in a continuum. The force acting 
F



acting on 

A



can be 

resolved into two components, one normal and the other tangential to the area 

 

 

Normal stress n and shear stress n are defined as  

  

 

Note: subscript, n, indicates that the stress are associated with a particular surface 

A


 through point C. 

n̂  

Fn 

Ft Fn 

C 

F


  

Fn  : normal component 

Fn  : tangential component 

n̂       : normal unit vector 

n

t
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A
n

A

F

A

F

nn
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Note that a point C in a continuum different surfaces can be drawn. However, for purpose of 

analysis, we usually reference the area to some coordinate system. In rectangular coordinate 

system, we might consider the stress acting on planes whose outward drawn normals are in 

x,y or z-directions. 

 

  

Force components on element of area Ax Stress components on element of area Ax 

 

 

 

Stress components shown in above figure is defined as  

0 0 0

, ,lim lim lim
x x x

yn z
xx xy xz

A A Ax x x

FF F

A A A  

 
  

  → → →

= = =  

We have used a double subscript notation to label the stresses. 

i,j i: indicates plane on which stress acts (plane perpendicular to axis i) 

 j: direction in which stress acts 

 

xy 

x 

y 

z 

•  

C 
xx 

 
xz 

 

Fy 

x 

y 

z 

•  

C 
Fx 

Fz 
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Consideration of an area element, Ay, would lead to the definition of stresses yy, yx, yz, and 

use of area element Az would similarly lead to the definitions of zz, zx, zy. 

 

 

 

An infinite number of planes can be passed through point C, resulting an infinite number of 

stresses associated with that point. Fortunately state of stress at a point can be described 

completely by specifying the stresses acting on three mutually perpendicular planes through 

the point. Hence, stress at a point is specified by the nine components. 

 

xz 

 

xx 

 x 

y 

z 

xy 

yz 

 

yx 

 

yy 

 

zz 

 

zx 

 

zy 
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















zzzyzx

yzyyyx

xzxyxx







 

 

The planes are named in terms of the coordinate axes. The planes are named and denoted as 

positive or negative according to the direction of the outward drawn normal to the plane. 

Thus, the top plane for example is a positive y-plane and the back plane is a negative z-plane. 

 

It is also necessary to adopt a sign convention for stress. A stress component is considered 

positive when the direction of the stress component and the plane on which it acts are both 

positive or both negative. In other words, a shear stress on positive y-plane in positive x-

direction or shear stress on negative y-plane in negative x-direction. 

 

 

Thus, yx=2.4 N/m2 represents a shear stress on positive y-plane in positive x-

direction or shear stress on negative y-plane in negative x-direction. 

 

VISCOSITY 

 

We have learned that a fluid is a substance that undergoes continuous deformation when 

subjected to a shear stress. This shear stress is a function of rate of deformation. For many 

common the shear stress is proportional to the rate of deformation. The constant of 

proportionality, called viscosity, is a fluid property. 

 

To develop the defining equation for viscosity, we consider a flow in x-y plane in which x-

direction velocity varies with y. 
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Consider the fluid element in the figure. The top of the fluid element moves faster than the 

bottom, so in time fluid element deform.  

 

We measure shear deformation by the angle , which can be related to the fluid velocity. 
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Newtonian Fluid 

 

Fluid in which constant of proportionality in above expression is equal to the viscosity called 

Newtonian fluid. 

 

Newton’s law of viscosity: 

dy

du
yx

 =   : dynamic viscosity (absolute viscosity) 

 

Unit of  
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Non-Newtonian Fluid 

Not all fluids follow the Newton’s law of viscosity (stress-strain relation). Such fluids are 

called non-Newtonain. Some fluids such as ketchup, are ‘shear-thinning’; that is the 

coefficient of resistance decreases with increasing strain rate (it all comes out of the bottle at 

once). Others, such as a mixture of sand and water ‘shear-thickening’. Some fluids do not 

begin to flow until a finite stress been applied (toothpaste). 

 

In there fluid shear stress-deformation rate (shear strain) relation may be represented by the 

power law model, 

n

yx dy

du
k 








=    n: flow behavior index, k: consistency index 

 

If the above equation is written in the form  

 

dy

du

dy

du

dy

du
k

n

yx
 ==

−1

 

 

then 

1−

=

n

dy

du
k  is referred to as the apparent viscosity. 

 

 

 

 

Pseudoplastic Fluid (Shear thinning): apparent viscosity decreases with increasing 

deformation rate. 
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Example: polymer solutions, ketchup 

 

Dilatant (Shear thickening): apparent viscosity increases with increasing deformation rate. 

Example: sand suspension 

 

Bingham plastic: deformation (flow) does not begin until a finite stress is applied. 

Example: toothpaste, drilling muds, clay suspensions 

 

 

Rheopectic fluid: apparent viscosity increases with time under constant shear stress. 

 

Thixotropic fluid: apparent viscosity decreases with time under constant shear stress.  

Example: paints 

 

Viscoelastic fluid: fluid which partially returns to original shape when the applied stress is 

released. 

 

 

Dependency of Viscosity on Temperature 

 

In liquids, viscosity decreases with increasing temperature. This is a result of the fact that the 

distance between liquid molecules increases with increasing temperature, and hence cohesion 

between molecules decreases. 

 

In gases, resistance to shear force depends on the momentum transfer between molecules with 

increasing temperature, motion of the gas molecules increases and hence momentum transfer 

increases, as a result viscosity increases. 

 

Expamle: Consider a fluid flowing on an inclined surface. Its velocity profile is 
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For Newtonian fluid, 
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DESCRIPTION AND CLASSIFICATION OF FLUID MOTIONS 

 

Since there is much overlap in the types of flow fields encountered, there is no universally 

accepted classification scheme. One possible classification, 
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Viscous and Inviscid Flows 

 

In an inviscid flow, the fluid viscosity, , ,s assumed to be zero. Fluids with zero viscosity do 

not exist; however, there are many problems where an assumption that =0 will simplify the 

analysis, and at the same time lead to meaningful results. 

 

All fluids possess viscosity and consequently all flows are viscous. 
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In any viscous flow, the flow in direct contact with a solid boundary has the same velocity as 

the boundary itself. There is no slip at the boundary. 

 

Laminar and Turbulent Flows 

 

The laminar flow is characterized by smooth motion of fluid particles in laminae or layers. 

 

The turbulent flow is characterized by random, three-dimensional motions of fluid particles 

superimposed on the mean motion. 

 

In laminar flow there is no macroscopic mixing of adjacent fluid layer. 
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FLUID STATICS 

 

In this chapter, an expression for the pressure distribution in a stationary body of fluid will be 

derived, and the pressure forces acting on submerged surfaces will be studied. 

 

In fluids at rest, there is no relative motion between fluid particles. Hence there is no shear 

stress acting on fluid elements. Fluids, which are at rest, are only able to sustain normal 

stresses. In fluids undergoing rigid-body motion, a fluid particle retains its identity and there 

is no relative motion between the particles. Hence, in  fluids undergoing rigid-body motion 

only stress component present is the normal stress. 

 

THE BASIC EQUATION OF FLUID STATICS 

 

Our primary objective is to obtain an equation that will enable us to determine the pressure 

field within the fluid. 

 

Consider a differential element of mass dm, with sides dx, dy, and dz. The fluid element is 

stationary relative to stationary coordinate system. 

 

Two types of force may be acting on the fluid element. 

- body force  gravitational force 

- surface  force  pressure force 
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In general P=P(x,y,z,t) 

 

The force acting on fluid element shown, 

sB FdFdFd


+=  (1) 

gdxdydzgdgdmFd B


===   (2) 

  

Let the pressure at the center O, of the element be P(x,y,z,t). To determine the pressure at 

each of the six forces of the element, we use Taylor series expansion about the point O. The 

pressure at the left face of the differential element is  
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Similarly on the right face 
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Pressure forces on the other forces of the element are obtained in the same way. Combining 

all such forces gives the net surface force acting on the element 
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The term in parentheses is called the gradient of the pressure is simply pressure gradient and 

can be written grad P or P. In rectangular coordinate system, 
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Physically the gradient of pressure is negative to the surface force per unit volume due to the 

pressure. We note that the level of pressure is not important in evaluating the net pressure 

force. Instead, what matters is the rate at which pressure changes occur with distance, the 

pressure gradient. 

 

Combining equations (2) and (3) in Eq. (3) 

( )dxdydzgPgrad

FdFdFd BS



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Or on unit volume base 

dF dF
grad P g

d dxdydz
= = − +
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For a fluid particle, Newton’s second law of motion gives adadmFd


==  . But for a static 

fluid, the acceleration a


 is zero. Thus, 

( ) 0=+−= dxdydzgPgradFd


  

or 

0=+− gPgrad


  

 

 

 

Components of this vector equation are 

0

0

0

=+



−

=+



−

=+



−

z

y

x

g
z

p

g
y

p

g
x

p







 

Above equations describe the pressure variation in each of the three coordinate directions in a 

static fluid. To simplify further, it is logical to choose a coordinate system such that the 

gravity vector is aligned with one of the axes. If the coordinate system is chosen such that z-

axis is directed vertically, then ggandgg zyx −=== 0,0  

 

body force per unit volume at a point 

pressure force per unit volume at a point 
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













−=




=




=




g
z

p

y

p

x

p



0

0

pressure is only function of z 

 

g
dz

dp

dz

dp

z

p

−=







 

or 

−=
dz

dp
 (4) Basic equation of fluid statics 

Note: The pressure does not vary in a horizontal direction. The pressure increases if we go 

down and decreases if we go up. 

 

PRESSURE VARIATION IN A CONSTANT-DENSITY FLUID 

 

If the density of the fluid is constant, we can easily integrate Eq.(4) to give 

( )

( )zzgpp

or

zzgpp

gdzdp

g
dz

dp

z

z

p

p

−=−

−−=−

−=

−=



00

00

00









 

 

 

 

For  liquids, it is often convenient to take the origin of the coordinate system at the free 

surface, and measure the distance as positive downward from the free surface with h 

measured positive downward, the 

hzz =−0  

ghpp += 0  is called hydrostatic pressure 

y 

z 

x 

z0 

g


 

free surface 
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where 0p  is the pressure at the free surface of the liquid. 

