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Sinyal Nedir:

Signals are functions of time that represent the evolution of variables such as a furnace
temperature, the speed of a car, a motor shaft position, or a voltage. Common examples of
signals are human speech, temperature, pressure, and stock prices.

Electrical signals, normally expressed in the form of voltage or current waveforms, are some of
the easiest signals to generate and process. There are two types of signals: continuous-time
signals and discrete-time signals.
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Sinyallerin siniflandirilmasi:

Continuous-time signals: If a signal is defined for all values of the independent variable t, it is
called a continuous-time (CT) signal. Since these signals vary continuously with time t and have
known magnitudes for all time instants, they are classified as CT signals.

In contrast, a discrete-time signal is defined only at discrete instants of time. Thus, the
independent variable has discrete values only, which are usually uniformly spaced. A
discrete-time signal is often derived from a continuous-time signal by sampling it at a uni-
form rate. Let T, denote the sampling period and 7 denote an integer that may assume pos-
itive and negative values. Then sampling a continuous-time signal x(¢) at time ¢ = nT,
yields a sample with the value x(nT;). For convenience of presentation, we write

x[n] = x(nT}), n=0,%1,42,.... (1.1)
x(1)
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A discrete-time signal x[n] can be defined in two ways:

We can specify a rule for calculating the nth value of the sequence. For example,

14
x[n] =,tﬂ={[*’-] nz0
0 n <1

f

or () ={1L3. 4., (3) ,}

We can also explicitly list the values of the sequence. For example, the sequence
shown in Fig. 1-1(b) can be written as

{x,}=1...,0,0,1,2,2,1,0,1,0,2,0,0,...}
[
or {x,}=11,2,2,1,0,1,0,2)

I

We use the arrow to denote the 7 =10 term. We shall use the convention that if no

arrow 1s indicated, then the first term corresponds to n =0 and all the values of the
sequence are zero for n < 0.




Example 1.1

Consider the CT signal x(r) = sin(m¢) plotted in Fig. 1.3(a) as a function of
time ¢. Discretize the signal using a sampling interval of T = 0.25 s, and sketch

the waveform of the resulting DT sequence for the range —8 < k£ < &.

x(1) = sini 1)

x[=8] = x(=8T) = sin(=2m) = 0,

i i L
- B R 1\_/1 x[=T7] = x(=7T) = sin(—1.757) = 7
o x[—=6] = x(—6T) = sin(—=1.57) = 1,
x[=5] =x(=5T)=sm(=1.257) = v%:f
x[k] = sin(0.257k) x[=4] =x(—=4T ) =sm(—m) =0,
e (I S : . , l
, . : _ x[=3]=x(=3T)=sin(=0.757) = — —.
T 1} I -2 I “ ] f = V2
) o | . —k i __
M _41 l l 1o 41 13 x[=2] = x{(=2T) = sin(=0.5m) 1,
- x[=1l]=x(=T)=sm({-0257) = —-—

S

Fork =0,%1, =2, ..., the DT signal x[k] has the following values:

x[1] = x(T) =sm(0.257) =

¥[2] = x(2T) = sin(0.57) = 1,

|
E+

x[3] = x(3T) = sin(0.757) = %

x[4] = x(4T) = sin(7) = 0,

x[5] = x(5T) = sin(1.257) = —
x[6] = x(6T) = sin(1.57) = —1
x[7] = x(7T) = sin(1.757) = —

x[8] = x(8T) = sin(2w) = 0,

-

-
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B. Analog and Digital Signals:

If a continuous-time signal x{¢) can take on any value in the continuous interval (a, b),
where a may be —= and b may be +=, then the continuous-time signal x(r) is called an
analog signal. If a discrete-time signal x[n] can take on only a finite number of distinct
values, then we call this signal a digital signal.

C. Real and Complex Signals:
A signal x(¢) is a real signal if its value is a real number, and a signal x(¢) is a complex
signal if its value is a complex number. A general complex signal x(¢) is a function of the

form

x(1) =x,(1) +jx,(1) (1.1)

where x,(t) and x,(t) are real signals and j=v - 1.
Note that in Eq. (1.1) t represents either a continuous or a discrete variable.

