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ME302 FLUID MECHANICS II 
 

In ME301 Fluid Mechanics I course, we developed the basic equations in integral form for a 

control volume. The integral equations are particularly useful when we are interested in the 

gross behavior of a flow and its effect on various devices. However, the integral approach does 

not enable to us to obtain detailed point by point knowledge of the flow field. 

 

To obtain this detailed knowledge, we must apply the equations of fluid motion in differential 

form. 

 

CONSERVATION OF MASS (CONTINUITY EQUATION) 
 

 

The application of the principle of conservation of mass to a fluid flow yields an equation which 

is referred as the continuity equation. We shall derive the differential equation for mass in 

rectangular and in cylindrical coordinates. 

 

Rectangular Coordinate System 

 

The differential form of the continuity equation may 

be obtained by applying the principle of conservation 

of mass to an infinitesimal control volume.  

 

 

The sides of the control volume are dx, dy, and dz. The density at the center, O, of the control 

volume is  and the velocity is V uı vj wk= + + . The values of the mass fluxes at each of six 

faces of the control surface may be obtained by using a Taylor series expansion of the mass 

fluxes about point O. For example, at the right face,  

 

)
22

2
2

1

2 2! 2
dx

x

dx dx

x x

 
 

+

     
= + + +    

     
  

 

Neglecting higher order terms, we can write  
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and similarly, 
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The corresponding terms at the left face are 
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A word statement of conservation of mass is  

 

 

Net rate of mass flux out Rate change of mass 
0

through the control surface inside the control volume

   
+ =   

   
  

0
CS C

V dA d
t

 



 +  =

   

 

To evaluate the first term in this equation, we must evaluate 
CS

V dA  . The mass flux 

through each of six faces are shown in Table below. 
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Table. Mass flux through the control surface of a rectangular differential control volume 

 

 
 

 

The net rate of mass out through control surface is  

 

  
u v w

dxdydz
x y z

     
+ + 

   
 

 

The rate of change of mass inside the control volume is given by  
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  dxdydz
t




  

 

Therefore, the continuity equation in rectangular coordinate is 

 

  
0

u v w

x y z t

      
+ + + =

     
 

Since, the vector operator, , in rectangular coordinates is given by  

 

  

0

ı j k
x y z

V
t




  
 = + +

  


  + =



 

 

Two special cases, the continuity equation may be simplified. 

 

1) For an incompressible flow, the density is constant, the continuity equation becomes, 

 

0 0
u v w

V
x y z

  
 = + + =

  
 

 

2) For a steady flow, the partial derivatives with respect to time are zero, that is 0
t


=


. 

Then, 

 

( ) 0 0
u v w

V
x y z

  


  
 = + + =

  
 

 

Example: For a fluid flow in xy plane, the velocity component in the y direction is given by   
2 2 2v y x y= − − . 

 

a) Determine a possible velocity component in the x direction for steady flow of an 

incompressible fluid. How many possible x components are there? 

b) Is the determined velocity component in the x direction also valid for unsteady flow of 

an incompressible fluid? 

 

Basic equation: 0V
t





 + =


 

a) For steady incompressible flow 0V =  

 

For two-dimensional flow  

0
u v

x y

 
+ =

 
      or 

2 2
u v

y
x y

 
= − = − +

 
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Integrating the equation with respect to x yields, 

  
    2 2 ( )u xy x f y= − + +   

 

Since, any function f(y) is allowable, the number of expressions for u to satisfy the differential 

continuity equation under given conditions is infinity. 

 

b) Whether the flow is steady or not, the continuity equation for incompressible flow is 

0V = . Therefore, the velocity component in the x direction is also valid for 

unsteady flow of an incompressible fluid. 

 

 

Example: A compressible flow field is described by  ( ) ktV axı bxyj e −= −   

Determine the rate of change of the density at point x = 3 m, y = 2 m and z = 2 m for t = 0. 

 

Basic equation: 0V
t





 + =


 

 

( )

( ) ( )

( ) ( )0

3

for ( , , , ) (3,2,2,0)

kg
3 3

m s

kt

kt kt

k

V ı j k axı bxyj e
t x y z

a bx e bx a e
t

x y z t

b a e b a
t








−

− −

−

    
= − = − + + − 

    


= − − = −



=

  
= − = −    

 

 

Cylindrical Coordinate System 

 

In cylindrical coordinates, a suitable differential control volume is shown in the figure. The 

density at the center, O, is  and the velocity there is r r z zV V e V e V e = + + . 
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Figure. Differential control volume in cylindrical coordinates 

 

To evaluate 
CS

V dA   we must consider the mass flux through each of the six faces of the 

control surface. The properties at each of the six faces of the control surface are obtained from 

Taylor series expansion about point O. 
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Table. Mass flux through the control surface of a cylindrical differential control volume 

 
 

 

The net rate of mass flux out through the control surface is given by 

 

r z
r

VV V
V r r drd dz

r z

 
 



  
+ + +    

 

 

The rate of change of mass inside the control volume is given by rd drdz
t







 

 

In cylindrical coordinates the continuity equation becomes 

 

0r z
r

VV V
V r r r

r z t

  




  
+ + + + =

   
 

 

Dividing by r gives, 
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1

0r r z
VV V V

r r r z t

   



  
+ + + + =

   
 

or 

   ( ) ( ) ( )1 1
0

r zr V V V

r r r z t

   



   
+ + + =

   
 

 

In cylindrical coordinates the vector operator  is given by 

 

   
1

e e e
r zr r z

  
 = + +

  
 

 

Then the continuity equation can be written in vector notation as  

 

0V
t





 + =


  Note: and

ee
r e e

rr


 

 
= = − 

   

 

 

 

Two special cases, the continuity equation may be simplified.  

 

1) For an incompressible flow, the density is constant, i.e., 

  

     ( )1 1
0 0

r z
rV V V

V
r r r z





  
 = + + =

  
   

  

2) For a steady flow,  

( )
( ) ( ) ( )1 1

0 0
r zr V V V

V
r r r z

  




  
 = + + =

  
 

 

Example: Consider one-dimensional radial flow in the r  plane, characterized by  vr = f(r) 

and v = 0. Determine the conditions on f(r) required for incompressible flow. 

 

For incompressible flow 0V =  

 

    ( )1 1
0

rrV V

r r r





 
+ =

 
   in the r plane. 

 

For the given velocity field,  ( ) r r r rV V r V e V e V e = = + =  

 

   
( )1

0rrV

r r


=


 

 

Integrating with respect to r gives constant = rrV C=  

Thus,  ( )r

C
V f r

r
= =   for one-dimensional radial flow of an incompressible fluid. 

STREAM FUNCTION FOR TWO-DIMENSIONAL  
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INCOMPRESSIBLE FLOW 
  

For a two-dimensional flow in the xy plane of the cartesian coordinate systems, the continuity 

equation for an incompressible fluid reduces to 

  

 0
u v

x y

 
+ =

 
  

 

If a continuous function ( ), ,x y t , called stream function, is defined such that 

 

 andu v
y x

  
  −
 

 

 

then the continuity equation is satisfied exactly, since 

 

 

2 2

0
u v

x y x y y x

    
+ = − =

     
 

 

Since streamlines are tangent to the direction of flow at every point in the flow field. Thus, if 

dr  is an element of length along a streamline, the equation of streamline is given by 

 

 ( ) ( ) ( )0V dr uı vj dxı dyj udy vdx k = = +  + = −   

then 

 
 0udy vdx− =  

 

Substituting for velocity components u and v, in terms of the stream function,  

 

0dx dy
x y

  
+ =

 
 (A) 

 

At a certain instant of time, t0, the stream function may be expressed as ( )0, ,x y t = . At 

this instant, the stream function  

 

d dx dy
x y

 


 
= +
 

 (B) 

 

Comparing Equations (A) and (B), we see that along an instantaneous streamline  

 
 0d =  

 

and Constant = along a streamline. 

 

In the flow field, 1 2 − , depends only on the end points of integration, since the differential 

of  is exact. 
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Now, consider the two-dimensional flow 

of an incompressible fluid between two 

instantaneous streamlines, as shown in the 

Figure. The volumetric flow rate across 

areas AB, BC, DE, and DF must be equal, 

since there can be no flow across a 

streamline.  

 

 

 

 

 

 

For a unit depth, the flow rate across AB is  

 

 2 2

1 1

y y

y y
Q udy dy

y


= =

    

 

Along AB, x = constant and d dy
y





=


. Therefore, 

2 2

1 1
2 1

y

y
Q dy d

y






  


= = = −

   

 

For a unit depth, the flow rate across BC is 

 

2 2

1 1

x x

x x
Q vdx dx

x


= = −

   

 

Along BC, y = constant and d dx
x





=


. Therefore, 

2 1

1 2
2 1

x

x
Q dx d

x






  


= − = − = −

   

 

Thus, the volumetric flow rate per unit depth between any two streamlines, can be expressed as 

the difference between constant values of  defining the two streamlines. 

 

In r plane of the cylindrical coordinate system, the incompressible continuity equation 

reduces to  

 

 0r
vrv

r






+ =

 
 

 

The stream function ( ), ,r t  then is defined such that  

 
1

andrv v
r r



 



 
  −

 
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Example: Consider the stream function given by  = xy. Find the corresponding velocity 

components and show that they satisfy the differential continuity equation. Then sketch a few 

streamlines and suggest any practical applications of the resulting flow field.  

 

 

Given:  = xy 

 

Find: u =?,  v = ?, Do u and v satisfy continuity equation? Sketch few streamlines and suggest 

practical applications. 

 

Assumptions:  - Two-dimensional flow 

  - Incompressible flow 

  - Steady flow 

 

andu x v y
y x

  
= = = − = −
 

 

 

The continuity equation for incompressible two-dimensional flow 

 

0 1 1 0
u v

x y

 
+ =  − =

 
 

 

 
 

We could conclude that those streamlines might model the flow near the stagnation point on 

the nose of a blunt body. If we consider only the upper right quarter-plane, the streamlines 

might model flow in a 90 corner. 
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MOTION OF A FLUID ELEMENT (KINEMATICS) 

 

Before formulating the effects of forces on fluid motion (dynamics), let us consider first the 

motion (kinematics) of a fluid in a flow field. When a fluid element moves in a flow field, it 

may under go translation, linear deformation, rotation, and angular deformation as a 

consequence of spatial variations in the velocity. 

 

 
Figure. Pictorial representation of the components of fluid motion.  

 

 

 

ACCELERATION OF A FLUID PARTICLE IN A VELOCITY FIELD  

 

 

 
Figure. Motion of a particle in a flow field. 