 

Example: A tank which is exposed to the atmosphere, contains 2 m of water covered with 1 

m of oil. The density of water and oil are 1000 kg/m3 and 830 kg/m3, respectively. Find the 

pressure at the interface and at the bottom of the tank. Also determine the pressure 

distribution at the tank. The atmospheric pressure is 101.325 kPa. 

 

 

Basic equation of fluid statics, g
dz

dp
−=  

For =constant, ghpp += 0 , pressure at any point in the fluid. 

 









=

















+








=+=

2int

232int

3.109467

181.9830101325

m

N
p

m
s

m

m

kg

m

N
ghPp ooa 

 

 

 int 2 3 2

2

109467.3 1000 9.81 2

129087.3

b w w

b

N kg m
p p gh m

m m s

N
p

m


     

= + = +     
     

 
=  

 
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Variation of the pressure in oil is 

  ooatm hhforhmh
s

m

m

kg

m

N
ghpp +=
















+








=+= 03.814210132581.9830101325

232


 

Variation of the pressure in water is 

 int 2 3 2
109467.3 1000 9.81 109467.3 9810 0w w

N kg m
p p gh h m h for h h

m m s


     
= + = + = +       

     

 

 Example: Water flows through pipes A and B. Oil, with specific gravity 0.8, is in the upper 

portion of the inverted U. Mercury (specific gravity 13.6) is in the bottom of the manometer 

bends. Determine the pressure difference, PA-PB. 

 

 

Find: the pressure difference between A and B, pA-pB = ? 

Given:  

OH
2

 =1000 kg/m3
 

0
2

H

SG



=  → Hg =13.6*1000= 13600 kg/m3 

   oil =0.8*1000= 800 kg/m3 

Basic equation g
dh

dp

dz

dp
−=−=   gdhdp −=  

2 2

1 1

dp gdh= −   
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)( 1212 hhgpp −−=−   

 

Beginning at point A and applying the above equation between successive points gives 

12 gdpp OHAC +=−   3gdpp oilDE +=−   52 gdPP OHFB −=−  

2gdpp HgCD −=−    4gdpp HgEF −=−  

 

( ) ( ) ( ) ( ) ( )

( )

2 1 2 3 4 2 5

29.8 1000 25 13600 7.5 800 20 13.6 12.5 1000 20 10

25407.90 25.405

A B A C C D D E E F F B

H O Hg oil Hg H O

p p p p p p p p p p p p

gd gd gd gd gd

Pa kPa

    

−

− = − + − + − + − + −

= − + − + +

= −  +  −  +  +  

= =
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Pressure Variation in a Varible-Density Fluid 

 

If the density is variable, we must relate it relate to the pressure /or elevation before we can 

integrate the equation. 

 

g
dz

dp
−=  

 

A common case might involve an ideal gas. In such gases, density can be expressed as a 

function of pressure and temperature. Pressure and density of liquids are related by the bulk 

compressibility modulus or modulus of elasticity. 

 







d
EdP

d

dp
E vv ==

/
 

 

If the bulk modulus is assumed to be a constant, then the density is only a function of the 

pressure. 
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Example: The pressure, temperature and density of standard atmosphere at the sea level are 

101.325 kPa, 15.2 C, and 1.225 kg/m3, respectively. Calculate the percent error introduced 

into the elevation of 8 km, by assuming the atmosphere. 

a) to be incompressible 

b) to be isothermal 

c) to be isentropic 

d) linearly decreasing temperature with a temperature decrease of -0.0065 K/m. 

The actual pressure at an elevation of 8 km is known to be 35.656 kPa. The gas constant of air 

is 287 J/kgK. 

 

a) Incompressible air, =constant 

 

gzppg
dz

dp
00  −=−=  

  p= 101325 N/m2-(1.225 kg/m3)(9.81 m/s2)(8000)(m) 

p= 5187 N/m2 

 

%.
-

 % Error 4585100
35656

518735656
==  

 

b) Isothermal 

RT

gdz

P

dp

g
dz

dp

RT

p

−=

−=

=




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( )
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c) Isentropic 
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d) Temperature decreases with increasing height 

mKmmmzTT /0065.0,0,0 −=+=  


+

==
)( 0 mzTR

P

RT

P
  

2

)0065.0(287

81.9

00

0
0

00

0

0

0

0

/36.35587

,
)0)(0065.0(5.282

)8000)(0065.0(5.282
101325

lnln

)(

)(

0 0

mNp

p

mzT

mzT
pp

mzT

mzT

Rm

g

p

p
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ABSOLUTE AND GAGE PRESSURE 

 

Pressure values must be stated with respect to a reference level. If the reference level is a 

vacuum, pressures are termed as absolute. Pressure levels measured with respect to 

atmospheric pressure are termed gage pressure. 

 

 

 

pabsolute = pgage + patmosphere 

 

 

Pabsolute 

Pressure level 

Atmospheric pressure 

101.3 kPa  (14.696 psia) 

At standard sea level 

T=288 K 

=1.225 kg/m3 

Pgage 
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HYDROSTATIC FORCE ON SUBMERGED SURFACES 

 

When a surface is in contact with a fluid, fluid pressure exerts a force on the surface. This 

force is distributed over the surface; however, it’s often helpful in engineering 

calculations to replace the distributed force by a single resultant. To completely specify 

the resultant force we must determine its magnitude, direction and point of application. 

 

We shall consider both plane and curved submerged surfaces. 

 

1. HYDROSTATIC FORCE ON A PLANE SUBMERGED SURFACE 

 

 

- Magnitude of resultant force 

?=RF


 

- Point of application 

??,' == yx  

 

Force acting on surface Ad


 

ApdFd


−=   - sign indicates that force Fd


acts againstthe surface Ad


  

 

The resultant force acting on the surface is found by summing the contribution of the 

infinitesimal forces over the entire area. 

 

Thus, 



38 

−=
A

R ApdF


 .................................................................................................................. (1) 

In order to calculate the integral, both  pressure, p, and the element area of Ad


must be 

expressed in terms of the same variables. The basic pressure-height relation for a static fluid 

can be written as  

g
dh

dp
= ,  h is measured positive downward from the liquid free surface. 

ghppgdhdp
h

h

p

p

 +== 
=

0

0
0

 ........................................................................ (2) 

 

p0 is the pressure at liquid free surface (h=0) 

 

This expression can be substituted into  Eq. 1. Then to perform integration, h and DA should 

be expressed in terms of x and/or y. ( sinyh = ,  = constant). Integration of Eq. 1 gives the 

resultant force due to the distributed pressure force. 

 

The point of application of the resultant force must be such that the moment of the resultant 

force about any axis is equal to the moment of the distributed force about the same axis. 

 

Let r

 be the position vector of the point of application of the resultant force RF


and r


be the 

position vector of any point on surface A. 

 





−=

=

A

R

R

APdrFr

FdrFr




 

According to coordinate system used, 

 ...................................        
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kFF

jyıxr
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RR
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
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 +−=−+



A

R kPdAjyıxkFjyıx


)()()(  
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Evaluating the cross product, we obtain, 

 +=+
A

RR dAıyPjxPıFyjFx )(


 

Considering the components of this vector equation, we obtain 
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Example: The inclined surface shown, hinged along A, is 5m wide. Determine the resultant 

force RF


 of the water on the inclined surface. 

w = 5m. 

 

 

kwdyAd

APdFR





=

−= 
 

We now need P as a function of  y to perform the integration. 

 





gyDpp

yDh

pp

ghpp

aatm )30sin(
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Since we are interested in the force of the water on the gate, then we drop Pa and obtain, 
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Point of application of resultant force 

 
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Since the area element is of constant width, x=w/2 
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Thus, 

 

 mjır


22.25.2 +=  .   line of action of RF
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ALTERNATIVE APPROACH FOR CALCULATION OF HYDROSTIC FORCE 

(ALGEBRAIC EQUATIONS) 

 

 
 

Note: Origin of the coordinate system is placed at the intersection of the plane 

of the gate and the free surface. 
 

 

Now we will formulate an approach to determine the resultant hydrostatic force and its point 

of application. Consider the expressions developed before, i. e. 

 

−=
A

R ApdF


 

 

Considering the free surface is open to atmosphere, the magnitude of the resultant force can 

be written as 
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sin sin sinR c c

A A A

F ghdA gy dA g ydA g y A gh A       = = = = =    

 

 

NOTE: c

A

ydA y A=  is the first moment of the area with respect to the x axis.  

Where yc is the y coordinate of the centroid of the area A measure from the x axis, which 

passes through O, and ycsin=hc. 

 

hc is the vertical distance from the fluid surface to the centroid of the area. 

 

 

 

Point of Application of the Resultant Force  

 

Expressions for the coordinates of the point of application of the resultant force can be 

obtained by equating the moment of the resultant force to the moment of the distributed 

pressure force. 

 
2sinR R

A A

F y ydF g y dA = =   

 
2

2 21 1
sin sin

sin

A
R

R c cA A

y dA

y g y dA g y dA
F g y A y A

   
 

= = =


   

 
2

x

A

y dA I=    is the second moment of the area (moment of inertia), with respect to an axis 

formed by the intersection of the plane containing the surface and the free surface (x axis). 

Thus, we can write 

 

x
R

c

I
y

y A
=  

 

Using parallel axis theorem 

 
2

x xc cI I Ay= +  

 

where Ixc is the second moment of the area with respect to an axis passing through its 

centroid and parallel to the x axis. Thus, 

 

xc
R c

c

I
y y

y A
= +  
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The x coordinate, xR, for the resultant force can be determined in a similar manner as follows 

 

xyc

R c

c

I
x x

y A
= +  

 

where Ixyc is the product of inertia with respect to an orthogonal coordinate system passing 

through the centroid of the area. The point through which the resultant force acts is called the 

center of pressure. 
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Example: Solve the previous example using the algebraic equations method. 

 

w = 5m 
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I
x x
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= +  

 

 0xycI =  

   2.5cx m=  depending on the coordinate system axis 

 2.5Rx m=  
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PRESSURE PRISM METHOD 

 

The concept of the pressure prism provides another tool for determining the magnitude and 

point of application of the resultant force on a submerged plane surface. 