D. Deterministic and Random Signals:

Deterministic signals are those signals whose values are completely specified for any
given time. Thus, a deterministic signal can be modeled by a known function of time ¢.
Random signals are those signals that take random values at any given time and must be
characterized statistically. Random signals will not be discussed in this text.



0dd and even signals

A CT signal x.(r) 1s said to be an even signal if

Xelt) = xe(—t).
Conversely, a CT signal x,(7) 1s said to be an odd signal 1f
Xo(t) = —xo(=1).
A DT signal x.[k] 1s said to be an even signal 1f
xe[k] = xe[—K].

Conversely, a DT signal x,[£] 1s said to be an odd signal 1f

Xolk] = —xp[—=K].
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Neither odd nor even signals can be expressed as a sum of even and odd signals

as follows:
.I{f} = Xell) + -‘-'u-“].
where the even component x.(t) is given by while the odd component x,(r) is given by
1 1
Xelt) = E[ﬂl-‘} + x(—=1)]. x,(1) = E[;{ﬂ — x(—1)].
Example 1.9
_ | | xel)
Express the CT signal
0.51T
t 0=1r<=1
x(t) = 0 elsewh >
elsewhere 2 -1 0 |
0.5+
as a combination of an even signal and an odd signal. (b)
: x,(1)
x(1)
| + 0.5 '-,/’Jf//[
0.5 T >
- -2 -1 s JE |
-2 -1 0 l 2

(c)



EXAMPLE 1.2 ANOTHER EXAMPLE OF EVEN AND ODD SiGgNALS  Find the even and odd
components of the signal

x(t) = e *cost.
Solution: Replacing t with —t in the expression for x(2) yields
x(—1) = e* cos(—1)
= ¢* cost.
1, _
x,(t) = E{E #cost + e¥cost) x,(t) = %{e_l'cnst — e” cost)

= cosh (2t) cost = —sinh (2¢) cost,

Even: 1 + 322 + 9¢*
x(t) =1+t + 32+ 5¢% + 9¢* >
Odd: t+ 5¢°

Even: cos’(10¢)
x(t) = (1 + °) cos’(10¢) m—) Odd: ¢’ cos’(10¢)



In the case of a complex-valued signal, we may speak of conjugate symmetry. A com-
plex-valued signal x(t) is said to be conjugate symmetric if
x(—t) = x*(t), (1.6)
where the asterisk denotes complex conjugation. Let
x(t) = a(z) + jb(¢),

where a(t) is the real part of x(¢), b(t) is the imaginary part, and j = V—1. Then the com-
plex conjugate of x(t) is

x*(t) = a(t) — jb(2).
Substituting x(¢) and x*(t) into Eq. (1.6) yields
a(—t) + jb(—t) = a(t) = jb(t).

> Problem 1.2 The signals x,(t) and x,(#) shown in Figs. 1.13(a) and (b) constitute
the real and imaginary parts, respectively, of a complex-valued signal x(¢). What form of
symmetry does x(z) have?

x(t) x,(1)

4 A
| I The signal x(t) is conjugate symmetric.
T2 0 T,z -T_-!J'z‘ 0 I
-A

(@ Figurel.13 2 ®




Combinations of even and odd CT signals

Consider g.(r) and A.(r) as two CT even signals and g,(r) and h,(r) as two
CT odd signals. The following properties may be used to classify different
combinations of these four signals into the even and odd categories.

(1) Muluplhication of a CT even signal with a CT odd signal results in a CT

odd signal. The CT signal x(f) = ge(f) x go(1) 18 therefore an odd signal.

(1) Muluplication of a CT odd signal with another CT odd signal results in a
CT even signal. The CT signal h(t) = g,(t) x hy(t) is therefore an even
signal.

(111) Muluplication of two CT even signals results in another CT even signal.
The CT signal z(r) = ge(r) x he(r) 15 therefore an even signal.

(1v) Due to 1ts antisymmetry property, a CT odd signal 1s always zero at ¢t = 0.
Therefore, g,(0) = h,(0) = 0.

(v) Integration of a CT odd signal within the limits [—T, T ] results in a zero
value, 1.e.