 

Consider a particle moving in a velocity field. At time t, the particle is at a position x, y, z and 

has a velocity ( , , , )p
t

V V x y z t =
. 

  

At time t+dt, the particle has moved to a new position, with coordinates x+dx, y+dy, z+dz, 

and has a velocity given by ( , , , )p
t dt

V V x dx y dy z dz t dt
+

 = + + + +
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The change in the velocity of the particle in moving from location r  to r dr+   , is given by 

 

 p p p p

V V V V
dV dx dy dz dt

x y z t

   
= + + +
   

 

  

The total acceleration of the particle is given by  

 

p p p p

p

dV dx dy dzV V V V
a

dt x dt y dt z dt t

   
= = + + +

   
 

  

since ,
p p pdx dy dz

u v and w
dt dt dt

= = =  

 

then   
p

p

dV V V V V
a u v w

dt x y z t

   
= = + + +

   
 

 

Acceleration of a fluid particle in a velocity field requires a special derivative, it is given the 

symbol 
DV

Dt
.  

Thus,   p

DV V V V V
a u v w

Dt x y z t

   
= = + + +

   
 

  

It is called the substantial, the material or particle derivative. 

  

The significance of the terms, 

 

total local
convective 

accelaration acceleration
acceleration

of a particle

p

DV V V V V
a u v w

Dt x y z t

   
= = + + +

   
 

 

The convective acceleration may be written as a single vector expression using the vector 

gradient operator, . 

    

( )
V V V

u v w V V
x y z

  
+ + = 

  
 

 

 Thus,    ( )p

DV V
a V V

Dt t


 =  +


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It is possible to express above equation in terms of three scalar equations as  

 

p

p

p

x

y

z

Du u u u u
a u v w

Dt x y z t

Dv v v v v
a u v w

Dt x y z t

Dw w w w w
a u v w

Dt x y z t

   
= = + + +

   

   
= = + + +

   

   
= = + + +

   

 

   

The components of acceleration in cylindrical coordinates may be obtained by utilizing the 

appropriate expression for the vector operator . Thus 

 
2

p

p

p

r r r r
r r z

r
r z

z z z z
z r z

V VV V V V
a V V

r r r z t

V V V V V V V
a V V

r r r z t

VV V V V
a V V

r r z t

 

     










   
= + − + +

   

   
= + + + +

   

   
= + + +

   

 

 

Example: The velocity field for a fluid flow is given by  
2( , , , ) 2 3V x y z t x ı xyj ztk= − +  

Determine 

a) the acceleration vector, 

b) the acceleration of the fluid particle at point P(1,2,3) and at time t = 1 sec. 

 

a) The components of the velocity vector are 
2 , 2 and 3u x v xy w zt= = − = . The 

components of the acceleration vector  

 

( ) ( )( ) ( )( )

( ) ( )( ) ( )( )

( ) ( )( ) ( )( ) ( )

2 3

2 2

2 2

2 2 0 3 0 0 2

2 2 2 3 0 0 2

0 2 0 3 3 3 3 1 3

p

p

p

x

y

zx

u u u u
a u v w x x xy zt x

x y z t

v v v v
a u v w x y xy x zt x y

x y z t

w w w w
a u v w x xy zt t z z t

x y z t

   
= + + + = + − + + =

   

   
= + + + = − + − − + + =

   

   
= + + + = + − + + = +

   

 

 

Therefore, 

  

 ( )3 2 22 2 3 1 3
p p pp x y za a ı a j a k x ı x yj z t k= + + = + + +  

 

b) The acceleration of the fluid particle at point P(1,2,3) and at time t = 1 sec  is 

 

( ) ( ) ( ) ( ) ( )( )3 2 2
2 1 2 1 2 3 2 1 3 1 2 4 36pa ı j k ı j k= + + + = + +  
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FLUID ROTATION 
 

The rotation,  , of a fluid particle is defined as the average angular velocity of any two 

mutually perpendicular line elements of the particle in each orthogonal plane. A particle may 

rotate about three coordinate axes. Thus, in general, x y zı j k   = + +  

 

 
Figure. Rectangular fluid particle with two instantaneous perpendicular lines AA and BB; 

velocities perpendicular to AAand BB are also shown. 

  

The figure shows a fluid particle with two lines AA and BB. By definition 

 
1

( )
2

z AA BB    +  

where 

 

   

   

( / )( / 2) ( / )( / 2)

and

( / )( / 2) ( / )( / 2)

so

1

2

A A
AA

B B
BB

z

v v x x v v x xv v v

x x x

u u y y u u y yu u u

y x y

v u

x y

 


 

 


 









+   − −  − 
= = =



+   − +  − 
= − = − = −



  
= − 

  

 

 

By considering the rotation of pairs perpendicular lines in the yz and xz planes, one can show 

that 

  
1 1

and
2 2

x y

w v u w

y z z x
 

     
= − = −   

     
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then 

1

2
x y z

w v u w v u
ı j k ı j k

y z z x x y
   

          
= + + = − + − + −     

          

 

 

We recognize the term in the square brackets as 

 

curl V V=  

 

Then, in vector notation, we can write  

 

  
1

2
V =   

 

The factor of  ½  can be eliminated in above equation by defining a quantity called the vorticity, 

 , to be twice the rotation, 

  

   2 V  =  

  

The vorticity is the measure of the rotation of a fluid element as it moves in the flow field. In 

cylindrical coordinates the vorticity is  

 

1 1z r z r
r

V rVV V V V
V e e k

r z z r r r

 


 

        
 == − + − + −    

         
 

  

The circulation, , is defined as the line integral of the tangential velocity component about a 

closed curve fixed in the flow, 

 

C

V ds =   

where, ds  is an elemental vector, of the length ds, tangent to curve; a positive sense corresponds 

to a counterclockwise path of integration around the curve. 
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For Oa line 

( )0a

Oa Oa

uı vj dxi udx u x = + = =    

 

For the closed curve Oacb, 

2 z

v u
u x v y u x v y

x y

v u
x y

x y

x y

   
 =  + +  − +  −   

    

  
 = −   

  

 =  

 

  

  2 ( )z z

C A A

V ds dA V dA =  = =      

 

Thus, the circulation around a closed contour is the total vorticity enclosed within it. 

 

Example: Consider flow fields with purely tangential motion (circular streamlines): Vr = 0 and 

V = f(r). Evaluate the rotation, vorticity, and circulation for rigid-body rotation, “a forced 

vortex”. Show that it is possible to choose f(r) so that the flow is irrotational; to produce “a free 

vortex”. 

 

Basic Equation: 2 V  =   

 

For motion in r  plane, the only components of rotation and vorticity are in the z-direction 

 
1

2 r
zz

rV V

r r





 

= = −
 

 

 

Since 
1

0 2r zz

rV
V

r r




= = =


 

 

a) For rigid body rotation, V r =  

Then, 
( )2

1 1 1 1 2

2 2 2
z

rrV r

r r r r r


 

 


= = = =
 

 and 2
z

 =  

 

The circulation is 2 z

C A

V ds dA =  =   

since constant

2 2

z

A

dA A

 

 

= =

  = =
  

b) For irrotational flow 
( )1

0
rV

r r


=


. Integrating, 

contant or     ( )
c

rV c V f r
r

 = = = =  
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For this flow, the origin is a singular point where V → . 

 

 

 

 

The circulation for any contour enclosing the origin is  
2

0

2
C

c
V ds rd c

r



  =  = =   

 

The circulation around any contour not enclosing the singular point at the origin is zero. 

 

 

FLUID DEFORMATION 
  

Angular deformation of a fluid element involves changes in the angle between two mutually 

perpendicular lines in the fluid. The rate of angular momentum is given by 

 

 

Figure. Angular deformation of a fluid element in a two dimensional flow field. 

  
d d d

dt dt dt

  
− = +  

 

Now,  

 
0 0 0

/ ( / ) /
lim lim lim
t t t

d x v x x t x v

dt t t t x

  
 →  →  →

        
= = = =

   
 

 

a

x 

y 

b

b 

a 

 

 





 

 





 
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and  
0 0 0

/ ( / ) /
lim lim lim
t t t

d y u y y t y u

dt t t t y

  

 →  →  →

        
= = = =

   
 

 

 

 

Consequently, the rate of the angular deformation in the xy plane is 

 

d d d v u

dt dt dt x y

    
+ = − = +

 
 

  

 The shear stress is related to the rate of angular deformation through the fluid viscosity. 

 

 

MOMENTUM EQUATION 
 

To derive the differential form of momentum equation, we shall apply Newton’s second law 

to an infinitesimal fluid particle of mass dm. 

  

Newton’s second law for a finite system is given by  

 

system

dP
F

dt


= 


 

  

where the linear momentum, P , of the system is given by  

   

  
( )

system

mass system

P Vdm=   

  

   

Then for an infinitesimal system of mass dm, Newton’s second law is written  

system

dV dV
dF dm dm

dt dt

V V V V
dF dm u v w

x y z t


= =



    
 = + + + 

    

 

 

 

Forces Acting on a Fluid Particle 

  

The forces acting on a fluid element may be classified as body forces and surface forces. 

Surface forces include both normal forces and tangential (shear) forces. 

  

Stresses acting on a differential fluid element in the x-direction are shown in the figure. 
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Figure. Stresses in the x direction on an element of fluid. 

 

To obtain the net surface force in the x direction, 
xSdF , we must sum the forces in the x direction. 

 

2 2

2 2

2 2

x

xx xx
S xx xx

yx yx

yx yx

zx zx
zx zx

dx dx
dF dydz dydz

x x

dy dy
dxdz dxdz

y y

dz dz
dxdy dxdy

z z

 
 

 
 

 
 

    
= + − −   

    

    
+ + − −   

    

    
+ + − −   

    

 

  

By simplifying, we obtain 

 

x

yxxx zx
SdF dxdydz

x y z

   
= + + 

   
 

 

When the force of gravity is the only body force acting, then the body force per unit mass in  

x-direction is given by xg dxdydz . Then the total net force in x direction can be expressed as 

 

x x

yxxx zx
x B S xdF dF dF g dxdydz

x y z

 


  
= + = + + + 

   
 

  

One can derive similar expressions for the force components in the y and z directions. 

 

y y

z z

xy yy zy

y B S y

yzxz zz
z B S z

dF dF dF g dxdydz
x y z

dF dF dF g dxdydz
x y z

  


 


   
= + = + + + 

   

  
= + = + + + 

   
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Differential Momentum Equation 
  

We have now formulated expressions for the components, ,x ydF dF , and zdF , of the force dF

, acting on the element of mass dm. If we substitute these expressions for the force components 

into x, y, and z components of equation, we obtain differential equations of motion. 