 

 

 

Considering the gage pressure at the free surface is zero, the infinitesimal pressure force, Fd


, 

acting on the submerged plane surface is, 

 

kdkghdAkPdAFd P


−=−=−=   

 

where dA and gh are infinitesimal base arae and imaginary height of the pressure prism, 

respectively. Thus, product of dA and gh represents the infinitesimal volume Pd  of the 

pressure prism. After integration, the magnitude of the resultant force may be obtained as, 

 

kdkF PPR

P


−== 



  P is the volume of the prism. 

Therefore, the magnitude of the resultant force acting on a submerged plane surface is equal 

to the volume of the pressure prism. 

 

Point of application of the resultant force, 

gh 
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gh2 

z 

y 

h2 h1 h 

x 

dA 
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where XG and YG are the coordinates of the centroid of the pressure prism. 

 

Example: solve the previous example using the pressure prism method.  
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Point of application of the resultant force 

-The gate is symmetrical about its centroid axis. 
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The y-coordinate of the point of application of the resultant force can be found considering 

the triangular pressure prisms. Let 1y be the centroid of the rectangular pressure prism and 2y  

be the centroid of the triangular pressure prism. 

( )

my

wgL
LgDwL

L
y

FyFyFy

Yy

P

RRR

G

22.2

2

30sin

3

2

2

2

21
21

=









+








=

+=

=




 



50 

HYDROSTATIC FORCE ON CURVED SUBMERGED SURFACES 

 

Consider the infinitesimal curved surface shown in 

figure. The hydrostatic force on an infinitesimal 

element of a curved surface, Ad


, acts normal to the 

surface. However, the differential pressure force on 

each element of the surface acts in a different 

direction because of the surface curvature.   

 

 

 

 

 
 

 

 

 

 

 

Usually, to sum a series of force vetors acting in different directions, we sum the components 

of the vectors relative to a convenient system. 

 

The pressure force acting on area element Ad


 is 

ApdFd


−=  

The resultant force is 

−=
A

R ApdF


 

RF


can be written as  

zyx
RRRR FkFjFıF


++=  

where 
zyx

RRR FFF and, are components of RF


 in x,y and z directions. 

To evaluate the component of the force in a given direction, we take the dot product of the 

force with the unit vector in the given direction. For example, taking the dot product of each 

side of the above equation with unit vector ı


 gives 





−=

−=

xR

R

pdAF

ıApdıF

x



 

In general, magnitude of the component of the resultant force in the l direction is given by 

=

l

l

A

lR pdAF  
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where ldA is the projection of the area element dAon a plane perpendicular to l-direction. 

 

The line of action of each component of the resultant force is found by recognizing that the 

moment of the resultant force component about a given axis must be equal to the moment of 

the corresponding distributed force component about the same axis. 

 

Because we are dealing with a curved surface, the lines of action of the components of the 

resultant force will not necessarily coincide; the complete resultant may not be expressed as a 

single force. 

 

Example: An open tank which is shown in the figure is filled with an incompressible fluid of 

density, . Determine the magnitudes and lines of action of the vertical and horizontal 

components of the resultant pressure force on the curved part of the tank bottom. 

 

 

NOTE: the width of the tank is w. 

 

FIND: ??, ==
VH

RR FF  
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Consider the area element Ad


. The resultant force acting on this area element is  
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Horizontal component of this force is  
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Vertical component is 
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Similarly, vertical component of the resultant force  
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Note: Horizontal and vertical components of the resultant pressure force are both negative, so 

that they are acting in a direction opposite to x and y axis, respectively. 

 

Line of action of vertical component 
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ALTERNATIVE APPROACH FOR CALCULATION OF RESULTANT 

FORCE ACTING ON CURVED SURFACES 
 

The resultant fluid force acting on a curved submerged surface can be determined by 

integration as in the above example. This is generally a rather tedious process, and no simple 

general formulas can be developed. As an alternative approach we will consider the 

equilibrium of the fluid volume enclosed by the curved surface of interest and the 

horizontal and vertical projections of this surface. 

 

 

 
 

 

Consider the section BC shown in the figure above. This section has a unit length 

perpendicular to the plane of the paper. 

 

- We first isolate a volume of fluid that is bounded by the surface of interest, in this 

instance section BC, and the horizontal plane surface AB and the vertical plane surface 

AC.  

- Draw the free-body diagram for this volume as shown in Fig. c.  

- The magnitude and location of forces F1 and F2 can be determined from the 

relationships for planar surfaces.  

- The weight, W, is simply weight of the fluid in the enclosed volume.  

- Forces FH and FV represent the components of the force that the tank exerts on the 

fluid.  

- From the force balance, we can obtain FH and FV as follow:  

 

2 1H VF F F F W= = +  

The resultant force of the fluid acting on the curved surface BC is equal and opposite in 

direction to that obtained from the free-body diagram. 

 

 

Example: Solve the previous example using the second method. 
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Solution:  

 

Draw the free body diagram of the isolated liquid. 

 

From the free-body diagram 

 

2HRF F = ,  
1VRF F W = +  

H HR RF F= − ,  
V VR RF F= −  

W: weight of the isolated liquid 

F1: the hydrostatic force acting on surface AB 

F2: the hydrostatic force acting on surface BC 

VRF  : the vertical component of the force exerted 

by curved surface AC. 

HRF : the horizontal component of the force 

exerted by curved surface AC. 

 

2
2 2HR c BC c BC

R R
F F p A gh A g L Rw gwR L  
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 
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R
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BUOYANCY 

 

When a body is either fully or partially submerged in a fluid, a net force called the buoyant 

force acts on the body. This force is caused by the difference the pressure on the upper and 

lower surface of body. Consider the object shown in the figure immersed in a static fluid. We 

want to calculate the net vertical force that pressure exerts on the body. 

 

 

 

=−=+−+=



gddAhhgdAghpdAghpdF

d

z   )()()( 121020  

Thus the net vertical force on the body is 

 

=== 


ggddFF zz   

where  is the volume of the object. 

 

Thus the net vertical pressure force, or buoyancy force, equals the force of gravity on the 

liquid displaced by the object. This relation was reportedly used by Archimedes in 220 B.C., 

it is often called ‘Archimedes Principle’. 

 

The line of action of the buoyancy force may be found using the methods that used in the 

previous section.  
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Note: The line of action of the buoyant force passes through the centroid of the displaced 

volume. This centroid is called the center of buoyancy. 

 

Stability of Submerged and Floating Bodies 

 

The location of the line of action of the buoyancy force and the line of action of the force due 

to gravity determines the stability. 

 

STABILITY 

 

The location of the line of action of the buoyancy force and the line of action of the force due 

to gravity determines the stability. 

 

Stability of a Completely Immersed Body 
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FLUIDS IN RIGID BODY MOTION 

 

A fluid in rigid body motion moves without deformation as though it were a solid body. Since 

there is no deformation, there can be no shear stress. Consequently, the only surface stress on 

each element of fluid is that due to pressure. Hence, as in the case of static fluid, the force 

acting on a fluid element in rigid body motion is  

+−= dgpgradFd )( 


 

or force on a fluid element of unit volume  

  gpgrad
d

Fd
+−=





 

Using Newton’s second law, we can write  

  dmaFd
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=  
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The physical significance f each term in this equation is 
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From the above vector equation, following scalar equations can be written 
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Example: An open tank is used to transport liquid. What should be the maximum height of 

the liquid in tank to be sure that it will not spill over during the trip? 
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Basic equation 
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Then the total change in pressure with change in x and y with dx and dy, can be written as  
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Since the free surface is open to atmosphere, the pressure is equal to atmospheric pressure and 

it is constant. Thus 
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From the figure 
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FLUID ROTATING ABOUT A VERTICAL AXIS 

 

A cylindrical container, partially filled with liquid, is rotated at a constant angular velocity , 

about its axis. 

 

After a short time there is no relative motion; the liquid rotates with the cylinder as if the 

system were a rigid body. Determine the shape of the free surface. 

 

Since there is a circumferential symmetry, the pressure is not 

function of . Then,  

p=p(r,z) 
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In order to obtain pressure distribution, we need to find 

expression for 
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. This can be obtained by writing Newton’s second law in z and 

r directions (or writing equation agpgrad
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 =+−  in cylindrical coordinate system). 
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The same expression can also be obtained by applying Newton’s second law in the r-direction 

to a suitable differential element. 

 

The pressure at the center of the element is P. Using a Taylor series expansion, we express 

forces acting in the r plane on the element as shown in the figure. 

 

Writing Newton’s second law in the r-direction, we have 
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From the figure 
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Then 
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Substituting (2) and (3) into (1), we get 

 

gdzrdrdp  −= 2  

 

To obtain the pressure difference between a reference point (r1,z1), where the pressure is P1, 

and arbitrary point (r,z), where the pressure is P, we must integrate 
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Taking the reference point on the cylinder axis at the free surface gives 

1111 ,0, hzrpp atm ===  
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Since the free surface is a surface of constant pressure (p=patm), the equation of the free 

surface is given by 
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We can solve for the height h1 in terms of the original height ho and R. To do this, we use the 

fact that the volume of the fluid must remain constant. 
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Then equating these two expression for volume, 
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FUNDAMENTAL CONCEPTS FOR FLOW ANALYSIS 

 

We covered methods of analysis of nonflowing fluids in the previous chapter. In this chapter, 

we develop the fundamental concepts of flow analysis, including way to describe fluid flow, 

natural laws that govern fluid flow, different approaches to formulating mathematical models 

of fluid flow, and methods that engineers use to flow problems. 

 

 

The Fundamental Laws 

 

Experience have shown that all fluid motion analysis must be consistent with the following 

fundamental laws of nature. 

 

• The law of conservation of mass. Mass can be neither created nor destroyed. It can 

only be transported or stored. 

• Newton’s three law of motion: 

1. A mass remains in a state of equilibrium, that is, at rest or moving at constant 

velocity, unless acted on by unbalanced force. 

2. The rate of change of momentum of mass is equal to the net force acting on the 

mass. 

3. Any force action has an equal (in magnitude) and opposite (in direction) force 

reaction. 

• The first law of thermodynamics (law of conservation of energy) Energy, like mass, 

can be neither created nor destroyed. Energy can be transported, changed in form, or 

stored. 