T T T T

=T =T =T i



Combinations of even and odd DT signals

Properties (1)=(vi) for CT signals can be extended to DT sequences. Consider
g2elk] and h.[k] as even sequences and g.[k] and h,[k] are as odd sequences.
For the four DT signals, the following properties hold true.

(1} Muluplication of an even sequence with an odd sequence results in an odd
sequence. The DT sequence x[k] = g.[k] = go[k], for example, 1s an odd
sequence.

(i) Multiplication of two odd sequences results in an even sequence. The DT
sequence filk] = gu[k] = hy[k]. for example, 1s an even sequence.
(1) Multplication of two even sequences results in an even sequence. The DT
sequence z[k] = gelk] x h.[k], for example, 15 an even sequence.
(iv) Due to its antisymmetry property, a DT odd sequence 1s always zero at
k = 0. Therefore, g,[0] = h,[0] = 0.
(v) Adding the samples of a DT odd sequence g,[k] within the range [—M,

M]is0, i1e. M M
Y glkl=0= ) hkl.

k=—M E=—M
(vi) Adding the samples of a DT even sequence g.[k] within the range [- M,
M| simplifies to M

M
Y gelk] = gl01+2) gelkl.
k=1

k=—M



Periodic and aperiodic signals

A periodic signal x(t) is a function of time that satisfies the condition
x(t) =x(t+ T) forall ¢, (1.7)

where T is a positive constant. Clearly, if this condition is satisfied for T = T, say, then it
is also satisfied for T = 2T,, 3T, 4T;,.... The smallest value of T that satisfies Eq. (1.7)
is called the fundamental period of x(t). Accordingly, the fundamental period T defines the
duration of one complete cycle of x(t). The reciprocal of the fundamental period T is called
the fundamental frequency of the periodic signal x(t); it describes how frequently the pe-
riodic signal x(t) repeats itself. We thus formally write

1
f= T (1.8)

The frequency f is measured in hertz (Hz), or cycles per second. The angular frequency, mea-
sured in radians per second, is defined by
2w

w=2nf= T (1.9)

» Problem 1.3 Figure 1.15 shows a triangular wave. What is the fundamental fre-
quency of this wave? Express the fundamental frequency in units of Hz and rad/s.

Answer: 5 Hz, or 107 rad/s. x()




The classification of signals into periodic and nonperiodic signals presented thus far
applies to continuous-time signals. We next consider the case of discrete-time signals. A
discrete-time signal x[n] is said to be periodic if

x[n] = x[n + N] forintegern, (1.10)

where N is a positive integer. The smallest integer N for which Eq. (1.10) is satisfied is
called the fundamental period of the discrete-time signal x[n]. The fundamental angular fre-
quency or, simply, fundamental frequency of x[#] is defined by
2w
1= ﬁ’ (1.11)
which is measured in radians.

The differences between the defining equations (1.7) and (1.10) should be carefully
noted. Equation (1.7) applies to a periodic continuous-time signal whose fundamental pe-
riod T has any positive value. Equation (1.10) applies to a periodic discrete-time signal
whose fundamental period N can assume only a positive integer value.

x[n]
0QQ9 Iql-rrpn 900 ZI_H]

1
-8 0 8 " ]
———0— ——O—— 7
-4 -3 =2 -1 0 1 2 3 4




Proposition 1.1 An arbitrary DT sinusoidal sequence x[k] = A sin(f2,k + 8) is
periodic iff (% /2w is a rational number.

The term rational number used in Proposition 1.1 1s defined as a fraction of
two integers. Given that the DT sinusoidal sequence x[k] = A sin({23k + &) 1s
periodic, 1ts fundamental period 1s evaluated from the relationship

Lf
w_ " (1.7)
2 K.u
as
K 27 1.8)
0= ﬂ"umh (1.

Proposition 1.1 can be extended to include DT complex exponential signals.
Collectively, we state the following.

(1) The fundamental period of a sinusoidal signal that satisfies Proposition 1.1
15 calculated from Eq. (1.8) with m set to the smallest integer that results
in an integer value for Ky.

(2) A complex exponential x[k] = A exp[)(fpk + #)] must also satisty Propo-
sition 1.1 to be periodic. The fundamental period of a complex exponential
1s also given by Eq. (1.8).