 

yxxx zx
x

xy yy zy

y

yzxz zz
z

u u u u
g u v w

x y z t x y z

v v v v
g u v w

x y z t x y z

w w w w
g u v w

x y z t x y z

 
 

  
 

 
 

       
+ + + = + + + 

       

       
+ + + = + + + 

       

       
+ + + = + + + 

       

 

 

These three equations are the differential equations of motion for any fluid satisfying the 

continuum assumption. Before hte equations can be used to solve problems, suitable 

expressions for the stresses must be obtained in terms of the velocity and pressure fields. 

 

Newtonian Fluid: Navier-Stokes Equations 
  

For a Newtonian fluid the viscous stress is proportional to the rate of shearing strain (angular 

deformation rate). The stresses may be expressed in terms of velocity gradients and fluid 

properties in rectangular coordinates as follows: 

 

xy yx

yz zy

zx xz

v u

x y

w v

y z

u w

z x

  

  

  

  
= = + 

  

  
= = + 

  

  
= = + 

  

 

 

2
2

3

2
2

3

2
2

3

xx

yy

zz

u
p V

x

v
p V

y

w
p V

z

  

  

  


= − −  +




= − −  +




= − −  +



 

 

where p is the local thermodynamic pressure. 
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If these expressions are introduced into the differential equations of motion, we obtain 

 

2
2

3
x

Du p u u v u w
g V

Dt x x x y y x z z x
    

                 
= − + −  + + + +                        

 

2
2

3
y

Dv p u v v v w
g V

Dt y x y x y y z z y
    

                  
= − + + + −  + +          

                  
 

2
2

3
z

Dw p w u v w w
g V

Dt z x x z y z y x z
    

                 
= − + + + + + −                         

 

 

These equations of motion are called the Navier-Stokes equations. The equations are greatly 

simplified when applied to incompressible flow with constant viscosity. Under these 

conditions the equations reduce to 

 
2 2 2

2 2 2x

u u u u p u u u
u v w g

t x y z x x y z
  

         
+ + + = − + + +  

          
 

2 2 2

2 2 2y

v v v v p v v v
u v w g

t x y z y x y z
  

         
+ + + = − + + +  

          
 

2 2 2

2 2 2z

w w w w p w w w
u v w g

t x y z z x y z
  

         
+ + + = − + + +  

          
 

 

The Navier-Stokes equations in cylindrical coordinates, for constant density and viscosity, are 

given in the course textbook. 

  

For the case of frictionless flow ( = 0) the equations of motion reduce to Euler’s equation, 

 

DV
g p

Dt
 = −  

 

x

u u u u p
u v w g

t x y z x
 
     

+ + + = − 
     

 

y

v v v v p
u v w g

t x y z y
 
     

+ + + = − 
     

 

z

w w w w p
u v w g

t x y z z
 
     

+ + + = − 
     
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INTERNAL INCOMPRESSIBLE FLOW 
 

Flows completely bounded by solid surfaces are called internal flows. Internal flows may be 

laminar or turbulent. Some laminar flow cases may be solved analytically. In the case of 

turbulent flow, analytical solutions are not possible and we must rely heavily on semi-empirical 

theories or experimental data. 

  

One can demonstrate the qualitative difference between the nature of laminar and turbulent flow 

by classical Reynolds experiment. The experimental set up consists of a constant diameter 

transparent pipe which is connected to a larger reservoir of water. A thin filament of dye, which 

is injected at the centerline of the pipe, allows visual observation of the flow. 

 

 

 

 

 

 

Figure. Set up for the Reynolds’ experiment. 

 

Conducting Reynolds’ experiment, two points should be kept in mind.  

a) The density and viscosity of the dye and water must be the same, 

b) The water and dye levels in both reservoirs must be the same. 

 

At the low flow rates, the dye injected into the flow remains in single filament; there is little 

dispersion of dye because the flow is laminar. A laminar flow is one in which the fluid flow in 

laminae, or layers.  

  

As the flow rate through the tube is increased, the dye filament becomes wavy. This is known 

as transient flow. 

  

At high flow rates, the dye filament becomes unstable and breaks up into a random motion. 

This behavior of turbulent flow is due to small, high-frequency velocity fluctuations 

superimposed on the mean motion of turbulent flow. 
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Under normal engineering applications, the transition from the laminar flow to turbulent flow 

in pipes occurs at Reynolds numbers of 2000 to 3000. However, in carefully controlled 

experiments, it is possible to obtain laminar flow up to a Reynolds number of 60000. Usually, 

the critical Reynolds number is taken to be 2300. 

 

Re
Vd Vd

 
= =  

 

Developing a Fully Developed Flow 
 

Consider the flow of an incompressible fluid through a long pipe of constant diameter. At the 

entrance of the pipe has not been subjected to the action of viscosity, so that the velocity profile 

is constant. 

  

Figure. Development of viscous laminar flow in a pipe. 

  

As soon as the fluid comes in contact with circumference of pipe, its velocity reduces to zero, 

and it satisfies no-slip condition. A boundary layer develops along the walls of the channel. 

The solid surface exerts a retarding force on the flow,  thus the speed of the fluid in the 

neighborhood of the surface is reduced. Sufficiently far from the pipe entrance, the boundary 

layer reaches the pipe centerline and the flow becomes entirely viscous. After this point, the 

velocity profile will no longer change with the distance along the pipe. This region is known as 

the fully developed region. 
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For laminar flow, the entrance length, L, is a function of Reynolds number 

 

0.06
L Vd

D




  

  

For turbulent flow, the entrance length, L, is about 25 to 40 pipe diameters. 

 

 

 

FULLY DEVELOPED LAMINAR FLOW 
  

FULLY DEVELOPED LAMINAR FLOW BETWEEN INFINITE 

PARALLEL PLATES 

 
Let us consider the fully developed laminar flow between infinite parallel plates. 

 

  

  

Assumptions: 

1. Steady flow 

2. Fully developed flow ( 0
x


=


) 

3. Incompressible flow 

4. Plates are infinite in the z direction ( 0, 0w
z


= =


) 

5. Body forces in x direction is negligible ( 0
xBF = ) 

  

Find:  

a) Velocity profile 

b) Shear stress distribution 

c) Volume flow rate 

d) Average velocity 

e) Point of maximum velocity 
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a) Velocity profile: 

Velocity distribution can be found by applying integral momentum equations or differential 

momentum equations. 

  

For our analysis we select a differential control volume of size, and apply x component of 

momentum equation 

    

0

0

x xS B

CV CS

F F u d u V dA
t

 


+ = + 
    

 

For fully developed flow, the net momentum flux through the control surface is zero. (The 

momentum flux through the right face of the control surface is equal in magnitude but opposite 

in sign to the momentum flux through the left face.) 

 

0
xSF =  

 

There are two types of forces which act to the surface of control volume. Those are: 

1. Pressure forces (normal forces) 

2. Shear forces (tangential forces) 

  

If the pressure and the shear stress at the center of fluid element are p, and yx, respectively. 

 
 

 

0
2 2 2 2

yx yx

yx yx

p dx p dx dy dy
p dydz p dydz dxdz dxdz

x x y y

 
 

        
− − + + + − − =      
          

 

 

By arranging, 

 

  0
yxp

x y


− + =
 

  For yx, we used the total derivative, since yx is only function of y. 

    [u = u(y)] 

or  

yx p

y x

 
=

 
 

 

The left hand side of this equation is the function of y, but, the right hand side of the equation 

is the function of x. Therefore, in order to be this equation valid, it should be equal to a constant. 
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  constant
yx p

y x

 
= =

 
  

 

Integrating this equation, we obtain 

 

1yx

p
y C

x



= +


 

 

which indicates that the shear stress varies linearly with y. Since for Newtonian fluid 

 

yx

du

dy
 =  

 

then 

1

du p
y C

dy x



= +


 

and 

2 1
2

1

2

Cp
u y y C

x 


= + +


  

  

To evaluate constants C1 and C2, we must apply the boundary conditions. 

  

at y = 0  u = 0  consequently C2 = 0 

at y = a  u = 0   
2 11

0
2

Cp
a a

x 


 = +


 

    
1

1

2

p
C a

x


 =−


 

     

 and hence 

   
21 1

2 2

p p
u y ay

x x

    
= −   

    
 

 

or 
22

2

a p y y
u

x a a

     
= −    

      
 

 

b) Shear Stress Distribution: 

The shear stress distribution is given by  

  

1

2
yx

du p y
a

dy x a
 

   
= = −      
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c) Volume Flow Rate: 

The volume flow rate is given by 
A

Q V dA=   

 For a depth l in the z direction 
0

a

Q uldy=   

or    ( )2

0

1

2

a
Q p

y ay dy
l x


= −

  

 

Thus, the volume flow rate per unit depth l is given by  

31

12

Q p
a

l x

 
= −  

 
 

  

  

Flow rate as a function of Pressure Drop 

 

Since 
p

x




 is constant, the pressure varies linearly with x,  

    

2 1p pp P

x L L

− 
= =


 

  

Substituting into the expression for volume flow rate gives 

 
3

31

12 12

Q P a P
a

l L L 

  
= − − = 

 
 

  

d) Average Velocity: 

The average velocity is given by  

  
3

21 1

12 12

Q p a l p
V a

A x la x 

    
= = − = −   

    
 

 

e) Point of Maximum Velocity: 

To find the point of maximum velocity, we set 
du

dy
equal to zero and solve for corresponding 

y. 

   

2

2

2 1

12

du a p y

dy x a a

   
= −      

 

 

0 at
2

du a
y

dy
= =  

 

2

max

1 3
at

2 8 2

a p
y u u a V

x

 
 = = = − = 

 
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UPPER PLATE MOVING WITH CONSTANT SPEED, U 

 
Second laminar flow case of practical importance is flow in a journal bearing. In such a bearing, 

an inner cylinder, the journal rotates inside a stationary member. It can be considered as flow 

between infinite parallel plates. 