• The second law of thermodynamics: The entropy of the universe must increase or, in 

the ideal case, remain constant in all natural processes. 

• The state of postulate (law of property relations): The various properties of a fluid are 

related. If a certain minimum number (usually two) of fluid’s properties are specified, 

the remainder of the properties can be determined. 

 

NOTE: These laws apply to all flows. They do not depend on the nature of the fluid, 

the geometry of the boundaries, or anything else. As far as we know, they have always 
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been true and will continue to be true unless they are suspended by the creator of the 

universe. Hence, we can firmly base analysis of all flows on these laws. 

 

Constitutive Relations 

 

In addition to these universal laws, several less fundamental laws, such as Newton’s law of 

viscosity, Fourier’s law of conduction, are needed to solve flow problems. 

 

These laws are true for some fluids. 

 

Mathematical Formulation 

 

The fundamental laws are the basis of our understanding of fluid motion. However, besides 

understanding, an engineer needs to know qualitatively the velocity, and the pressure to 

calculate the effects of the fluid on surfaces that it contacts, such as force exerted by the fluid 

on a surface, pressure drop in a pipe flow, etc. 

 

To obtain predictive capability, the fundamental laws must be expressed mathematically and 

they must be solved to predict velocity or pressure. 

 

To formulate the fundamental laws, we choose both a point of view and a mathematical 

method. 

 

System versus Control Volume 

 

We may apply the fundamental laws to either a system or a control volume. 

 

System : a specific fluid mass selected for analysis. 

Control Volume : a specific region of space selected for analysis. 

 

System and control volume may be either infinitesimally small or finite. 
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The system of point of view is related to a Lagrangian description of flow. Its advantages is 

that all the fundamental laws may be expressed directly in terms of a specific collection of 

mass. 

 

Control volume point of view is related to an Eulerian description of flow. Its advantage is 

that control volumes are easier to use for problem solution. 

 

Thus we adopt the system point of view to formulate the fundamental laws, but use the 

control volume point of view to apply them to problems. Fortunately, we can formally 

connect the two points view by purely mathematical relationships. 

 

Differential versus Integral Formulation 

 

We must now consider the level of detail of the resulting flow analysis. We must choose 

between a detailed point by point description and a global or lumped description. 

 

When a point by point (local) description is desired, fundamental laws are applied to an 

infinitesimal control volume. The result will be a set of differential equations with the fluid 

velocity and pressure as dependent variables and the location (x, y, z) and time as independent 

variables. Solution of these differential equations, together with boundary conditions, will be 

two function V(x, y, z, t), and P(x, y, z, t) that can tell us velocity the velocity and pressure at 

every point. 
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When global information such as flow rate, force and temperature change between inlet and 

outlet is desired, the fundamental laws are applied to a finite control volume. 

 

The result will be a set of integral equations. 
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BASIC LAWS FOR A SYSTEM 

 

Conservation of Mass 
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Newton’s Second Law 
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The First Law of Thermodynamics 
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The total energy of the system is given by 
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The Second Law of Thermodynamics 

 

If an amount of heat Q is transferred to a system at temperature T, the second law of 

thermodynamics states that the change in entropy ds of the system is given by 

 

System 

 
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Q
Tdt

ds

T

Q
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Total entropy of the system is 
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)()( syssys
mass

sys sdsdmS   

 

RELATION OF SYSTEM DERIVATIVES TO THE CONTROL VOLUME 

FORMULATION 

 

The above equations involve the time derivative of an extensive property of the system (mass, 

momentum, energy, entropy). All the above equations can be expressed in terms of a general 

intensive property . Thus 
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mass

sys ddmN 

 

Comparing this with the above equations, we see that when 

 

N=M then =1  N=E then =e 

N= P


 then =V


  N=S then =s 

 

Consider a system and control volume whose boundaries coincide at t0. 
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Objective: To relate the 
systemdt

dN
to the time variations of this property (N) associated with 

the control volume. 

 

From the definition of a derivative, 
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At t+t, the system occupies regions II and III, at t0, the system and the control volume 

coincide, we can write 
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Substituting these expressions şnto the definition of the system derivative 

 
t

dddd

dt

dN tCttIIIttIttC

t
system 









−








+








−










=




+++

→

0000

0
lim



 

or 



75 

 
      

3

0

2

0

1

0

0000 limlimlim
t

d

t

d

t

dd

dt

dN ttI

t

ttIII

t

tCttC

t
system 











−












+










−










=


 +

→

+

→

+

→

 

 (4) 

Term 1 in Eq. 4 simplifies to 
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To evaluate )
ttIIIN

+0
 let us look at an enlarged view of a typical subregion of region III. 
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Note: the angle  will always be less than 
2

 over the entire area of the control surface 

bounding region III. 

 

In the above expression, l is the distance travelled by a particle on the system surface during 

the interval t along the streamline that existed at t0. 
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The term 3 in Eq. 4 simplifies to 
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Substituting Eqs. (5),(6) and (7) into (4) 
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It is important to recall that in deriving the above equation, the limiting process (taking the 
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Evaluating the scalar product 
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CONSERVATION OF MASS (Continuity Equation) 

 

Combining the law of conservation of mass with the transport theorem yields one of the most 

useful equations in all fluid mechanics: the continuity equation. 

 

Recall that conservation of mass states simply that the mass of a system is constant, 
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Special Cases 

 

1. Incompressible Flow: 

 For incompressible flow,  = constant 
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 is called the volume flow rate of flow over a section of the control surface. 

2. Steady Flow 
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3. Uniform Flow 
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Example:  

A constant density fluid flows in the converging, two-dimensional channel shown in the 

figure. The width perpendicular to the paper is quite large compared to the channel height. 

The velocity in the z-direction is zero. The channel half height y and the fluid velocity in x-

direction are given by 

l
x

y
y

+
=

1

0  and 



















−








+=

2

0 11
Y

y

l

x
uu  

where u0=1.0 m/s 
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Show that the flow field satisfies the continuity equation. 

 

General continuity equation   
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Flow satisfies the continuity equation. 

 

Example:  

Water is being added to a storage tank at the rate of 2000 lt/min. At the same time, water 

flows through a 5 cm inside diameter pipe with an average velocity of 18 m/s. The storage 

tank has an inside diameter of 300 cm. Find the rate at which the water level rises or falls.  

 

 

 

GIVEN 

in flow rate 2000 lt/min. 

storage tank diameter 300 cm 

discharge pipe diameter 5 cm 

discharge velocity 18 m/s 

Basic Equation 

Continuity equation 
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

 =  +  =  + 

 

( )outinT VAQ
dt

dh
A −=  
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( )

3 3 2
2

2 2

4

2000 10 (0.05)
18

60 4

3
4

2.8 10

in out

T

m m
m

Q VA s sdh

dt A
m

dh m

dt s





−

−

   
 −    −   = =

  

 
= −   

 
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MOMENTUM EQUATION FOR INERTIAL CONTROL VOLUME 

 

In this section we will develop mathematical formulation of Newton’s Second Law for an 

inertial control volume.  

 

Inertial control volume is the control volumethat is not accelerating relative to a stationary 

frame of reference (inertial control volume). 

 

Recall that Newton’s second law for a system moving relative to an inertial coordinate system 

was 

sys
dt

Pd
F 






=




where  


=

sys

dVP 


 linear mometum, F


total resultant force 

BS FFF


+=  

 

Using the relation between the system and control volume formulations 

 

 +



=





 CSCsys

AdVd
tdt

dN 


 

 

and setting VPN


== and , we obtain 

 

 +



=







 CSCsys

AdVVdV
tdt

Pd 




 

Note: 

) syson

sys

F
dt

Pd 


=






 

Since, in deriving the relation between the system and control volume formulation, the system 

and control volume coincided at to 

 

) ) volumecontrolonsyson FF


=
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Hence, we can write,  

 

 +



=+=

 CSC

BS AdVVdV
t

FFF


   MOMETUM EQUATION 

 

This equation states that the sum of all forces (surface and body forces) acting on a 

nonaccelerating control volume is equal to the sum of the rate of the change of momentum 

inside the control volume and the net rate of efflux of momentum through the control surface. 

 

 −=
A

S AdpF


 surface force due to pressure 




=
C

B AdgF


  body force due to pressure 

 

Sometimes surface force SF


may also include shear force. 

 

The momentum equation is a vector equation. From this vector equation, a scalar component 

in each direction can be written, i.e. 

 

 +



=+=

 CSC

BSx AdVudu
t

FFF
xx


  

 +



=+=

 CSC

BSy AdVvdv
t

FFF
yy


  

 +



=+=

 CSC

BSz AdVwdw
t

FFF
zz


  

 

The momentum equation is usually used to calculate force interactions between a moving 

fluid and solid objects in contact with it. 
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Example:  

Water from a stationary nozzle strikes a flat plate as shown. The velocity of the water leaving 

the nozzle is 15 m/sec. The nozzle area is 0.01 m2. Assuming the water is directed normal to 

the plate; determine the horizontal force on the support. 

 

 

FIND:  Horizontal force Kx = ?  

 

Since the force interaction between the fluid and the solid object is the point of interest, we 

have to use momentum equation. 

 

We must choose a suitable control volume. A number of possible choices are, 

 

  

 

Regardless of our choice of control volume, the result should be the same. 

 

I. Use CI 

 

Momentum equation in x-direction 

 +



=+=

=

 CS

flowSteady

C

BSx AdVudu
t

FFF
xx








0

 

0=
xBF


 No body force in x-direction 
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  

)(
sup

positiveassumedCVon
porttheonforce

x

facerighton
forcepressure

A

facelefton
forcepressure

AS

xAAS

RApApF

RApApF

x

x

+−=

+−=




 

 

NOTE: Left and right faces of the control volume are equal. 