Example 1.4
Determine if the sinusoidal DT sequences (1)—(1v) are periodic:

(i) fIk] = sin(zk/12 + 7 /4);
(1) g[k] = cos(3xk/10 + 8);
(iii) h[k] = cos(0.5k + ¢):
(iv) P[k] — pl(Txkf8+8)
Solution
(1) The value of 2y in f[k]1s 7 /12. Since (2 /27 = 1/24 1s a rational number,

the DT sequence f[k] is periodic. Using Eq. (1.8), the fundamental period of
f1k] 15 given by

Ky= —m = 24m.
2

Setting m = 1 yields the fundamental period Ko = 24.
To demonstrate that f[k] 1s indeed a periodic signal, consider the following:

flk + Kg] = sin(m[k + Ky]/12 + 7 /4).
Substituting Ky = 24 in the above equation, we obtain

flk + Ko] = sin(z[k + Ko]/12 + 7 /4) = sin(7k + 27 + 7/4)
= sin(rk/12 + 7/4) = fIK].




(11) The value of % 1in g[k] 1s 37 /10. Since £2p/27 = 3/20 15 a rational
number, the DT sequence g[k] 1s periodic. Using Eq. (1.8), the fundamental
period of g[k] 15 given by

2w 20m

= —m=—.
" 3

Setting m = 3 yields the fundamental period Ky = 20.

(111) The value of 2y in A[k] 18 0.5, Since (/27 = 1/4m 15 not a rational
number, the DT sequence h[£] 1s not penodic.

(1v) The value of % in p[k] 18 Tz /8. Since (/27 = 7/16 15 a rational
number, the DT sequence p[k] 1s periodic. Using Eq. (1.8), the fundamental
period of p[k] 1s given by

2m  lbm

m= ———-.
7 7

Setting m = 7 yields the fundamental period K, = 16.

I:I=




» Problem 1.5 For each of the following signals, determine whether it is periodic, and
if it is, find the fundamental period:

(a) x(t) = cos*(2mt)

(b) x(t) = sin’(2t)

(c) x(t) = e ¥ cos(2t)

(d) x[n] = (-1)"

(e) x[n] = l:—l}“rl

(f) x[n] = cos(2n)

(g) x[n] = cos(2mn)
Answers:

(a) Periodic, with a fundamental period of 0.5 s
(b) Periodic, with a fundamental period of (1/7) s
(c) Nonperiodic
(d) Periodic, with a fundamental period of 2 samples
(e) Periodic, with a fundamental period of 2 samples
(f) Nonperiodic
(g) Periodic, with a fundamental period of 1 sample



Basic Operations on Signals

OPERATIONS PERFORMED ON THE INDEPENDENT VARIABLE

The time-scaling operanion compresses or expands the input signal in the time
domain. A CT signal x(r) scaled by a factor ¢ 1n the ime domain 15 denoted by
x(ct). It ¢ = 1, the signal 1s compressed by a factor of ¢. On the other hand, 1f
0 = ¢ < 1 the signal 15 expanded. We 1llustrate the concept of ume scaling of
CT signals with the help of a few examples.

A
N x| n|
x(1) +1
eeo e I see>»
6 -5 -4 | -2 234 5 6
2 2 .l
! T-1s

FIGURE 1.4 Graph of continuous FIGURE 1.5 Graph of discrete-time

time signal x(7). signal x[n].



Example 1.3: Case o = ]E shown in Figure 1.6.

£ )
I

_— .

-4 4 ‘

FIGURE 1.6 Graph of expanded signal
y(t) = x(0.5t).

Case 0 <o < 1: The signal x(¢) 1s slowed down or expanded n time. Think of

a tape recording played back at a slower speed than the nominal speed.

Mnl=x[2n]
F'y
4]
— oo *—o—»
-3 -2 -1 1 2 3
R
+-1

FIGURE 1.8 Graph of compressed signal
yIn] = x{2n].

Example 1.4:

. . I
Case o = 2 shown in Figure 1.7.

L0,

-1 1

L8

FIGURE 1.7 Graph of compressed signal y(t) = x(2t).