 

 

 

Assumptions: 

1. Steady flow  

2. Fully developed flow ( i.e. 0
x


=


)    

3. Laminar flow 

4. Incompressible flow 

5. Plates are infinite in the z direction ( 0, 0w
z


= =


) 

6. Body forces in x direction is negligible  

 

Find:  

a) Velocity distribution 

b) Shear stress distribution 

c) Volume flow rate 

d) Average velocity 

e) Point of maximum velocity 

U 
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Boundary Conditions: 

u = 0 at y = 0 

u = U  at y = a 

 

a) Velocity profile: 

Since only the boundary conditions have changed, thus the velocity distribution is given by 

  

   
2 1

2

1

2

Cp
u y y C

x 

 
= + + 

 
 

 

Integral constants C1 and C2 can be found by using boundary conditions 

  

at y = 0 u = 0 consequently C2 = 0 

at y = a u = U    
2 11

2

Cp
U a a

x 

 
 = + 

 
 

Thus,  1

1

2

U p
C a

a x

  
= −  

 
 

and  

( )

2

2

1 1

2 2

1

2

p Uy p
u y ay

x a x

Uy p
y ay

a x

 



    
= + −   

    

 
= + − 

 

 

22

2

Uy a p y y
u

a x a a

     
= + −    

      
 

 

For the various values of 
p

x

 
 
 

, the dimensionless velocity profile is plotted in the figure. 
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b) Shear Stress Distribution: 

The shear stress distribution is given by  

 
2

2

2 1 1

2 2
yx

du U a p y U p y
a

dy a x a a a x a
   

        
= = + − = + −              

 

 

 

c) Volume Flow Rate: 

The volume flow rate is given by 
A

Q V dA=  . For a depth l in the z direction 

   ( )2

0 0

1

2

a a
Q Uy p

Q uldy y ay dy
l a x

 
=  = + − 

 
   

 

The volume flow rate per unit depth l is   
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2 12

Q Ua p
a

l x

 
= −  

 
 

 

d) Average Velocity: 

The average velocity, V , is given by   

 
3

2

1

2 12 1

2 12

Ua p
l a

xQ U p
V a

A la x





  
−       = = = −  

 
 

 

e) Point of Maximum Velocity: 

To find the point of maximum velocity, we set 
du

dy
equal to zero and solve for corresponding y. 

   
2

2

2 1 /
0

12 2

du U a p y a U a
y

pdy a x a a

x





   
= + − =  = −         

 
 

 

  

II. Method:  By using Differential Momentum Equation (Navier-Stokes equation), to find 

velocity distribution. 

  

x - component of the momentum equation: 

    
2 2 2

2 2 2x

u u u u p u u u
u v w g

t x y z x x y z
  

         
+ + + = − + + +  

          
 

 

by utilizing assumptions, above equation simplifies to  
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2 2 2

2 2 2
0 0 0

0 0 0 0

x

u u u u p u u u
u v w g

t x y z x x y z
  

   
          

+ + + = − + + +
             
   

  

 
2

2
0

p u

x y


 
= − +

 
  since 

2 2

2 2
( )

u d u
u u y

y dy


=  =


  

or   

  
2

2

1d u p

dy x


=


 

 

Integrating twice we find that:  

 

  
2 1

2

1

2

Cp
u y y C

x 

 
= + + 

 
 

  

Integral constants C1 and C2 can be found by using boundary conditions and so on … 

 

 

FULLY DEVELOPED LAMINAR FLOW IN A PIPE 
 

Let us consider fully developed laminar flow in a pipe. Here the flow is axisymmetric. 

Consequently, it is the most convenient to work in cylindrical coordinates. The control volume 

will be chosen a differential annulus. 

 

 
   

Assumptions: 

1. Fully developed flow ( 0
x


=


) 

2. Steady flow 

3. Laminar flow 

4. Incompressible flow 

5. There is no property change in  - direction. 

6. Radial velocity component is zero.  

6. Neglect body forces 

  

Find:  

a) Velocity distribution 

b) Shear stress distribution 

c) Volume flow rate 

d) Average velocity 
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e) Point of maximum velocity 

 

Boundary conditions 

at r = 0 the velocity must be finite (from physical consideration) 

at r = R u = 0 (no slip condition) 

 

a) Velocity profile: 

Velocity distribution can be found by using the integral or differential form of the momentum 

equation. We will find the velocity distribution by using both methods. 

 

If we apply the x - component of momentum equation for the control volume shown in the 

figure. 

 

 

  

For fully developed flow, the net momentum flux through the control surface is zero.  

 

The normal (pressure) force and the tangential (shear) forces act to the control volume. The 

surface forces acting on the differential fluid element in x direction are 

 

0

0 0

x xS B

CV CS

F F u d u V dA
t

 


+ = + 
    

For fully developed flow, the net momentum flux through the control surface is zero.  

 

0
xSF =  

 

The normal (pressure) force and the tangential (shear) forces act to the control volume. The 

surface forces acting on the differential fluid element in x direction are 

 

2 2 2
2 2 2 2

2 0
2 2

rx
rx

rx
rx

dp dx p dx dr dr
p rdr p rdr r dx

x x dr

d dr dr
r dx

dr


   


 

        
+ − − + + + +      

       

   
− − − =  

  

  

By simplifying 

 

2 2 2 0rx
rx

dp
rdrdx rdrdx rdrdx

x dr


   


− + + =

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Dividing this equation by 2 rdrdx , and solving for 
p

x




gives 

 

  
( )1 rxrx rx

d rdp

x r dr r dr

 
= + =


 

 

The left hand side of the equation is only the function of x, but the right hand side of the equation 

is only the function of r. Then this equation holds only if each side of the equation is constant. 

 

( )1
constant

rxd r p

r dr x

 
= =


 

 or 

  
( )rxd r p

r
dr x

 
=


 

 

Integrating this equation, we obtain 

 
2

1
2

rx

r p
r C

x



= +


 

 or 

  1

2
rx

Cr p

x r



= +


 

 

Since  
rx

du

dr
 =   

 

then 

  1

2

Cdu r p

dr x r



= +


  

and 

  

  
2

1
2ln

4

Cr p
u r C

x 

 
= + + 

 
 

 

By using the boundary conditions, integral constant C1 and C2 can be found. 

 

Boundary conditions 

From the first boundary condition (at r = 0 the velocity must be finite) 

 

1 0C =  

 

From the second boundary condition at (r = R u = 0) 
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2

20
4

R p
C

x

 
= + 

 
 

2

2
4

R p
C

x

 
= −  

 
 

and hence 

   

( )
2 2

2 21

4 4 4

r p R p p
u r R

x x x  

       
= − = −     

       
 

 or 

  

22

1
4

R p r
u

x R

    
= − −    

     
 

 

II. Method: By using the differential form of momentum equation in x-direction. 

2 2

2 2 2

0
00 0 0 0

1 1z z z z z z z
r z

uu u u u u u up
u u r

t r r z z r r r r z

 
 

   
            

+ + + = − + + +                
   

 

  

  

Note: By replacing x → z and uz → u, and simplifying the above differential equation  

  

   
1

0
p u

r
x r r r


   

− + = 
   

  

 or 

u r p
r

r r x

   
= 

   
 

 

By integrating twice, 

 

   

2

1
2ln

4

Cr p
u r C

x 

 
= + + 

 
 

  

This equation is the same as the equation found by using integral momentum equation. 

 

b) Shear Stress Distribution: 

The shear stress is given by 

   

  
2

rx

du r p

dr x
 


= =


 

   

c) Volume Flow Rate: 
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( )2 2

0 0

4

1
2 2

4

8

R R

A

p
Q V dA u rdr r R rdr

x

R p
Q

x

 






 
=  = = − 

 

 
= −  

 

  
 

 

For fully developed flow  2 1constant
p pp p p

x x L L

−  
=  = = −

 
 

 

  
4 4 4

8 8 128

R p pR pD
Q

L L L

  

  

   
= − − = = 

 
  for laminar flow in a horizontal pipe. 

 

 

d) Average Velocity: 

The average velocity, V , is given by   

   
2

2 8

Q Q R p
V

A R x 

 
= = = −  

 
 

 e) Point of Maximum Velocity: 

To find the maximum point of velocity, we set 
du

dr
equal to zero and solve for corresponding r, 

 

  
1

0
2

du p
r

dr x

 
= = 

 
 

 

At  r = 0, 

2

max 2
4

R p
u u U V

x

 
= = = − = 

 
  

 

 

FULLY DEVELOPED TURBULENT FLOW 
  

In turbulent flows, there is no universally acceptable relation between shear stress and velocity 

gradients. Therefore, the analytical solutions of turbulent flow problems are impossible, we 

must rely on semi-empirical data. 

 

 

INCOMPRESSIBLE INVISCID FLOW 
 

MOMENTUM EQUATION FOR FRICTIONLESS FLOW: EULER’S EQUATIONS 

 

The equations of motion for frictionless flow are called Euler’s equations. These equations can 

be obtained from Navier-Stokes equations (by setting  = 0). 
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x

y

z

p u u u u
g u v w

x t x y z

p v v v v
g u v w

y t x y z

p w w w w
g u v w

z t x y z

 

 

 

     
− = + + + 
     

     
− = + + + 
     

     
− = + + + 
     

 

 

We can also write the above equations as a single vector equation 

  

DV V V V V
g p u v w

Dt t x y z
  

    
= − = + + + 

    
 

or 

DV
g p

Dt
 = −  

If the z coordinate is directed vertically upward, then since,  ˆz k = , 

 

ˆg gk g z  = − = −   

 

 

In cylindrical coordinates, Euler equations in the component form, with gravity the only body 

force, are 

  
2

1

1

1

r r r r
r r r z

r
r z

z z z z
z z r z

V VV V V Vp
g a V V

r t r r z r

V V V V V V Vp
g a V V

r t r r z r

VV V V Vp
g a V V

z t r r z

 

     
 



 

  

 

   
− = = + + + −

    

   
− = = + + + +

    

   
− = = + + +

    

 

 

If the z axis is directed vertically upward, then gr = g = 0 and gz = -g. 

 

 

EULER’S EQUATION IN STREAMLINE COORDINATES 

 

In this section, the Euler’s equation will be first derived in the streamline coordinates, and then 

integrated along a streamline. 

  

For this reason, consider an infinitesimal fluid element, which is moving along an instantaneous 

streamline, as shown in the figure. For simplicity, consider the flow in yz plane. Since velocity 

vector must be tangent to the streamline, the velocity field is given by ( , )V V s t= . 
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Figure. Fluid particle moving along a streamline. 

  

If we apply Newton’s second law of motion in the streamwise (the s-) direction to the fluid 

element of volume dsdndx, then neglecting viscous forces we obtain 

 

sin
2 2

s

p ds p ds
p dndx p dndx g dsdndx a dsdndx

s s
  

    
− − + − =   
    

 

  

 

where “as” is the acceleration of the fluid particle along the streamline. Simplifying the 

equation,  

 

sin s

p
g a

s
  


− − =


 

  

 since  sin
z

s



=


, we can write 
1

s

p z
g a

s s

 
− − =

 
 

 

Along any streamline V=V(s,t), then the total acceleration in s-direction 

 

s

DV V V
a V

Dt s s

 
= = +

 
 

   

Then, the Euler’s equation becomes 

  

1 p z V V
g V

s s t s

   
− − = +

   
 

  

For steady flow, and neglecting body forces, it reduces to 

 

1 p V
V

s s

 
− =

 
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which indicates that a decrease in velocity is accompanied by an increase in pressure and 

conversely. 