 

xS RF
x

=


 

and 

 ==

1ACS

x AdVuAdVuR


   [No mass crossing top and bottom surfaces, u=0] 

  −=

1

1

A

x dAVuR    {at 1 dAVAdV 1 −=


, since direction of 11   and AdV


are 180 apart.} 

 

111 AVuRx −=      {properties uniform over A1} 

 m
m

m

kgm
Rx 01.0

sec
15999

sec
15

3


























−=  

 kNRx 25.2−=      {Rx acts opposite to positive direction} 

 

Force on the support  kNRK xx 25.2=−=  

 

II. Use C II  

 

Left and right face areas of the control volume are equal and hence this leads to the equation 

directly for C I  

 

III. Use C II  

  

 

Left and right face areas of the control volume are equal.  
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 =
CS

S AdVuF
x




 

for CVII 

   kNdAVuAdVuRApF
AA

xASx
25.2

11

1 −=−==+=  


 

 
 

 kNApRK

kNApR

kNRAp

Axx

Ax

xA

25.2

and

25.2

25.2

+=−=

−−=

−=+

 

 

To determine the net force on the plate, we need take into account pressure (atmospheric) 

force of the right face of the plate. 

 

 kNF

ApApF

ApKF

net

AAnet

Axnet

25.2

25.2

=

−+=

−=
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Example: A metal container, which has a height of 0.6m and an inside cross-sectional area of 

0.1 m2, is placed on a scale. Water flows into the tank at a velocity of 6 m/s through an 

opening at the top with a cross-sectional area of 0.01 m2, flows out the openings on the side 

walls with equal cross-sectional areas. Under steady flow conditions, the height of the water 

in the tank is 0.5 m. The pressure is atmospheric across all openings, and the container weighs 

50 N when it is empty. If the frictional effects are negligible then determine the reading on the 

scale. 

 

AT = 0.1 m2           

V1 = 6 m/s 

A1 = 0.01 m2 

A2 = A3 

h = 0.5 m 

 

Ky = ? 

 

 

The force exerting on the control volume in the y-direction may be found by applying the 

momentum equation in y-direction. 

0

y yS B

C CS

Steady flow

F F v d v V dA
t

 


=


+ =  + 

    

1 2 3
0 0

y yS B

A A A

F F v V dA v V dA v V dA  
= =

+ =  +  +     (1) 

:weight of water

:weight of the tank

yB w t t

w

t

F W W ghA W

W

W

= − − = − −

 (2) 

yS y atmF R p A= −  (3) 
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Substituting (2) and (3) into (1)  

 1 1 1y atm tR p A W ghA v V A − − − = −  

  

v1 = -6 m/s 

 

 

 1 1 1y atm tR v V A p A W ghA = − + + +   force exerted by scale on the control volume. 

 

To find the net force acting on scale, consider the free body diagram of the scale 

 

 

 

ApRK atmyy +−=  

   ApghAWApAvvK atmtatmy ++++−−=  111  

( )  1.05.081.910005001.0610006 ++−−−=yK  

NK y 5.900−=  

 

Note: If no water was flowing in, the reading of the scale would be, 

 1.05.081.9100050 +−= NKy  

 NK y 5.540−=  

Patm 

Ky 

Ry 
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Example: A shallow circular dish has a sharp-edged orifice at its center. A water jet of speed 

V strikes the dish concentrically. If the jet issuing from the orifice and from the surface of the 

dish also has speed V, evaluate the external force needed to hold the dish in place for  

V = 5 m/s, D=100 mm and d=20 mm. 

 

 
 

Assumptions:  

- No body force in x-direction 

- Steady flow 

- Uniform flow in all sections 

- No pressure force 

- V1 = V2 = V3 

 

 

 

 

 

 

Momentum equation in x-direction. 

0

0

x xS B

C CS

Body force

Steady flow

F F u d u V dA
t

 


=

=


+ =  + 

    

     1 1 1 2 2 2 3 3 3xR u V A u V A u V A  = − + +  

 

where 
2 2

1 2 3 1 2 3 1 2, , sin , , ,
4 4

D d
u V u V u V A A A A A

 
= = = − = = = −  

( ) ( )

( )

( )( )

( )( )( )( )

2 2
2 2 2 2 2

2 2 2 2 2

2 2 2

2 2 2

sin
4 4 4

sin
4

1 sin
4

999 5 1 sin 45 0.02 0.1
4

321.45 Force exerted by dish on CV

x

x

x

x

x

D d
R V V V D d

R V D d D d

R V d D

R

R N

  
   


 


 



= − + − −

 = − + − −
 

= + −

= + −

= − 

 

 

Force acting on dish 321.45x xK R N= − =  

Force to hold the dish 321.45in place xK N= − = −  
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BERNOULLI’S EQUATION 

 

Bernoulli’s equation may be developed as a special form of the momentum or energy 

equation. 

 

Here, we will develop it as special case of momentum equation. Consider a steady 

incompressible flow without friction. Apply the control volume equation to the control 

volume shown.  

 

 

 

The control volume chosen is fixed in space and bounded by flow streamlines, and it is thus 

an element of a stream tube. The length of the control volume is ds. 

 

Because the control volume is bounded by streamlines, the flow across bounding surfaces 

occurs at the end sections. 

 

The properties at outlet section are assumed to increase by a differential amount. 

 

Continuity Equation 

 

0=+





 CSC

AdVd
t




  

 flowSteadyd
t C

0=








 

  ( )( )  0=+++− dAAdVVAV sss 
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or 

( )( )dAAdVVAV sss ++= 

 ......................................................................................... (1) 

s-component of the momentum equation 

 

 +



=+

 CS

s

C

ssBsS AdVudu
t

FF




 ........................................................................... (2) 

 

( )( ) ( )


volume
control  theof surface

stream bounding on the
acting force pressure

2
dA

dp
pdAAdpppAF

sS 







++++−=

 

Note: No friction flow, Rs = 0 

 

Then, 

dpdAAdpF
sS

2

1
−−=

 ..................................................................................................... (3) 

The body force component in s-direction is, 

 

( ) ds
dA

AgdgF ssB 







+−=−=

2
sin

 

Note:  

dzds =sin  

 

Therefore,  

dz
dA

AgF
sB 








+−=

2


 ................................................................................................... (4)

 

 

The momentum flux will be 

  ( ) ( )( ) 
  



continuityfrom

ssssss

CS

s dAAdVVdVVAVVAdVu ++++−=   
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From continuity, 

( )( )dAAdVVAV sss ++=   

 

Hence 

( ) ( )( ) sssssss

CS

s AdVVAVdVVAVVAdVu  =++−=


 .............................................. (5) 

 

Substituing Eq. (3), (4), and (5) into (2) 

 

ss AdVVgdAdzgAdzdpdAAdp  =−−−−




00

2

1

2

1
 

 

Dividing by A and noting that products of differentials are negligible compared to the 

remaining terms, we obtain 

 

ssdVVgdz
dp

=−−


   

 

or 

 














=−−

2

2
sV

dgdz
dp


 

 

or 

 

0
2

2

=+












+ gdz

V
d

dp s


 

 

For incompressible flow ( = constant), this equation can be integrated to obtain 

 

2

constant
2

sVp
gz


+ + =  

 



94 

Dropping the subscript s, 

 

2

constant
2

Vp
gz


+ + =  BERNOULLI EQUATION 

 

This equation subject to restrictions: 

1. Steady flow 

2. No friction 

3. Flow along a streamline 

4. Incompressible flow 

 

Example: 

 

 

 

Water at 10C enters the horizontal venturi tube, shown in the figure, with a uniform and 

steady velocity of 2.0 m/s and an inlet pressure of 150 kPa. Find the pressure at the throat, 2, 

where d = 3.0 cm and at the exit where D = 6.0 cm. 

 

Find: P2 = ? and P3 = ? 

 

Assumptions: 

 

- Incompressible flow 

- Negligible friction 

- Steady flow 

 

V1 

P1 

V1 

1 
P2 

V2 

2 

P3 

V3 

3 

d D D 
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Solution: 

 

We assume constant density and uniform velocity over planes 1 and 2.  

 

Applying the continuity equation between plane 1 and 2, we obtain 

 

2

1
1 1 2 2 2 1 1

2

A D
V A V A V V V

A d

   
=  = =   

  
 

 

Applying Bernoulli equation to a streamline connecting cross-sections 1 and 2, 

 

2

2
22

1

2
11

22
gz

Vp
gz

Vp
++=++


 

 

Assuming that z1 = z2 and solving for p2, we obtain  

( )2
2

2
112

2
VVpp −+=


 

Substituting 

2

2 1

D
V V

d

 
=  

 
 

4

2

2 1 11
2

D
p p V

d

   
= + −  

   

 

 

4 2
3

3

2 2

3 3

2 2 2

3

2 2

1000
6[ ]

150 10 1 2
2 3[ ]

150 10 30 10

120 10 120

kg

N cm mm
p

m cm s

N N
p

m m

N
p kPa

m

 
          =  + −       

        

   
=  −    

   

 
=  = 

 

 

Similarly, applying the continuity equation and Bernoulli equation between planes 1 and 3, 

we can obtain p3. 

1 1 3 3

1 3

1 3

V A V A
V V

A A

= 
 =

= 
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 

22

3 31 1
1 3

1 3

31
3 1

2 2

150

p Vp V
gz gz

z z

pp
p p kPa

 

 

+ + = + +



=  = =

 

 

 

Because, we assumed the water is 

inviscid, the static pressure drop (p1-

p2) is fully recovered in the diffuser 

by decreasing the fluid velocity to 

V1. However, full pressure recovery 

would not occur in a real venturi 

tube. Viscous effects would produce 

a net pressure drop between 1 and 3. 

 

 
Example: A city has a fire truck whose pump and hose can deliver 60 lt/sec with nozzle 

velocity of 36 m/sec. The tallest building in the city is 30 m high. The firefighters hold the 

nozzle at an angle of 75 from the ground. Find the minimum distance the firefighters must 

stand from the building to put out a fire on the roof without the aid of a ladder. The 

firefighters hold the hose 1 m above the ground. Assume that the water velocity is not 

reduced by air resistance. 
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Given:     Find:  

Q = 60 lt/s    L = ? 

V1 = 36 m/s 

H = 30 m 

 = 75 

H1 = 1 m 

 

Assumptions: 

- Steady flow 

- There is no friction 

- Incompressible flow 

 

The slope of the water jet is x

z

Vdx

dz V
=    

[NOTE: The centerline of the water jet is a streakline, pathline and a streamline] 

 

Writing Bernoulli equation between points 1 and any point on jet 

 
2 2

1 1
1

2 2

p V p V
gz gz

 
+ + = + +  

 

1NOTE:at any point atmp p p= =  

Taking 1 0z =  and solving for V. 