Case a > 1: The signal x(#) 18 sped up or compressed in time. Think of a tape
recording played back at twice the nominal speed.



Example 1.16

Consider a CT signal x(r) defined as follows:

x(r)=

r+1 =1<r=<10
1 0D=r=2
—t + 3 2=<tr=<3

( elsewhere,

(1.53)

as plotted in Fig. 1.25(a). Determine the expressions for the time-scaled signals
x(2r) and x(r/2). Sketch the two signals.

1.25

0.75

0.5
0.25 f

1.25

0.75
0.5
0.25

(b)

1.25

0.75
0.5
0.25

(c)

-2

1)

-2

1)



Time Reversal

A wit)=x(-r1)
|
P
-2 2 ¢

FIGURE 1.9 Graph of time-reversed
signal y(t) = x(-t).

FIGURE 1.10 Graph of time-reversed
signal y[n] = x[-n].




Time Shift

A time shift delays or advances the signal in time by a continuous-time interval
Tek:

wit)=x(t+T). (1.3)
For T positive, the signal 1s advanced; that 1s, it starts at time t = —4, which 1s

before the time 1t originally started at, t = —2, as shown in Figure 1.11. For T neg-
ative, the signal 1s delayed, as shown in Figure 1.12.

A V(D) =x(t+2) A y(0)=x(1-2)

1 L1 R
PP 1
.?-al- - 12345 ,

- () -+
! J 0 4 115

——

FIGURE 1.11 Graph of time-advanced -
signal y(t) = x(t + 5. FIGURE 1.12 Graph of time-delayed FIGURE 1.13 Graph of time-advanced

signal y(t) = x(t - 2). signal y[n] = x[n + 2].



Amplitude scaling. Let x(t) denote a continuous-time signal. Then the signal y(t) result-
ing from amplitude scaling applied to x(t) is defined by

¥(2) = ex(2), (1.21)

where ¢ is the scaling factor. According to Eq. (1.21), the value of y(¢) is obtained by mul-
tiplying the corresponding value of x(z) by the scalar ¢ for each instant of time ¢. A physi-
cal example of a device that performs amplitude scaling is an electronic amplifier. A resistor
also performs amplitude scaling when x(¢) is a current, ¢ is the resistance of the resistor, and
y(2) is the output voltage.

In a manner similar to Eq. (1.21), for discrete-time signals, we write

y[n] = ex[n].

Addition. Let x,(t) and x,(t) denote a pair of continuous-time signals. Then the sig-
nal y(t) obtained by the addition of x;(¢) and x,(#) is defined by

y(2) = x,(2) + x,(2). (1.22)

A physical example of a device that adds signals is an audio mixer, which combines music
and voice signals.

In a manner similar to Eq. (1.22), for discrete-time signals, we write
yln] = xi[n] + x;[n].




Multiplication. Let x,(t) and x,(t) denote a pair of continuous-time signals. Then

the signal y(¢) resulting from the multiplication of x,(t) by x,(t) is defined by
y(2) = x1(#)xa(2). (1.23)
That is, for each prescribed time ¢, the value of y(t) is given by the product of the corre-
sponding values of x,(#) and x,(t). A physical example of y(t) is an AM radio signal, in
which x,(t) consists of an audio signal plus a dc component and x,(¢) consists of a sinu-

soidal signal called a carrier wave.
In 2 manner similar to Eq. (1.23), for discrete-time signals, we write

y[n] = xi[n]x[n].

Differentiation. Let x(t) denote a continuous-time signal. Then the derivative of x(#)
with respect to time is defined by

d
y(t) = Ex(t}. (1.24)
v(t) = Li‘(t] (1.25)
e ’
o,
1) L

FIGURE 1.18 Inductor with current i(t), inducing voltage v(t) across its terminals.




PRECEDENCE RULE FOR TIME SHIFTING AND TIME SCALING

YULRAL: Once elks=eni kaddir
sonrd degiskent’ Eloeklendir
Sonrd  cenWll varsd canr.