  

If we apply Newton’s second law in the n-direction to the fluid element. Neglecting viscous 

forces, we obtain 

 

   cos
2 2

s

p dn p dn
p dsdx p dsdx g dsdndx a dndsdx

n n
  

    
− − + − =   
    

 

  

Simplifying the equation 

 

  cos n

p
g a

n
  


− − =


 

  

Since cos
z

n



=


, we can write 
1

n

p z
g a

n n

 
− − =

 
 

 

The centripetal acceleration, an, for steady flow can be written 

2

n

V
a

R
= − where R is the radius 

of the curvature of the streamline. Then, Euler’s equation normal to the streamline is written 

for steady flow as 

 
21 p z V

g
n n R

 
+ =

 
 

 

For steady flow in a horizontal plane, Euler’s equation normal to streamline becomes 

 
21 p V

n R


=


  

  

It indicates that pressure increases in the direction outward from the center of curvature 

of the streamlines. 

  

Example: An ideal fluid (zero viscosity and constant density) flowing through a planar 

converging nozzle that lies in a horizontal plane, shown in the figure. Compare the pressures at 

points 1 and 2, at 3 and 4, and at 5 and 6. 
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First, estimate the shape of the streamlines from the shape of the nozzle walls. Also, control 

volume is shown in the figure below. 

 
  

From continuity equation steady, incompressible flow, we conclude that velocity increases from 

1 t o3 to 5 to 2. Therefore, along the line 1-3-5-2, 

 

0
V

s





 

From 
1 p V

V
s s

 
− =

 
equation and the specification that the nozzle lies in a horizontal plane, 

p V
V

s s


 
= −

 
 

 

As 0
V

s





, we conclude 0

p

s





 and pressure falls along line 1-3-5-2. Therefore, 

 
   

1 3 5 2p p p p     

 

From 

21 p V

n R


=


 equation, 
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2p V

n R



=


 

 

Recall that n points toward the center of curvature. Both V2 and R are positive, so the pressure 

increases outward from the center of the curvature, From the figure, we conclude that 

 
   

4 3 5 6andp p p p   

 

 

Although consideration of Euler’s equations allowed us to comment on the relative magnitudes 

of the pressures, it did not permit us to calculate their values. The equations must be integrated 

before we calculate any numerical values for pressure. 

 

 

BERNOULLI EQUATION INTEGRATION OF EULER’S EQUATION ALONG 

A STREAMLINE FOR STEADY FLOW 

 

Consider the streamwise Euler equation in a streamline coordinates for steady flow. The 

equation is  

  

   
1

0
V p z

V g
s s s

  
+ + =

  
 

 

Multiplying by ds we get 

 

1
0

V p z
V ds ds g ds

s s s

  
+ + =

  
 

  

In general, the total differential of any parameter of the flow field (say pressure p) is given by 

 
p p

dp ds dn
s n

 
= +
 

 

 

because p is a function of both s and n.  If we restrict ourselves to remaining on the same 

streamline, ( )s nds dsı dnı ds dxı dyj dzk= + = + +  

   0 and
p

dn dp ds
s


= =


 

  

 

Similar relations hold for other properties. 

 

With restriction of staying on the same streamline, Euler equation becomes 

 

0
dp

VdV gdz


+ + =  

Integrating  
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2

(a constant)
2

V dp
gz C


+ + =   

  

If the density is constant, we obtain the Bernoulli equation 

  
2

constant
2

p V
gz


+ + =  

  

 

It is subject to restrictions: 

1. Steady flow 

2. Incompressible flow 

3. Frictionless flow 

4. Flow along a streamline 

 

Example: A hole is pierced at the bottom of a large reservoir, which is initially filled with an 

incompressible fluid of density  to a depth of h, as shown in the figure. As a first 

approximation, fluid may be considered as inviscid, and the reservoir is large enough so that 

the change in its level may be neglected. Determine the velocity of the fluid leaving the hole, 

which is pierced at the bottom of the reservoir. 
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From continuity equation 

 

  1 1 2 2V A V A=   

 

The area of the reservoir, A1, is very large when compared to the area of the hole A2. For this 

reason, the velocity of the fluid in the reservoir may approximately be taken as zero, so that, 

 

1 0V =  

 

From Bernoulli equation 

 
2 2

2 2 1 1
2 1

2 2

p V p V
gz gz

 
+ + = + +

 
 

 1 2 1 2 0atmp p p z h z= = = =  
 

 2 2V gh
  

 

This equation is first derived by Toricelli, and is often referred as Torricelli equation. 

 

Example: A hole pierced at the bottom of a large reservoir, which is initially filled with an 

incompressible fluid of density  to a depth of ho. The area of the tank and the hole are At and 

Ah, respectively. For the quasi-steady flow of the fluid, develop an expression for the height of 

the fluid, h, at any later time, t. 
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The continuity equation may be given  

 

  1 1 2 2 1 2but  andt hV A V A A A A A= = =  

 

so that  2 1
t

h

A
V V

A
=  

 

The Bernoulli equation for the steady flow of an incompressible and inviscid flow is  

 
2 2

2 2 1 1
2 1

2 2

p V p V
gz gz

 
+ + = + +

 
 

Since,  
1 2 1 2, , 0atmp p p z h z= = = =  

 

Then, the Bernoulli equation takes the form 

 
2 2

2 1 2V V gh= +  

or  

2

2 2

1 1 2t

h

A
V V gh

A

 
= + 

 
 

1 2

2

2

1t

h

gh
V

A

A

=

−

 
 

But, one should note that, 
1

dh
V

dt
= − , therefore 

 

2

2

2

1t

h

dh gh

Adt

A

= −

−
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The variables may now be separated as 

  

( ) 1/21/2
2

2

2
1t

h

dh dt

gh A

A

= −
 

− 
 

 

 

which may be integrated to yield 

 

  

2

2

2
1t

h

gt
h C

A

A

−
= +
 

− 
 

 

 

where C is the constant of integration. However, one should observe that h = h0 at t = 0, so 

that C = h0, and 

 
2

0 2

2
1t

h

gt
h h

A

A

= −
 

− 
 
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STATIC, STAGNATION, AND DYNAMIC PRESSURE 
 

Bernoulli equation is  

  
2

constant
2

p V
gz


+ + =   

 

In this equation p is called static pressure, because it is the pressure that would be measured by 

an instrument that is static with respect to the fluid. Of course, if the instrument were static with 

respect to fluid, it would have move along with the fluid. However, such a measurement rather 

difficult to make in a practical situation. However, we showed that there was no pressure 

variation normal to straight streamlines. This fact makes it possible to measure the static 

pressure in a flowing fluid using a wall pressure “tap” placed in a region where the flow 

streamlines are straight as shown in the figure. The pressure tap is a small hole, drilled carefully 

in the wall, with its axis perpendicular to the surface. 

 

 

 
Figure. Measurement of static pressure. 

 

In fluid stream far from a wall, or where streamlines are curved, accurate static pressure 

measurements can be made by careful use of a static pressure probe, shown in the figure. 

  

When a flowing fluid is decelerated to zero speed by a frictionless process, the pressure is 

measured at that point is called stagnation pressure. 

  

 
Figure. Measurement of stagnation pressure (Pitot tube). 

  

In incompressible flow, applying Bernoulli equation between points in the free stream and at 

the nose of tube and taking z = 0 at the tube centerline, we get 
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2 2

0 0

0

2 2

p V Vp

 
=

+ = +  

  

   

 

where p0 is the stagnation pressure, the stagnation speed V0 is zero. 

 

 2

0

1

2
p p V= +  

 

where p is the static pressure. The term 21

2
V  generally is called dynamic pressure. Solving 

the dynamic pressure gives  

    

2

0

1

2
V p p = −  

  

and for the speed 

   
( )02 p p

V


−
=  

 

 

 

 

 
The static pressure corresponds to a point 

A is read from the wall static pressure tap. 

The stagnation pressure is measured 

directly at A by the total head tube. 

Two probes are combined as in pitot-static 

tube. The inner tube is used to measure the 

stagnation pressure at point B while the 

static pressure at C is measured by the 

small holes in the inner tube. 
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Example: A simple pitot tube and a piezometer are 

installed in a vertical pipe as shown in the figure. If 

the deflection in the mercury manometer is 0.1 m, 

then determine the velocity of the water at the center 

of the pipe. The densities of water and mercury are 

1000 kg/m3 and 13600 kg/m3, respectively. 

 

 
Applying Bernoulli equation between points 1 and 2 along the streamline 

 
2 2

1 1 2 2
1 2

2 2w w

p V p V
gz gz

 
+ + = + +  

 

However, from the principles of manometry 

   

( )1 1 2x w mp p g h h gh = − + −  

and 

( )2 2x wp p g h h= − +  

 

Also according to the chosen datum z1 = h1 and z2 =0. 

Finally as long as point 2 is a stagnation point, then the velocity at this point is zero,  

that is V2 =0. Then the Bernoulli equation takes the form 

  

( ) ( )2
1 2 21

1
2

x w m x w

w w

p g h h gh p g h hV
gh

  

 

− + − − +
+ + =  

Solving for velocity at point 1 

( )( )

1

1

2 1

13600
2 9.81 0.1 1 4.97 m/sec

1000

m

w

V gh

V





 
= − 

 

 
= − = 

 
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RELATION BETWEEN THE FIRST LAW OF THERMODYNAMICS 

AND THE BERNOULLI EQUATION 

 
Consider steady flow in the absence of shear forces. We choose a control volume bounded by 

streamlines along its periphery. Such a control volume often is called a streamtube. 