 
2 2

1 2V V gz= − , 2 30 1 29[ ]z m= − =   

 

With negligible air resistance, there is no force on the fluid in x-direction. Hence, 

 

( )
2

1 1

2 2 2 2

1

2 2 2 2

1 1

2 2 2

1

sin

2 2 2

1

cos

2

cos 2

1 cos 2

sin 2

x x

x z

z

z

z

V V V

V V V V gz

V V V gz

V V gz

V V gz











= =

 = + = −

+ = −

= − −

= −

 

 

 The jet trajectory equation  

( )
1

1/2
2 2

1

cos

sin 2

x

z

V Vdx

dz V V gz




= =

−
 

 

multiplying by dz and integrating gives 

 

 

2 2

1 1

1

cos sin 2
cos

V V gz
x V

g

 


− −
=  
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rearrangement gives, 

 

 
2

1

2 2

1

sin 2 2
1 1

2 sin

V gz
x

g V





 
= − −  

 

 

 

substituting, z = 29 m,  = 75, V1 = 36 m/s 

 

 

2

2 2

36 sin150 2(9.81)(29)
1 1

2(9.81) 36 sin 75

9 [ ]

x

x m

 
= − −  

 


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MOMENT OF MOMENTUM  

(The Angular Momentum Equation)  
 

To derive the moment of momentum equation we use the similar method that we use for 

derivation of continuity and momentum equation, i.e., first we write moment of momentum 

for a system, then obtain an equation for the control volume.  

 

Moment of momentum for a system is 

 

sys

dH
T

dt


= 


        (1) 

 

where 
:  Total torque exerted on the system by its surrounding

:  Angular momentum of the system

T

H
 

 

( ) ( )M sys sys

H r Vdm r V d


=  =   
     (2)  

 

 
The position vector r , locates each mass and or volume element of the system with respect to 

the coordinate system. 

 

 
 

The torque T  applied to a system may be written 

 

 

Torque due to Torque applied
surface forces by a shaft

Torque due to 
body forces

s shaft

M sys

T r F r gdm T=  +  +       (3) 
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The relation between the system and fixed control volume formulation is 

 

 +



=





 CSCsys

AdVd
tdt

dN 


      (4) 

sys

M sys sys

N dm d 


= =     

and setting andN H r V= =  , then 

 

C CSsys

dH
r V d r V V dA

dt t
 



 
=  +  


 

     (5) 

Combining Eqs. (1), (3), and (5), we obtain 

Rate of change of angular momentumTorque acting on control volume

s shaft

M sys C CS

r F r g d T r V d r V V dA
t

  



 +   + =   +  

  
 

 

s shaft

M sys C CS

r F r g d T r V d r V V dA
t

  



 +   + =   +  

  
 

Moment of momentum equation for an inertial control volume 

 

 

Example: Consider the pipe mounted on a wall shown in figure. The pipe inside diameter is 

20 cm, and both pipe bends are 90. Water enters the pipe at the base and exits at the open 

end with a speed of 10 m/s. Calculate the torsional moment and the bending moment at 

the base of the pipe. Neglect the weight of water and pipe.

  

Assumptions:  

- Incompresible flow 

- Flow is uniform at all cross-

sections. 

- Steady flow 

- Negligible  body force 

 

Find:  

- Torsional moment Ty =? 

- Bending moment Tx =? 
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Writing the moment of momentum equation 

00

s shaft

M sys C CS

steadynegligible

r F r g d T r V d r V V dA
t

  


==


 +   + =   +  

  
 

( ) ( )
1 2

1 1 1 1 2 2 2 1 1x x y

A A

r R p Ai r p A k T i T j r V V dA r V V dA  + +  + + =   +   
 

 

   
1 2

1 2 2

0, 0.75 1 0.5 [ ]

10 / , 10 / , 0gage

r r i j k m

V j m s V k m s p

= = + −

= = − =
 

 

( ) ( )( )

 

2

0.75 1 0.5 10 1000 10
4

2356 3142

x y

x y

D
T i T j i j k k

T i T j j i Nm


+ = + −  −

+ = −

 

 

 
 

Bending moment 3142
Moment applied to the control volume by the base

Torsionalmoment 2356

x

y

T Nm

T Nm

= − 


=   

Moment acting on the base 

)  

)  

3142

2356

x xB

y yB

T T Nm

T T Nm

= − =

= − = −
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APPLICATION TO TURBOMACHINERY  
 

The equation of moment of momentum is used for analysis of rotating machinery. A 

turbomachine is a device that uses a moving rotor, carrying a set of blades or vanes, to 

transfer work to or from a moving stream of fluid. If the work is done on the fluid by the 

rotor, the machine is called a pump or compressor. If the fluid delivers work to rotor, the 

machine is called a turbine. 
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Turbomachines are classified as axial flow, radial flow or mixed flow depending on the 

direction of fluid motion with respect to the rotor’s axis of rotation as the fluid passes over the 

blades. In an axial-flow rotor, the fluid maintains an essentially constant radial position as it 

flows from rotor inlet and to rotor outlet. In a radial-flow rotor, the fluid moves primarily 

radially from rotor inlet to rotor outlet although fluid may be moving in the axial direction at 

the machine inlet or outlet. In the mixed-flow rotor, the fluid has both axial and radial velocity 

components as it passes through the rotor.  

 

For turbomachinery analysis, it is convenient to choose a fixed control volume enclosing the 

rotor for analysis of torque reaction. 
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The angle of the absolute fluid velocity  is measured from the normal. 

Blade angles  are measured relative to the circumferential direction. 
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As a first approximation, torques due to surface forces may be ignored. The torques due 

to body forces may be neglected by symmetry. Then for a steady flow, moment of 

momentum equation becomes 

 

shaft

CS inlet outlet

T r V V dA r V V dA r V V dA  =   =   +      

 

Taking the coordinate system in such a way that z-axis is aligned with the axis of rotation of 

the machine, and assuming that at the rotor inlet and outlet flow is uniform, we get 

 

( )2 2 1 1shaft t tT r V rV mk= −   

 

or in scalar form 

 

 ( )2 2 1 1shaft t tT r V rV m= −   EULER TURBINE RQUATION 

 

 

where 1tV and 2tV are tangential components of the absolute fluid velocity crossing the 

control surface at inlet and outlet, respectively. 

 

 

The rate of work done on a turbomachinery rotor is 

 

( )2 2 1 1

in shaft shaft shaft

in t t

W T k T k T

W r V rV m

  



=  =  =

= −
  

 

NOTE: r U = tangential velocity of the rotor.  

 

Dividing both sides by mg  , we obtain head added to the flow. 
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( )2 2 1 1

1
[ ]in

t t

W
h U V U V m

mg g
 = = −  

 

 

The above equation suggest that fluid velocity at inlet and outlet and also rotor velocity 

should be defined clearly. It is useful to develop velocity polygons for the inlet and outlet 

flows. 

 

 

 

 

Blade angles  are measured relative to the circumferential direction. 

 

 

Velocity polygon at inlet 
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At the inlet the absolute velocity of the fluid 1V  is equal to vectoral sum of the fluid velocity 

with respect to blade and the tangential velocity of the rotor, i.e. 

 

1 1 1rbV U V= +  

 

1nV is the normal component of the fluid velocity which is also normal to the flow area.  

 

The angle of the absolute fluid velocity  is measured from the normal.  

 

Note: 1 1n rbV V=  

 

 

Velocity polygon at inlet  

A similar velocity polygon can also be developed for the outlet such that 

 

2 2 2rbV V U= +  
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The inlet and outlet velocity polygons provide all the information required to calculate 

the torque or power absorbed or delivered by the impeller. The resulting values represent 

the performance of a turbomachine under idealized conditions at the design operating point; 

since we have assumed that all flows are uniform and that they enter and leave the rotor 

tangent to blades. 

 

 

Example: The axial-flow hydraulic turbine has a water flow rate of 75 m3/s, an outer radius  

R = 5.0 m, and a blade height h = 0.5 m. Assume uniform properties and velocities over both 

the inlet and the outlet. The water temperature is 20C, and the turbine rotates at 60 rpm. The 

relative velocities Vr1 and Vr2 make angles of 30 and 10, respectively, with the normal to 

the flow area. Find the output torque and power developed by the turbine. 

 

 

 

Given: 

Q = 75 m3/s 

R = 5.0 m  

h = 0.5 m 

water temperature 20,  = 998 kg/m3 

Find: T = ?, W  = ? 
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( )2 2 1 1

(998)(9.81) 74850 [ / ]

t tT m R V RV

m g kg s

= −

= = =
 

 

For an axial flow machine where the blade height h is small compared to the diameter, an 

average radius may be utilized. 

 

1 2

1 1
5 0.5 4.75[ ]

2 2
R R R h m=  − = − =   

 

The tangential components of the absolute velocity can be calculated from the velocity 

triangles, 

 

1 1 1rbV U V= +   

 
1 1

1

60(2 )
4.75[ ] [ / sec]

60

29.85[ / ]

U R m rad

U m s


= =

=

 

 
1 2 2 2 2 2 2

1 1 2 1 2

1

75

( ) (5.0 4.5 )

5.03[ / ]

n

n

Q Q Q
V

A R R R R

V m s

   
= = = =

− − −

=

 

 

From the velocity triangle, 

( )

( ) ( )

1 1 1 1 1 1 1

1
1 1 1 1 1 11

1

cos 180 cos

sin 180 sin
sin

t rb rb

n
n n rb rb rbrb

V U V U V

V
V V V V V

 

 


= + − = −

= = − =  =
 

1 1 1

1

1

1

tan

5.03
29.85 32.75[ / ]

tan120

t n

t

V U V

V m s


 = −

= − =

 

 

Similarly, for the outlet 
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( )

2

1 2

2 2

2 1

100

5.03[ / ]

29.85[ / ]

n n

n n rb

V V m s

V V

U U m s

 = 

= =

=

= =

 

 

 

( )

( ) ( )

2 2 2 2 2 2 2

2
2 2 1 2 2 22

2

cos cos

sin sin
sin

t rb rb

n
n n rb rb rbrb

V U V U V

V
V V V V V

  

  


= + − = −

= = − =  =
 

2 2 2

2

1

1

tan

5.03
29.85 30.74[ / ]

tan100

t n

t

V U V

V m s


 = −

= − =

 

Hence, 

( )  2 2 1 1

5

74850 [ / ] 4.75[ ]30.74[ / ] 4.75[ ]32.75[ / ]

7.15 10 [ ]

t tT m R V RV kg s m m s m m s

T Nm

= − = −

= − 
 

 

The significance of the negative sign is that the torque is in direction opposite that assumed to 

be positive. (T is load torque that resists rotation of the turbine.) 