ExXAMPLE 1.5 PRECEDENCE RULE FOrR CoNTINUOUS-TIME SIGNAL Consider the rec-
tangular pulse x(z) of unit amplitude and a duration of 2 time units, depicted in
Fig. 1.24(a). Find y(¢) = x(2¢ + 3).

x(t) v(t) = x(t + 3) (i) = 21)

1 -~ -+1
J—I—t —I:l—hif f
-10 1 -4-3-2-10 -3-2-10

(a) (b) (c)



x(t) —a x(24-3)




X&) — x(9%-\)

i
-




P Problem 1.14 A triangular pulse signal x(¢) is depicted in Fig. 1.26. Sketch eacl
the following signals derived from x(t):

(a) x(3¢) (d) x(2(r + 2))
(b) x(3t + 2) (e) x(2(t — 2)) 1 .
() x(—2t— 1) (D) x(3t) + x(3t + 2) 01
F . Triangular pulse for Problem 1.14.
oo x(=2¢ - 1) A IGURE 1.26 gular p 1.14

1 1+----=-==--
:

- - t
101 0 -
3 3
(a) (c) ()
x(3t+2) x(2(¢ +2)) = x(2t + 4)
Wl /\ rrrrrrr i
1
g g - M 4 ¢
0 _3 =23 0
2 2




EXAMPLE 1.6 PRECEDENCE RULE FOR DISCRETE-TIME SIGNAL A discrete-time signal

is defined by
1,
x[n] =< -1,
0,
Find y[n] = x[2n + 3].
Solution:
xn]
1 a o
5 4 3 2 -1
———0 T V-
o] 1 2 3 4 5§
& [+ . |
(a)

=

=1,2
=-1,-2 :
= Qand |n| > 2

n] =x[n + 3]

Lad L)

.2

E =




FINITE-ENERGY AND FINITE-POWER SIGNALS

The_instantaneous power dissipated in a resistor of resistance R is simply the
product of the voltage across and the current through the resistor:

and the total energy dissipated during a time interval [f,7,] is obtained by inte- E
grating the power

The average power dissipated over that interval is the total energy divided by
the time interval:

Analogously, the total energy and average power over [f,.2,] of an arbitrary

integrable continuous-time signal x(¢) are defined as though the signal were a volt-
age across a one-ohm resistor:

N e 2
E, . = .L, Ix(0)F dt,

P[r"*’l] t,—t,

'I"'| |x()[ dt.




The total energy and total average power of a signal defined over f € R are de-
fined as

= T =
E_ =lim [ Ix(e)F di= | [x(e)F dt,

TR N 2
P = ﬂlﬁ.[_r'ﬂ”' dt.

The total energy and average power over [n,,n,] of an arbitrary discrete-time
signal x[n] are defined as

EI-HI“'E] = J'I=J'IJ|I[H] |E‘.l-

] B, 2
P = xlnll".
[n.m] 1 _”I+12,,=,H| [ .]I

2




Notice that n. —n +1 1s the number of points in the signal over the interval

[n,,n,]. The total energy and total average power of signal x[n] defined over ne Z

are defined as

E.= Y [xnf =32 _|stnf.

A signal x(¢), or x[k], 1s called an energy signal if the total energy E, has
a non-zero finite value, 1.e. 0 < E,; < o0. On the other hand, a signal 1s called
a power signal 1f 1t has non-zero fimte power, 1e. 0 < P, < oo. Note that a
signal cannot be both an energy and a power signal simultaneously. The energy
signals have zero average power whereas the power signals have nfinite total
energy. Some signals, however, can be classified as neither power signals nor as
energy signals. For example, the signal eu(t)isa growing exponential whose
average power cannot be calculated. Such signals are generally of little interest



Example 1.6

Consider the CT signals shown in Figs. 1.9(a) and (b). Calculate the instanta-
neous power, average power, and energy present in the two signals. Classify

these signals as power or energy signals.