 

 
  

Basic equation (Energy equation) 

 ( )
0 0 0

0

s shear other

C CS

Q W W W e d e p V dA
t

  



− − − = + + 

    

  

Restrictions: 1) 0sW =  

  2) 0shearW =  

  3) 0otherW =  

  4) Steady flow 

  5) Uniform flow and properties at each section 

Under these restrictions 

 

   
2 2

1 2
1 1 1 1 1 1 1 2 2 2 2 2 2 20

2 2

V V
u p gz V A u p gz V A Q   
   

= − + + + − + + + + − −   
   

 

  

But from continuity under these restrictions 

     

0

0
C CS

d V dA
t

 



= + 
     

or      1 1 1 2 2 20 V A V A = − + −  

 

That is,  

   

  1 1 1 2 2 2m V A V A = =  

  

Also, 

  
Q Q dm Q

Q m
t dm dt dm

  


= = =  

 

Thus, from the energy equation 
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2 2

2 1
2 2 2 1 1 1 2 10

2 2

V V Q
p gz p gz m u u m

dm


 

      
= + + − + + + − −      

     
 

or 

  
2 2

1 2
1 1 1 2 2 2 2 1

2 2

V V Q
p gz p gz u u

dm


 

 
+ + = + + + − − 

 
  

  

Under the restriction of incompressible flow 
1 2

1
 


= =  and hence  

  
2 2

1 1 2 2
1 2 2 1

2 2

p V p V Q
gz gz u u

dm



 

 
+ + = + + + − − 

 
 

 

This will reduce to the Bernoulli equation if the term in parentheses were zero. Thus, under the 

additional restrictions,  

  6) incompressible flow 
1 2

1
constant 


= = =  

  7) 
2 1 0

Q
u u

dm

 
− − = 

 
 

  

The energy equation reduces to  

 

  
2 2

1 1 2 2
1 2 constant

2 2

p V p V
gz gz

 
+ + = + + =  

 

The Bernoulli equation was derived from momentum considerations (Newton’s second law), 

and is valid for steady, incompressible, frictionless flow along a streamline. 

 

In this section, the Bernoulli equation was obtained by applying the first law of thermodynamics 

to  a streamtube control volume, subject to restrictions 1 through 7 above. 

  

Example: Consider the frictionless, incompressible flow with heat transfer.  

Show that 
2 1

Q
u u

dm


− = . 

 

In general internal energy u, can be expressed as  

  ( ),u u T v=  

For incompressible flow v = constant, and ( )u u T= . 

Thus, the internal energy change for any process, 2 1u u− , depends only on the temperatures at 

the end states. 

 

From the Gibbs (property) equation Tds du pdv= +  

  

   

0

Tds du pdv= +  since v = constant for incompressible flow 
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Since, frictionless flow is a reversible process 

   

  

2

1

Q
Tds

dm


=  

Therefore, 

   

 
2 2

2 1

1 1

Q Q
Tds u u u

dm dm

 
= =  − =   

 

 

Often it is convenient to represent the mechanical energy level of a flow graphically. The energy 

equation, that is Bernoulli equation, suggests such a representation. Dividing Bernoulli equation 

by g, we obtain 

  

    
2

constant
2

p V
z H

g g
+ + = =  

 

Each term has dimensions of length, or “head” of flowing fluid. The individual terms are  

  

 
p

g
 is the head due to local static pressure 

 
2

2

V

g
 is the head due to local dynamic pressure 

             z is elevation head 

            H  is the total head of the flow 

 

The energy grade line (EGL): The locus of points at a vertical distance,  

 
2

2

Vp
H z

g g
= + + , measured above a horizontal datum, which is the total head of the fluid. 

  

The hydraulic grade line (HGL): The locus of points at a vertical distance,  

 

 
p

z
g
+ , measured above a horizontal datum. 

  

The difference is heights between the EGL and HGL represents,  

 

the dynamic (velocity) head, 
2

2

V

g
. 
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UNSTEADY BERNOULLI EQUATION – INTEGRATION OF EULER’S 

EQUATION ALONG A STREAMLINE 
 

Consider the streamwise Euler equation in streamline coordinates 

  

    
1

0
V p z V

V g
s s s t

   
+ + + =

   
 

 

The above equation may now be integrated along an instantaneous streamline from point 1 to 

point 2 to yield 

  

   

2 2 2 2

1 1 1 1

1
0

V p z V
V ds ds g ds ds

s s s t

   
+ + + =

        
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For an incompressible flow, it becomes 

  

 

22 2

1 1 2 2
1 2

1
2 2

sVp V p V
gz gz ds

t 


+ + = + + +


 

 

Restrictions: 1) Incompressible flow 

  2) Frictionless flow 

  3) Flow along a streamline 

 

Example: A long pipe is connected to a large reservoir that initially is filled with water to a 

depth of 3m. The pipe is 150 mm in diameter and 6 m long. As a first approximation, friction 

may be neglected. Determine the flow velocity leaving the pipe as a function of time after a cap 

is removed from its free end. The reservoir is large enough so that the change in its level may 

be neglected. 

 

 
Given: h = 3 m 

 D = 150 mm 

 L = 6 m 

 

Find: V2(t) = ? 

Basic equation:  
22 2

1 1 2 2
1 2

1
2 2

sVp V p V
gz gz ds

t 


+ + = + + +


 

Assumptions:  1. Incompressible flow 

  2. Frictionless flow  

3. Flow along a streamline from point 1 to point 2 

4. 
1 2 atmp p p= =  

5. 2

1 0V =  

6. 
2 0z =  

7. 1 constantz h= =  

8. Neglect velocity in the reservoir, except for small region near the inlet to the 

tube. 

 
22 2

1 2
1 2

10
0

2 2

atm atm sp p VV V
gz g z ds

t 


+ + = + + +


 

 

  

22

2
1

1
2

sVV
gz gh ds

t


= = +


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In view of assumption 8, the integral becomes 

  

  

2

1 0

L

s sV V
ds ds

t t

 


    

 

In the tube, Vs = V2 everywhere, so that 

 

  2 2

0 0

L L

sV dV dV
ds ds L

t dt dt


= =

   

Substituting gives 

  
2

2 2

2

V dV
gh L

dt
= +  

 

Separating varibles, we obtain 

 

  2

2

22 2

dV dt

gh V L
=

−
 

 

Integrating between limits V = 0 at t = 0, and V = V2 at t = t, 

 

  

2

2

2

0

1

0

2 2

1
tanh

22 2

V

V

dV t

gh V L

V t

Lgh gh

−

=
−

  
=   

   


 

 

Since ( )1tanh 0 0− = , we obtain 

  
1 21

tanh
22 2

V t

Lgh gh

−
 

=  
 

 

or  2 tanh 2
22

V t
gh

Lgh

 
=  

 
  

 

For the given conditions 

 

2 2(9.81)(3) 7.67 m/sgh = =
 

and 
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2 (7.67) 0.639

2 2(6)

t t
gh t

L
= =

 
 

The result is then ( )2 7.67 tanh 0.639 m/sV t=  
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IRROTATIONAL FLOW 

 

When the fluid elements moving in a flow field do not undergo any rotation, then the flow is 

known to be irrotational. For an irrotational flow, 

0  or   0w V=  =    

 

 that is,  0
w v u w v u

y z z x x y

     
− = − = − =

     
 

 

In cylindrical coordinates, 

 
1 1

0z r z r
V rVV V V V

r z z r r r

 

 

    
− = − == − =

     
 

 

BERNOULLI EQUATION APPLIED TO IRROTATIONAL FLOW 
  

Euler equation for steady flow was 

 

( )
1

p g z V V


−  −  =    

  

using vector identity 

 

( ) ( ) ( )
1

2
V V V V V V =   −    

 

We see that for irrotational flow 0V = ; therefore,  

 

( ) ( )
1

2
V V V V =    

  

and Euler’s equation for irrotational flow can be written as  

 

( ) ( )21 1 1

2 2
p g z V V V


−  −  =   =   

 

During the interval dt, a fluid particle moves from the vector position r to the position .r dr+             

Taking the dot product of dr dxı dyj dzk= + + with each of the terms in above equation, we 

obtain  

 

( )21 1

2
p dr g z dr V dr


−   −   =    

 and hence 

( )21

2

dp
gdz d V


− − =  
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integrating this equation gives, 

 
2

constant
2

dp V
gz


+ + =  

 

For incompressible flow,  = constant, and  

 
2

constant
2

p V
gz


+ + =  

 

Since dr  was an arbitrary displacement, this equation is valid between any two points in the 

flow field. The restrictions are  

  

1. Steady flow 

2. Incompressible flow 

3. Inviscid flow 

4. Irrotational flow 

 

VELOCITY POTENTIAL 
  

We can formulate a relation called the potential function, , for a velocity field that is 

irrotational. To do so, we must use the fundamental vector identity 

 

( ) ( )curl grad 0 =   =  

 

which is valid if (x,y,z,t) is a scalar function, having continuous first and second derivatives. 

  

Then, for an irrotational flow in which 0V = , a scalar function, , must exist such that the 

gradient of  is equal to the velocity vector, V . 

 

V    

thus,  

u v w
x y z

    
= − = − = −

  
  

  

In cylindrical coordinates 

   

1
r zV V V

r r z


  



  
= − = − = −

  
 

 

The potential velocity, , exists only for irrotational flow. Irrotationality may be a valid 

assumption for those regions of a flow in which viscous forces are negligible. For example, 

such a region exists outside the boundary layer in the fluid over a solid surface. 

  

All real fluids possess viscosity, but there are many situations in which the assumption of 

inviscid flow considerably simplifies the analysis and gives meaningful results. 
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STREAM FUNCTION AND VELOCITY POTENTIAL  

FOR TWO DIMENSIONAL, IRROTATIONAL INCOMPRESSIBLE FLOW; 

LAPLACE’S EQUATION 

 

For two dimensional, incompressible, inviscid flow, velocity components u and v can be 

expressed in terms of stream function, , and the velocity potential, ,  

  

u v
y x

u v
x y

 

 

 
= = −
 

 
= − = −

 

 

  

Substituting for u and v into the irrotational condition  

 

2 2

2 2

0 we obtain

0 (A)

v u

x y

x y

 

 
− =

 

 
+ =

 

 

 

Substituting for u and v into the continuity equation 

 

2 2

2 2

0

we obtain

0 (B)

u v

x y

x y

 

 
+ =

 

 
+ =

 

 

 

Equations (A) and (B) are forms of Laplace’s equation. Any function   or   that satisfies 

Laplace’s equation represents a possible two dimensional, incompressible, irrotational flow 

field. 

 

Along a streamline, stream function  is constant, therefore  

 

0d dx dy
x y

 


 
= + =
 

 

  

The slope of a streamline becomes 

 

/

/

dy x v v

dx y u u





  −
= − = − =

 
 

  

Along a line of constant  , d = 0 and  

 

0d dx dy
x y

 


 
= + =
 
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Consequently, the slope of a potential line becomes  

  

    
/

/

dy x u

dx y v





 
= − = −

 
 

 

As potential lines and streamlines have slopes that are negative reciprocals; they are 

perpendicular. 

 

 
 

Example: Consider the flow field given by  = 4x2 – 4y2. Show that the flow is irrotational. 

Determine the stream function for this flow. 