 

The magnitude is   57.15 10 [ ]T Nm=   

 

The power output  

 

5

6

60(2 )
(7.15 10 )

60

4.49 10 [ / ]

or

4490[ ]

W T

W Nm s

W kW


= = 

= 

=

 

 



111 

 
Example: Water at 0.6 m3/min enters a mixed-flow pump impeller axially through a 5 cm 

diameter inlet. The inlet velocity is axial and uniform. The outlet diameter of the impeller is 

10 cm. Flow leaves he impeller at a velocity of 3 m/s relative to the radial blades. The 

impeller speed is 3450 rpm. Determine the impeller exit width b, the torque input to the 

impeller and the horsepower supplied. 

 

 

 

Assumptions: 

- Neglect torques due to body and surface forces 

- Steady flow 

- Uniform flow at the inlet and outlet sections 

- Incompressible flow 

 

Find: 

b2 = ? 

?inW =   

 

Continuity equation  

0

0
C CS

d V dA
t

 


=


 +  =

    
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   

   

 ( )
 

 

1 2

1 1 2 2

2

1 1 2 2 2

2 2 2

3

2

2 2

2

0

0

0

02

2

0.6

60
0.0106

2
2 0.1 3

0.0106

CS

rb

rb

rb

V dA

V dA V dA

V A V A

V R V R b

QV R b

m

sQ
mb

mR V
m

s

mb



 

 

   

 




 =

 +  =

− + =

− + + =

=

 
 
  = = =

  
  

  

=



 

 

 

Tshaft = ? 

 

From Euler turbine equation 

( )

( ) ( )

2 2 1 1

1 2 2 2

22

2 2 2

0,

2 (3450) 0.6
0.05 1000

60 60

9.03[ ]

shaft t t

t t

shaft

shaft

T R V RV m

V V U R

T R R m R Q

T Nm




 

= −

= = =

 = = =

=

 

 

?inW =   

( )2 3450
(9.03)

60

3262.4[ ]

3262.4
4.375[ ]

745.7

W T

W W

W HP


= =

=

= =

 

 

NOTE: Vrb2 is normal to the 

flow area. 
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 THE FIRST LAW OF THERMODYNAMICS  

(Energy Equation for a Control Volume)  

 

We obtain the general energy equation by combining the first law of thermodynamics and the 

transport theorem. For a system, conservation of energy can be written as, 

 

Net rate of transfer of Rate of change of

energy to the system the energy of a system

   
=   

   
 

 

with mathematical terms 

 

system

dE
Q W

dt


− = 


          (1) 

NOTE: Heat and work are both energies. In general energy can be classified in two groups 

 

1. Mechanical Energy     - Chemical energy 

 - Work      - Nuclear energy  

 - Kinetic energy 

 - Potential energy 

2. Thermal Energy 

 - Heat 

 - Internal energy 

 

  

Mechanical energies are associated with force and motion. Thermal energies are associated 

with temperature, molecular structure and heat transfer.  
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( )

sys

mass sys
sys

E edm e d


= =  

 

and 
2

2

v
e u gz= + +          (2) 

 

The system and control volume formulations are related by Reynolds transport theorem 

 

sys C CS

dN
d V dA

dt t
 




=  + 


   

 

To derive energy equation for a control volume, we set N=E and η=e, then 

 

sys C CS

dE
e d e V dA

dt t
 




=  + 


        ……………….(3)  

 

Note that in deriving transport equation, the system and control volume coincided at t = t0, 

hence we can write 

 

system control volume
Q W Q W   − = −            (4) 

 

Substituting Eqs. (3) and (4) into Eq. (1), we obtain 

 

C CS

Q W e d e V dA
t

 



− = + 

          (5) 

? ?Q W= =  

 

Rate of Work Done on a Control Volume 

 

 
 

If we neglect electrical and other equivalent forms of work, three types of work might be done 

on or by the fluid inside the control volume as shown in the figure above  
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1. Shaft Work (
sW ): is transmitted by a rotating shaft such as pump drive shaft or a turbine 

output shaft that is “cut” by the control surface. This work is done by shear stresses in the 

“cut” shaft, so it is somewhat similar to shear work. Shaft work is sometimes called ‘pump 

work’ or ‘turbine work’ if these devices are present.  

 

2. Work Done on the Control Surface by Normal Stresses (Pressure Work):  

Pressure work is done by fluid pressure acting on the boundaries of the control volume. 

 

The work done by force F  moved through distance ds is 

W F ds =    

Rate of work  
0 0

lim lim
t t

W F ds
W F V

t t



 →  →


= = = 

 
  

 

The rate of work done on an element of area dA   of the control surface by normal stress is 

given by 

nndF V dA V =   

 

The total rate of work done on the entire surface by normal stresses is given by (Since the 

work out across the boundaries of the control volume is the negative of the work done on the 

control volume) 

 

:

normal nn nn

CS CS

nn

W dA V V dA

Note p

 



= −  = − 

= −

 
 

 

Hence, normal

CS

W pdA V=           (6) 

 

3. Shear Work (
shearW ):  

Shear work is done by shear stresses in the fluid acting on boundaries of the control volume. 

Similar to normal work, 

  

 shear

CS

W VdA= −   

Shear force acting on an area element dA  is 

  

 
: shear stress acting in plane of dA

dF dA



=
  

 

 

We often choose a control volume with control surfaces lying adjacent to solid boundaries, 

and with control surfaces cutting through inlet and outlet ports. Hence, the shear work can be 

expressed as two terms 

 

( ( )
)

shear

A solid A ports
surface

W VdA VdA = −  −    
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At solid surfaces 0V = , so the first term is zero (for a fixed control volume) 

 

 

The last term can be made zero by proper choice of control surfaces. If we choose a control 

surface that cuts across each port perpendicular to the flow, then dA is parallel to V and 

hence, τ is perpendicular to V. Thus, for control surfaces perpendicular to V 

 0V  =   and 0shearW =  

 

Hence, energy equation for a control volume becomes 

 

2

where

,
2

s shear other

CS C CS

Q W pV dA W W e d e V dA
t

v
e u gz u p h

 






− −  − − =  + 



= + + + =

  

 

Substituting 

CS CS

pV dA p V dA =    

 

( )s shear other

C CS

Q W W W e d e p V dA
t

  



− − − = + + 

    

 

 

Note: 
shearW is zero if there is no control surface that lies within a moving fluid 
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Example: A compressor compresses 6 kg/s of air from inlet conditions T1 = 300 K and P1 = 

90 kPa to discharge conditions T2 = 390 K and P2 = 310 kPa. The air in the inlet pipe has a 

uniform velocity profile. The air in the discharge pipe has a parabolic velocity profile given 

by  

2

max

2

1
r

u u
R

  
 = − 
   

  

where R2 is the inside radius of the of the discharge pipe. Elevation changes are negligible, 

and the internal energy change of the air is given by  

 

 ( )2 1 2 1vu u C T T− = −   

 

Assuming steady flow and negligible heat transfer, find the power required to drive the 

compressor. 

 

 
 

 

Assumptions:  

- Elevation changes are negligible 

- Steady flow  

- Heat transfer is negligible 

 

Basic equation:Energy equation: 

( )s shear other

C CS

Q W W W e d e p V dA
t

  



− − − = + + 

    

 
Simplifying the energy equation to the assumptions we obtain, 

( )
0 0 0

0

s shear other

C CS

Q W W W e d e p V dA
t

  
= = =

=


− − − = + + 

    

( )
2

0
2

s

CS

V
W e p V dA e u gz 

=

= − +  = + +  
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2 2 2

2 2 2
in out

s

CS A A

V V V
W u p V dA u p V dA u p V dA     

          
= − + +  = − + +  − + +           

          
    

 

Assuming that temperature and pressure are uniform at the inlet and outlet, we get 

 
2 2 2

2 2 2
in out

s

CS A A

V V V
W u p V dA u p V dA u p V dA     

          
= − + +  = − + +  − + +           

          
    

   
2 2

1
1 1 1 1 1

2 2
out out

s

A A

V V
W u p V A u p V dA V dA    

  
= − + + − − +  −   

  
   

   
2 2

1
1 1 1 1 1

2 2
out out

s

A A

V V
W u p V A u p V dA V dA    

  
= − + + − − +  −   

  
   

( ) ( ) 
2 3

1
1 1 1 2 2 2 2 2

2 2
out

s

A

V V
W u p m u p V A dA   

 
= − + + − + + − 

 
  

 

  
2 2

3
2

3 3 23 3

max 2 max 2

20 0

2 2 1
2 2 2 8

out

R R

A

u u RV V r
dA rdr rdr

R


    

  
 = = − = 
   

    

 

We relate 
maxu to the average velocity by, 

2
2

2 2 2 2 2 2 max

20

2 2max
2 2 2 2 2 max 2

1 2

2
2

R
r

m V A u dA u rdr
R

u
V R R u V

   

   

  
 = = = −  
   

=  =

 
 

( )
3 23 23

2 2 2 3 2 22 max 2
2 2 2 2

2

2 8 8
outA

V Ru RV
dA V R mV


 = = = =  

 

 

( ) ( )
2

2 1
2 1 2 2 1 1 2

2
s

V
W m u u m p p m V 

 
= − − − − − − 

 
 

 

Assuming air is an ideal gas,  

( )

( )

2 1 2 1

2 2 1 2 2 1

vu u C T T

p p R T T 

− = −

− = −
  

 

 Also,  
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 

2

2 2 2
2

2 2 2
2

2

2
2

2

6 287 390

11

310000 0.196

m
V

A mRT
V

p p A

RT

kg Nm
K

s kgK m
V

N s
m

m






= 


 =

=


  
  

    = =        
 

 

 
1

1
21 1 1 1

2

6 287 300

29.3

90000 0.196

kg Nm
K

s kgKmRTm m
V

NA p A s
m

m



  
  

    = = = =        
 

 

 

Substituting back into expression for 
sW  

( ) ( )
2

2 1
2 1 2 2 1 1 2

2
s

V
W m u u m p p m V 

 
= − − − − − − 

 
 

( )  ( )  ( )

( )

2 2

internal energy flow work
"mechanical
pressure enrgy"

6 720 390 300 6 2807 390 300 6 11.2 29.3

388800 155000 1800

388800 155000 1

s

s

s

kg j kg j kg
W K K

s kgK s kgK s

j
W

s

W

        
= − − − − − −        

        

 
= − + −  

 

= − + −

 

kinetic energy

800

542s

j

s

W kW

 
 

  
    

 
 

= −

 

Note that a large portion of the compressor input work appears as an increase in the thermal 

(internal) energy and the mechanical “pressure energy” of this comnpressible fluid. The 

kinetic energy change is much smaller.  