Solution
(a) The signal x(r) can be expressed as follows:

(o |5 —2srs2
"YU 10 otherwise.

instantaneous power P.(f) = » -ist=2
PO U100 otherwise:
a0 2
energy E, = f lx(0)]2dt = f 25 dr = 100:
= —
P.= lim —E,_ =10.
average power . T]ﬂc ~Ex

Because x(r) has finite energy (0 <= E, = 100 < o¢) it 1s an energy signal.

x(f)

& -6 —4 =2

(a)



& | =(1)

(b) The signal z(¢) is a periodic signal with fundamental period 8 and over
one period 15 expressed as follows: vow

5 =2<=tr=<12 -4 6 4 =2 0 2 4
0 2 < |t] <4, (b)

with z(t + 8) = z(r). The instantaneous power, average power, and energy of
the signal are calculated as follows:

(1) = l

25 -2<t=<2 and P.(t + 8) = P.(1);

instant P:(t) =
instantaneous power =(1) {D 2<lt]<4

4 2
1 1 100

average power P. = Ef () dr = 3 f 25dr = 5 = 12.5;

—

=2
a0
energy E. = f |:{f]|1d1 = 0.
-0

Because the signal has fimite power (0 < P. = 12.5 < 00), z(1) 158 a power
signal.



Sinusoidal Signals
x(t) = Acos(wt + ¢),

where A is the amplitude, w is the frequency in radians per second, and ¢ is the phase angle
in radians. Figure 1.31(a) presents the waveform of a sinusoidal signal for A = 4 and
¢ = +m/6. A sinusoidal signal is an example of a periodic signal, the period of which is

r=2

w
We may readily show that this is the period for the sinusoidal signal of Eq. (1.35) by writing

x(t + T) = Acos(u(t + T) + ¢) (1) = Acos(w f +6)
= Acos(wt + oT + ¢) * |

= Acos(wt + 27 + ¢) T+ |
= Acos(wt + ¢)
= (1),
>
{

Acosd

T




Consider next the discrete-time version of a sinusoidal signal, written as

x[n] = Acos(ln + ¢).

This discrete-time signal may or may not be periodic. For it to be periodic with a period
of, say, N samples, it must satisfy Eq. (1.10) for all integer # and some integer N. Substi-
tuting # + N for » in Eq. (1.39) yields

x[n + N] = Acos({ln + IN + ¢).
For Eq. (1.10) to be satisfied, in general, we require that

{ON = 2mm radians,

= gﬁﬂ radians/cycle,  integerm, N. (1.40)

The important point to note here is that, unlike continuous-time sinusoidal signals, not all dis-
crete-time sinusoidal systems with arbitrary values of () are periodic.

1 T T T {17717
08} =
0.6} ~
04} e
0.2 1
x[n] 01—
0.2 -
—04}1 —
~06}- o]
08} -

o [+] [+ L= ]

I

| 1
00 -8 6 -4 2 0 2 4 6 8 o

Time n

FiGURE 1.33 Discrete-time sinusoidal signal.



EXAMPLE 1.7 DISCRETE-TIME SINUSOIDAL SIGNALS A pair of sinusoidal signals with
a common angular frequency is defined by

x,[n] = sin[57n]

and
x,[n] = V3 cos[Smn).
(a) Both x;[n] and x,[#] are periodic. Find their common fundamental period.
(b) Express the composite sinusoidal signal
y[n] = xi[n] + x,[n]
in the form y[n] = A cos({ln + ¢), and evaluate the amplitude A and phase ¢.
Solution:
(a) The angular frequency of both x,[n] and x,[n] is
) = 5 radians/cycle.
Solving Eq. (1.40) for the period N, we get

N:M

For x,[n] and x,[n] to be periodic, N must be an integer. This can be so only for
m=5.10.15..... which resultsin N = 2. 4. 6.....



(b) Express the composite sinusoidal signal
y[n] = -"l[”]_"' x;[n]
in the form y[n] = A cos({ln + ¢), and evaluate the amplitude A and phase ¢.
(b) Recall the trigonometric identiry
Acos({ln + ¢) = A cos(dn) cos(¢) — A sin({dn) sin(¢).

Letting {} = 5, we see that the right-hand side of this identity is of the same form
as xy[n] + x;[n]. We may therefore write

Asin(¢) = -1 and Acos(¢) = V3.