 

NOTE: According to our textbook notation u v
x y

  
= − = −

 
 

8

8

u x
x

v y
y






= − = −




= − =



 

 

If the flow is irrotational, then z = 0. Since, 

 

( )
1 1

0 0 0
2 2

z

v u

x y


  
= − = − = 

  
 

 Therefore, the flow is irrotational. 

 

8 8 ( )

8 8 ( )

( ) 0 ( )

u x xy f x
y y

v y y f x
x

f x f x C

 




 
=  = −  = − +
 


= −  = +



 =  =

 

Thus,   8xy C = − +  
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ELEMENTARY PLANE FLOWS 

  

A variety of potential flows can be constructed by superposing elementary flow patterns. The 

 and  functions for five elementary two-dimensional flows – a uniform flow, a source, a 

sink, a vortex and a doublet are summarized in the Table below. 
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SUPERPOSITION OF ELEMENTARY PLANE FLOWS 

 

We showed that both   and  satisfy Laplace’s equation for flow that is both incompressible 

and irrotational. Since Laplace’s equation is a linear homogeneous partial differential 

equation, solutions may be superposed (added together) to develop more complex and 

interesting patterns of flows. 

 

Table. Superposition of Elementary Plane Flows 
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Example: A source with strength of 0.2 m3/sm and a counterclockwise vortex with strength 

of 1 m3/s are placed on the origin. Obtain streamfunction and velocity potential, and velocity 

filed for the combined flow. Find the velocity at point (1,0.5). 

 

For source 

 20.2
ln ln /

2 2
s

q
r r m s

 
= − = −  

and  20.2
/

2 2
s

q
m s  

 
= =  

 

For vortex 

21
/

2 2
v

K
m s  

 
= − = −  

and  21
ln ln /

2 2
v

K
r r m s

 
= − = −  
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     
21

0.1ln /
2

r m s





 
= − + 

 
 

21 ln
0.1 /

2

r
m s 



 
= − − 

 
 

 
 

1

10

1 1

2

rV
r r

V
r r









 


= − =




= − =



 

 

 
2 2 2 21 0.5 1.117r x y m= + = + =   

  

1 1
0.0295 /

10 10 (1.117)

1 1
0.143 /

2 2 (1.117)

rV m s
r

V m s
r



 

 

= = =

= = =

 

 

Example: The following stream function represents the flow past a cylinder of radius “a” 

with circulation 
2

sin sin ln
Ua r

Ur aU
r a

  
 

= − −  
 

 

 

Determine the pressure distribution over the cylinder. 

 
2 2

2

2 2

2 2

1 1
cos cos 1 cos

sin sin 1 sin

r

Ua a
V Ur U

r r r r

Ua aU a a
V U U

r r r r r
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    
= − = − + − = − +   

     

 

 

 
We now apply Bernoulli equation to streamlines immediately adjacent to the surface of the 

cylinder. With Vr = 0 at the cylinder surface, Bernoulli equation gives 

 

 2 2 2 21 1
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2 2 s s s

s
s s r r
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where ps and Vs are the pressure and velocity on the cylinder surface, respectively. 

 
2

2 2
2

2

1
1 sin

2 2

spp U a a
U

a a


 


  
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  

 

or 

 
2

221
1 2sin

2 2

spp U
U 

 
 + = + −  

or 

( )
2

21 1 4sin 4sin
2

sp p U
 


−

 = − − +
 
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DIMENSIONAL ANALYSIS AND SIMILITUDE 
 

Many real fluid flow problems can be solved, at best, only approximately by using analytical 

or numerical methods. Therefore, experiments play a crucial role in verifying these approximate 

solutions.  

 

Solutions of real problems usually involve a combination of analysis and experimental work. 

First, the real physical flow situation is approximated with a mathematical model that is simple 

enough to yield a solution. Then experimental measurements are made the check the analytical 

results. Based on the measurements, refinements are made in the analysis. The experimental 

results are an essential link in this iterative process.  

 

The experimental work in the laboratory is both time consuming and expensive. The obvious 

goal is to obtain the most information from the fewest experiments.  

 

The dimensional analysis is an important tool that often helps in achieving this goal. 

Dimensional analysis is packaging or compacting technique used to reduce the complexity of 

experimental programs and at the same time increase the generality of experimental 

information. 

 

Consider the drag force on a stationary smooth sphere immersed in a uniform stream. What 

experiments must be conducted to determine the drag force on the sphere? 

  

 

 

 

 

 

 

 

 

 

 

 

We would expect the drag force, F, depend on diameter of the sphere, D, the fluid velocity, V, 

fluid viscosity, µ and the fluid density ρ. That is, 

 

𝐹 = 𝑓(𝐷, 𝑉, 𝜌, 𝜇) 

 

Let us imagine a series of experiments to determine the dependence of F on the variables D, V, 

ρ and µ. To obtain a curve of F versus V for fixed values of ρ, µ and D, we might need tests at 

10 values of V. To explore the diameter effect, each test would be repeat for spheres of ten 

different diameters. If the procedure were repeated for 10 values of ρ and µ in turn, simple 

arithmetic shows that 104 separate test would be needed. Also we would have to find 100 

different fluids. Because we need 10 different ρ’s and 10 different µ’s. Assuming each test takes 

½ hour and we work 8 hours per day, the testing will require 2.5 years to complete. 

Dimensional analysis comes to rescue. If we apply dimensional analysis, it reduces to the 

equivalent form. 

 

F 

V 

µ 

ρ 

D 



67 

 

𝐹

𝜌𝑉2𝐷2
= 𝑓1 (

𝜌𝑉𝐷

𝜇
) 

 

The form of function still must be determined experimentally. However, rather than needing to 

conduct 104 experiments, we would establish the nature of function as accurately with only 10 

tests. 

 

BUCKINGHAM PI THEOREM 
 

The dimensional analysis is based on the Buckingham Pi theorem. Suppose that in a physical 

problem, the dependent variable q1 is a function of n-1 independent variables q2, q3, ….., qn. 

Then the relationship among these variables may be expressed in the functional form as 

 

𝑞1 = 𝑓(𝑞2, 𝑞3, … , 𝑞𝑛) 

 

Mathematically, we can express the functional relationship in the equivalent form. 

 

𝑔(𝑞1, 𝑞2, 𝑞3, … , 𝑞𝑛) = 0 

Where g is an unspecified function, and it is different from the function f. For the drag on sphere 

we wrote the symbolic equation 

 

𝐹 = 𝑓(𝐷, 𝑉, 𝜌, 𝜇) 

 

We could just as well have written 

 

𝑔(𝐹, 𝐷, 𝑉, 𝜌, 𝜇) = 0 

 

The Buckingham Pi theorem states that, the n parameters may be grouped into n-m independent 

dimensionless ratios, or π parameters, expressible in functional form by 

 

𝐺(𝜋1, 𝜋2, … , 𝜋𝑛−𝑚) = 0 

or 

𝜋1 = 𝐺1(𝜋2, 𝜋3, … , 𝜋𝑛−𝑚) 

 

The number m is usually, but not always, equal to the minimum number of independent 

dimensions required to specify the dimensions of all the parameters, q1, q2, ….., qn. 
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DETERMING THE  GROUPS 
 

To determine the π parameters, the steps listed below should be followed. 

 

Step 1 

Select all the parameters that affect a given flow phenomenon and write the functional 

relationship in the form 

 

𝑞1 = 𝑓(𝑞2, 𝑞3, … , 𝑞𝑛) 

or 

𝑔(𝑞1, 𝑞2, … , 𝑞𝑛) = 0 

 

If all the pertinent parameters are not included, a relation may be obtained, but it will not give 

the complete story. If parameters that actually have no effect on the physical phenomenon are 

included, either the process of dimensional analysis will show that these do not enter the relation 

sought, or experiments will indicate that one or more nondimensional groups are irrelevant. 

 

Step 2 

List the dimensions of all parameters in terms of the primary dimensions which are the mass, 

M, the length, L, and the time, t (MLt), or the force, F, the length, L, and the time, t (FLt). Let 

“r” be the number of primary dimensions. 

 

Step 3 

Select a number of repeating parameters, equal to the number of primary dimensions, r, and 

including all the primary dimensions. As long as, the repeating parameter may appear in all of 

the nondimensional groups that are obtained, then do not include the dependent parameter 

among those selected in this step. 

 

Step 4 

Set up dimensional equation, combining the parameters selected in step 3 with each of the 

remaining parameters in turn, to form dimensionless groups. (There will be n-m equations). 

Solve the dimensional equation to obtain the (n-m) dimensionless groups. 

 

Step 5 

Check to see that each group obtained is dimensionless. 
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Example: The drag force, F, on a smooth sphere, which is moving comparatively slowly 

through a viscous fluid, depends on the relative velocity, V, the sphere diameter, D, the fluid 

density, ρ, and the fluid viscosity, µ. Obtain a set of dimensionless groups that can be used to 

correlate experimental data. 

Solution: 

 

Step 1 F V D   n = 5 parameters 
 

Step 2 
2t

ML
 

t

L
 L  

3L

M
 

Lt

M
 

r = 3 primary dimensions 
 
 

Step 3 Select repeating parameters , V, D 
 

Step 4 Then, n-m = 2 dimensionless groups will result. Setting up dimensional 
equations, we obtain, 
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Equating the exponents of M, L, and t results in 
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Similarly,  
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 Step 5: Check using F, L, t dimensions 
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 The functional relationship is  
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Example: When a small tube is dipped into a pool liquid, surface 

tension causes a meniscus to form at the free surface, which is 

elevated or depressed depending on the contact angle at the 

liquid-solid-gas interface. Experiments indicate that the 

magnitude of the capillary effect, Δh, is a function of the tube 

diameter, D, liquid specific weight, γ, and surface tension, σ. 

Determine the number of independent π parameters that can be 

formed and obtain a set. 

Solution: 

Given:  Δh = f(D, , ) 

 

Find: Determine the number of independent π parameters and obtain a set of π parameters. 