 
Example: Turbines convert the energy contained within a fluid into mechanical energy or 

shaft work. A turbine is installed in a dam as shown in the figure. Water is permitted to flow 

through a passage way to the turbine after which the water drains downstream. For the data 

given in the figure, determine the power available to the turbine when the discharge at the 

outlet is 30 m3/s.   
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Assumptions:  

• Steady flow  

• Incompressible flow  

• No heat transfer  

• Internal energy change can be neglected  

 

Basic equation:Energy equation: 

( )s shear other

C CS

Q W W W e d e p V dA
t

  



− − − = + + 

    

 

With these assumptions, energy equation becomes 

 

( )

( ) ( )
1 2

s

CS

s

A A

W e p V dA

W e p V dA e p V dA

 

   

= − + 

= − +  − + 



 
 

 
2

2

V
e u gz= + +  assuming also flow is uniform 
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( )  ( ) 

( )( ) ( )

( ) ( ) ( )

1 2

1 2

2 2

2 1
2 2 2 2 1 1 1 1

2 2

2 1
2 1 2 2 1 1 2 1

2 2

2

sW e p VA e p VA

e p m e p m

V V
u gz p u gz p m

V V
u u p p g z z m

   

 

 

 

   = − + − − +   

= − + − − +      

    
= − + + + − + + +    

    

 −
= − − + + − + − 

 

 

   

  Note: 2 1 0 negligible internal energy change.u u−   

 

1 2   incompressible flow =  

 

( )
2 2

2 1
2 1

2 2
s

V V
W m g z z

 
= − − + − 

 
 

 

 

1V  can be found using Bernoulli equation, between free surface and nozzle exit 

 

( )

2 2

1 1
1

1

2 2

1 1
1 1

2 2

0

2 2

A A
A

A atm

A

A A

p V p V
gz gz

p p p

V

V V
gz gz g z z

 
+ + = + +

 =



= +  = −

 

 

( ) ( )

( )

2

2
1 2 1

2

2
2

2

2

s A

s A

V
W m g z z g z z

V
W m g z z

 
= − − − + − 

 

 
= − − − 

 

 

  

 From continuity equation 

 
( )

1 1 2 2 2 2

2

30
5.24

2.7

4

Q m
Q V A V A V

A s


 
= =  = = =  

 
  

 

Substituting these values into energy equation, 
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( )

( )

( )( ) ( )

 

2

2
2

2

2
2

2

2

2

5.24
1000 30 9.81 20 6

2

3708336 3.7 plus sign indicates that work is done by the system.

s A

s A

s

s

V
W m g z z

V
W Q g z z

W

Nm
W MW

s



 
= − − − 

 

 
= − − − 

 

 
= − − − 

 

 
= +  

 

 

 

 

Average Properties and Velocities  
 

Usually, the uniform flow assumption is only an approximation and we use average velocities 

and property values to calculate flow of energy at various inlet and outlet planes. For accurate 

calculations, we must carefully define the averages so that they truly represent associated 

energy flows. In most cases, appropriate average values of u, p,  and z are readily apparent 

because these properties are often closely uniform across the section. However, determination 

of average velocity and hence kinetic energy flux requires a careful attention. 

 

 

Average Velocity is defined as A

V dA

V
A



=


  

 

 

Average Kinetic Energy  

Since velocity is usually non-uniform, representing the kinetic energy flux in terms of 

uniform velocity slightly more complicated. 

 
2

2
k

A

V
E V dA=   

 

 

Since velocity is not uniform, 
2

2
k

V
E VA  

 

hence, a kinetic energy correction factor  is defined by  

 

 

3

3

2

2

V
dA

V
A






=


 

 

The true kinetic energy flux across a plane is  31

2
kE V A 

 
=  

 
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For flow in a circular pipe,  ranges from 2 for fully developed laminar flow to about 1.05 for 

fully developed turbulent flow. 
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INTERNAL INCOMPRESSIBLE VISCOUS FLOW  
 

Energy Equation for a Flow in a Pipe  
 

Assumptions  

1. No shaft work  

2. Incompressible flow  

3. Steady flow  

4. Internal energy and pressure 

are uniform at cross sections 1 

and 2 

 

 

 

 

 

 

 

 

( )
0 0 0

0

2

2

s shear other

C CS

Q W W W e d e p V dA
t

V
e u gz

  
= = =

=


− − − =  + + 



= + +

 

 

 

Considering, u, p and  are uniform over inlet and outlet cross-sections, we can write 

 

( ) ( )
2 1

2 2

2 1 2 1
2 1 2 1 2 2 1 1

2 2
A A

p p V V
Q m u u m m z z V dA V dA 

 

 
= − + − + − + − 

 
   

 
Note: At cross-sections 1 and 2, velocity profiles are non-uniform. However, integrals in the 

above equation can be expressed in terms of average velocity and kinetic energy correction 

factor, i.e. 

 

 

2

2 2 2

2 2 2
A

V V V
VdA VA m   = =  

 

Therefore, energy equation becomes, 

 

( ) ( )
2 2

2 1 2 1
2 1 2 1 2 1

2 2

p p V V
Q m u u m m z z m  

 

  
= − + − + − + −  

   
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dividing by mass flow rate and rearranging, we get 

 
2 2

1 1 2 2 2 1
1 1 2 2

2 2

  heat transfer rate per unit mass of moving fluid.

p V p V u u Q
z z

g g g g m

Q

m


 

  

    −
+ + = + + + −   

   

 

 

 
For incompressible flow (combining the first and the second law of thermodynamics), 

 

 
2 1fgh u u q= − −  

 

 
Here hf represents the loss of potential to perform useful work. It shows us that the internal 

energy (and hence temperature) of an incompressible fluid can be increased by two ways: heat 

transfer to the fluid and friction. Only one effect can cause an internal energy decrease; 

namely heat transfer from fluid, as ghf cannot be negative. 

 

 
2 2

1 1 2 2
1 1 2 2

2 2
f

p V p V
z z h

g g
 

 

   
+ + = + + +   

   
 EXTENDED BERNOULLI EQUATION 

 

hf is called head loss 

 

Example: 

 

 
An incompressible viscous fluid flows between two horizontal parallel plates as shown. The 

plates are spaced 0.5 cm apart and are very wide perpendicular to page. Flow is laminar and 

velocity profile at any cross section is given by, 
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22

1
2

Y P y
u

L Y

    
= − −    

     

  

where P is the pressure change that occurs in length L. Calculate average mechanical energy 

loss hf between the pressure gages. Then show that mechanical energy loss also satisfies the 

equations 

 
2

2

    and    Re   where Re
2

CV
f f

u
d

y L V VY
gh gh

m Y






 
 

    
= = =  

  


  

 

 

Using the energy equation (extended Bernoulli equation) 

 
2 2

1 1 2 2
1 1 2 2

1 2

2 2
f

p V p V
z z h

g g

z z

 
 

   
+ + = + + +   

   

=

 

 Note: Velocity profiles are identical. 

 

( )
 

1 2

1 2

1000 0
0.119

850 9.81

1000 0
1.18

850

f

f

f

p p
h

g

h m

p p j
gh

kg





−
 =

−
= =

 − −
= = =  

 

  

 
22

1
2

Y P y
u

L Y

    
= − −    

     

 

u y P

y L

 
=


 

 
2 2 2

22
20

0

2

2 3

Y

Y

CV

u y P P
d WLdy L

y L Y L PL
y dy

m V YW VY V L

 


  

                 = = =  
 

 
  

 

 

  

22

2
00

max

2 12
2 1 2

2 2 3 3

YY Y P y
dyudy

L Y Y P
V u

Y Y L





    
− −    

          = = = − =  
  


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2

1 21CV
f

u
d

y P PP
L gh

m L



 



 
 

 −  
= − = = 

 

  

 

 

 

CLASSIFYING THE FLOW IN A PIPE OR DUCT  

 
Laminar and Turbulent Flow  

 

If the flow in a pipe is laminar, the fluid moves along smooth streamlines.  

 

If the flow is turbulent, a rather violent mixing of the fluid occurs, and the fluid velocity at a 

point varies randomly with time.  

 

The difference between laminar and turbulent flows were classified by Osborne Reynolds in 

1883. Reynolds performed a series of experiments. 

 

 
 
Pipe-flow transition experiment. (a) laminar flow. (b) High ReD, turbulent flow. (c) Spark photograph 

of turbulent flow condition. (After O. Reynolds, an experimental investigation of the circumstances 

which determine whether the motion of water shall be direct or sinuous and of the law of resistance in 

parallel channels, Phil. Trans. Roy. Soc., London, A174:935–982, 1883) 
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Reynolds’ experiments showed that the nature of the pipe flow depends on the Reynolds 

number, 

  

 Re
Vd


=  

 

 

Developing and Fully Developed Flow  
 

The flow in a constant area duct or pipe is said to be fully developed if the shape of the 

velocity profile is the same at all cross sections. 

 

 
The length Le is called entrance length or the developing length. 

 

( )

( )
1 6

Re

0.06Re laminar flow

4.4 Re turbulent flow

e

e

e

L
f

d

L

d

L

d

=





  

 