 

 

       
Step 1 h D   n = 4 parameters 

 
Step 2 Choose primary dimensions, use both M, L, t and F, L, t dimensions to illustrate 

the problem in determining m. 
 

 a) M, L, t b) F, L, t 
 

 h D   h D   

 L  L  
22tL

M
 

2t

M
 

L  L  
3L

F
 

L

F
 

 r = 3 primary dimensions r = 2 primary dimensions 
 

 Thus for each primary set of dimensions we ask, “Is m eq al to r?” Let  s check 
each dimensional matrix to find out. The dimensional matrices are, 
 

  h D   

M 
L 
t 

0 
1 
0 

0 
1 
0 

 1 
-2 
-2 

 1 
 0 
-2 

 

 h D   

F 
L 

0 
1 

0 
1 

 1 
-3 

 1 
-1 

 

 The rank of a matrix is equal to the order of its largest nonzero determinant. 
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− = 0– (1)(-2)+(1)(-2) 

                           =0 

22

02

−−

−
 = 4  0   

 m = 2 

     m  r 

13

11

−−
= -1+3= 2  0 

 

 m = 2 
     m = r 

 *Alternatively, you may use reduced row echelon form of the matrix to 
determine the rank of the matrix. The number of nonzero rows of the reduced 
row echelon matrix give the rank of that matrix. 
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Step 3 m = 2. Choose D,  as repeating 
parameters. 

m = 2. Choose D,  as repeating 
parameters. 

Step 4 n-m = 2 dimensionless groups will 
result 

n-m = 2 dimensionless groups will 
result 
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Step 5 Check using F, L, t dimensions Check using M, L, t dimensions 
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 Therefore, both systems of dimensions yield the same dimensionless  
parameters. The functional relationship is 
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DIMENSIONLESS GROUPS OF SIGNIFICANCE IN FLUID 

MECHANICS 
 

There are several hundred dimensionless groups in engineering. Following tradition, each such 

group has been given the name of a prominent scientist or engineer, usually the one who 

pioneered its use. 

 

Forces encountered in the flowing fluids include those due to inertia, viscosity, pressure, 

gravity, surface tension, and compressibility. The ratio of any two forces will be dimensionless. 

We can estimate typical magnitudes of some of these forces in a flow: 
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Inertia forces are important in most fluid mechanics problems. The ratio of the inertia force to 

each of other forces listed above leads to five fundamental groups encountered in fluid 

mechanics. 

 

The Reynolds number is the ratio of inertia forces to the viscous forces, and it is named after 

Osbourne Reynolds (1842 - 1912). 
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where p is the pressure difference between local pressure and the freestream pressure. 
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speed. sonic local  theis  where          
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FLOW SIMILARITY AND MODEL STUDIES 
 

When an object, which is in original sizes, is tested in laboratory it is called prototype. A model 

is a scaled version of the prototype. A model which is typically smaller than its prototype is 

economical, since it costs little compared to its prototype. The use of the models is also 

practical, since environmental and flow conditions can be rigorously controlled. However, 

models are not always smaller than the prototype. As an example, the flow in a carburetor might 

be studied in a very large model. 

 

There are three basic laws of similarity of model and prototype flows. All of them must be 

satisfied for obtaining complete similarity between fluid flow phenomena in a prototype and in 

a model. These are 

 

a) The geometric similarity, 

b) the kinematic similarity, and 

c) the dynamic similarity. 

 

Geometric Similarity: The geometric similarity requires that the model and prototype be 

identical in shape but differ in size. Therefore, ratios of the corresponding linear dimensions in 

the prototype and in the model are the same. 

 

Kinematic Similarity: The kinematic similarity implies that the flow fields in the prototype 

and in the model must have geometrically similar sets of streamlines. The velocities at 

corresponding points are in the same direction and are related in magnitude by a constant scale 

factor. 

 

Dynamic Similarity: When two flows have force distributions such that identical types of 

forces are parallel and are related in magnitude by a constant scale factor at all corresponding 

points, the flows are dynamically similar. 

 

By using Buckingham  theorem, we can find which dimensionless groups are important for a 

given flow phenomenon. To achieve dynamic similarity between geometrically similar flows, 

we must duplicate all of these dimensionless groups. 

 

For example, in considering the drag force on sphere we found that 
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Thus in considering a model flow and prototype flow about a sphere, the flows will be 

dynamically similar if  
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The results determined from the model study can be used to predict the drag on the full scale 

prototype. 

 

Example: A one-tenth-scale model of a derby car, shown in the figure, is tested in a wind 

tunnel. The air speed in the wind tunnel is 70 m/s, the air drag on the model car is 240 N, and 

the air temperature and pressure are identical those expected when the prototype car is racing. 

Find the corresponding racing speed in still air and the drag on the car. 

 

        
 

Solution: 

The functional relation for the drag force can be found by applying Buckingham- theorem 

such that 
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to ensure dynamic similarity The problem statements show that  m =p and m =p. Then, 
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This speed is low enough to neglect compressibility effects. At these test conditions, the model 

and the prototype flows are dynamically similar. Hence, 
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Example: A jet plane travelling at a velocity of 900 m/s at 6 km altitude, where the 

temperature and the pressure are -24 C and 47.22 kPa, respectively. A one-tenth scale model 

of the jet is tested in a wind tunnel in which carbon dioxide is flowing. The gas constant for 

air and carbon dioxide are 287 J/kg K and 18.8 J/kgK, respectively. The specific heat ratios 

for air and carbon dioxide are 1.4 and 1.28, respectively. Also the absolute viscosities of the air 

at -24 C and carbon dioxide at 20 C are 1.610-5 Pa.s and 1.4710-5 Pa.s, respectively.  

 

Solution: 

 

Determine  

a)The required velocity in the model, and  

b)The pressure required in the wind tunnel.    

 

a) As long as the model jet plane is moving in a compressible fluid, then a free surface does not 

exist. Therefore, it is not necessary to concern either with the wave or surface tension effects. 

The Froude and the Weber numbers play no role for the dynamic similarity. In order to achieve 

dynamic similarity, the Reynolds numbers and Mach numbers must be equal on the model and 

on the prototype. 
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Then the velocity of the model jet plane is 
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b) The other requirement for the dynamic similarity is the equality of the Reynolds numbers 

 

mp ReRe ===
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The density of air may be evaluated by using equation of state for a perfect gas 
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Now, required density of the carbon dioxide may be evaluated as  
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Finally, the required pressure of the carbon dioxide is 

 

   kPa38.3982937.18724.7 === pmmmm TRp   
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INCOMPLETE SIMILARITY 
 

To achieve complete dynamic similarity between geometrically similar flows all of the 

dimensionless numbers in prototype and in the model (that is Re, Eu, Fr, We, M,.. ) should be 

equal. 

 

Fortunately, in most engineering problems, the equality of all of dimensionless groups is not 

necessary. Since some of forces 

 

i. may not act 

ii. may be negligible magnitude or 

iii. may oppose other forces in such a way that the effect of both is reduced. 

 

In some cases, complete dynamic similarity may not be attainable. Determining the drag force 

of surface ship is on example of such a situation. The viscous shear stress and surface wave 

resistance cause the drug. So that for complete dynamic similarity, both Reynolds and Froude 

numbers must be equal between model and prototype. This requires that 

 

 

𝐹𝑟𝑚 =
𝑉𝑚

(𝑔𝐿𝑚)
1
2

= 𝐹𝑟𝑝 =
𝑉𝑝

(𝑔𝐿𝑝)
1
2

 

 

𝑉𝑚

𝑉𝑝
= (

𝐿𝑚

𝐿𝑝
)

1
2

 

 

 

To ensure dynamically similar surface wave patterns. 

 

From the Reynolds number requirement 

 

𝑅𝑒𝑚 =
𝑉𝑚𝐿𝑚

ν𝑚
= 𝑅𝑒𝑝 =

𝑉𝑝𝐿𝑝

ν𝑝
 

 
ν𝑚

ν𝑝
=

𝑉𝑚

𝑉𝑝

𝐿𝑚

𝐿𝑝
 

 

 

If we use the velocity ratio obtained from matching Froude numbers, equality of Reynolds 

number leads to a kinematic viscosity ratio of 

 

ν𝑚

ν𝑝
= (

𝐿𝑚

𝐿𝑝
)

1
2

(
𝐿𝑚

𝐿𝑝
) = (

𝐿𝑚

𝐿𝑝
)

3
2

 

 

 

If Lm/Lp equals 1/100 (a typical length scale for ship model tests), then νm/ νp must be 1/1000. 

Mercury, which is the only liquid, its kinematic viscosity is less than water. Thus, we cannot 

simultaneously match Reynolds number and Froude number in the scale-model test. Then one 
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is forced to choose ether the Froude number similarity, or the Reynolds number similarity. For 

this reason, the experiments with the model are performed so that Frp = Frm which results 

Rep >> Rem. The test results are then corrected by using the experimental data which is 

dependent on the Reynolds number. 

 

Example: The drag force on a submarine, which is moving on the surface, is to be determined 

by a test on a model which is scaled down to one-twentieth of the prototype. The test is to be 

carried in a towing tank, where the model submarine is moved along channel of liquid. The 

density and the kinematic viscosity of the seawater are 1010 kg/m3 and 1.310-6 m2/s 

respectively. The speed of the prototype is 2.6 m/s. 

 

a) Determine the speed at which the model should be moved in the towing tank. 

b) Determine the kinematic viscosity of the liquid that should be used in the towing tank. 

c) If such a liquid is not available, then the test may be carried out with seawater by 

neglecting the viscous effects. In this case, determine the ratio of the drag force due to 

the surface waves in the prototype to the drag force in the model. 

 

 

a) Because of low speed of the submarine, the compressibility has no effect on the dynamic 

similarity, and the Mach number plays no role. 

The Froude numbers for the prototype and the model may be equated to yield. 

 

𝐹𝑟𝑝 =
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(𝑔𝐿𝑝)
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=
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)

1
2

= 2.6 (
1
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)

1
2

= 0.58 𝑚/𝑠 

 

b) To determine the kinetic viscosity of the liquid that should be used in the towing tank, 

one may equate the Reynolds number in the model and prototype. 

 

𝑅𝑒𝑝 =
𝑉𝑝𝐿𝑝

ν𝑝
=

𝑉𝑚𝐿𝑚

ν𝑚
= 𝑅𝑒𝑚 

 

Rearranging one may obtain 

 

ν𝑚 = ν𝑝 (
𝑉𝑚

𝑉𝑝
) (

𝐿𝑚

𝐿𝑝
) = 1.3x10−6 (

0.58

2.6
) (

1

20
) = 1.45x10−8 𝑚2/𝑠 

 

c) However, one should note that a liquid with a given kinematic viscosity cannot be 

practically formed. Then the test in towing tank may be carried out with seawater by neglecting 

the viscous effects. In this case, only the equality of the Froude number is sufficient for the 

dynamic similarity and the drag force is only due to the surface waves. 

By using Buckingham π theorem one may obtain. 

 
𝐹

𝜌𝑉2𝐿2
= 𝑓(𝑅𝑒, 𝐹𝑟) 

 

But in this case only the equality of the Froude number is sufficient, then 
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𝐹
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Frmodel=Frprototype  
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This result must be corrected for viscous effects. 

 

 

 