Hence,
sin(¢) _ amplitude of x,[n]
tan(¢) cos(¢) amplitude of x,[n]
-1
=7
'om which we find that ¢ = —ur/3 radians. Substituting this value into the equation
Asin(¢) = -1
nd solving for the amplitude A, we get
A=-1 fsin(—%)
= J
ccordingly, we may express y{n] as

yin] = lms(.'iwn - Q ]




Real Exponential Signals

Real exponential signals can be defined both in continuous time and in discrete time.
Continuous Time

We can define a general real exponential signal as follows:

x(t)=Ce™, 0C,oxeR.

We now look at different cases depending on the value of parameter o
ICase a = 0: |We simply get the constant signal x(¢1)=C

| Case o > 0:|The exponential tends to infinity as t — +eo , as shown in Figure
1.16, where C > 0. Notice that x(0)=C.

! Case a0 < 0: |The exponential tends to zero as t — 4= ; see Figure 1.17, where

& x(f)
x(i)

[ —
{*/ ("
-__._____.a—'

—

FIGURE 1.16 Continuous-time

exponential signal growing unbounded
with time.

W

FIGURE 1.17 Continuous-time

exponential signal tapering off to
zero with time.



For a physical example of an exponential signal, consider a so-called lossy capacitor,
as depicted in Fig. 1.29. The capacitor has capacitance C, and the loss is represented by shunt
resistance R. The capacitor is charged by connecting a battery across it, and then the bat-
tery is removed at time £ = (. Let V; denote the initial value of the voltage developed across
the capacitor. From the figure, we readily see that the operation of the capacitor fort = 0
is described by

RC%H(#] + v(t) = 0, (1.32)

i0=C }tm}

+
ut) ==C §n

FIGURE 1.29 Lossy capacitor, with the loss represented by shunt resistance R.

where v(t) is the voltage measured across the capacitor at time ¢. Equation (1.32) is a dif-
ferential equation of order one. Its solution is given by

v(t) = Ve /RO, (1.33)



Discrete Time
We define a general real discrete-time exponential signal as follows:

x[n]=Ca", C,oxeR.

There are six cases to consider, apart from the trivial cases o = 0 or C = 0:
a=1l,a>=1, O<a<l,a<-1,a=-1,and -1<a <0. Here we assume that
C = 0, but for C negative, the graphs would simply be flipped images of the ones
given around the time axis.

Case oo = 1: We get a constant signal x[n] = C.

Case o0 = 1: We get a positive signal that grows exponentially, as shown in

Figure 1.18.
s X[n]
.
o!
C
®
ettt
4 -2 2 4 6 8 .

FIGURE 1.18 Discrete-time exponential
signal growing unbounded with time.



Case 0<a <1: The signal x[n]= Ca" is positive and decays exponentially, as

shown in Figure 1.19.

Case a <-—1: The signal x[n]=Ca" alternates between positive and negative
values and grows exponentially in magnitude with time. This 1s shown in Figure 1.20.

) + xn]
LLL[{TM1oree,

FIGURE 1.19 Discrete-time
exponential signal tapering off to
zero with time.

t x[n]

¥

1t
FETTTTT

k J

FIGURE 1.20 Discrete-time
exponential signal alternating and
growing unbounded with time.




Case oo = —1: The signal alternates between C and —C, as seen in Figure 1.21.
Case —1<a <0: The signal alternates between positive and negative values
and decays exponentially in magnitude with time, as shown in Figure 1.22.

'y

x[n] x[n]
L
¥
. ®
18 ,
T ¢ |
-3 -1 I 3 L J
r L ]
- - 2 +
TTTT 't
L L . L >
6| -4 | -2 2146 "
¢ ¢°
@
L
FIGURE 1.21 Discrete-time exponential o
signal reduced to an alternating periodic ®
signal.

FIGURE 1.22 Discrete-time exponential
signal alternating and tapering off to zero
with time.



Complex Exponential Signals

Complex exponential signals can also be defined both in continuous time and in
discrete time. They have real and imaginary parts with sinusoidal behavior.

Continuous Time
The continuous-time complex exponential signal can be defined as follows:

x(t)y=Ce", C,aeC, (1.12)

where C=A4e”, 4,06eR,A>0 is expressed in polar form, and a=a+
w,, o,0, €k 1s expressed in rectangular form. Thus, we can write

X(1) = AePe

= Ae™ " (1.13)




If we look at the second part of Equation 1.13, we can see that x(¢) represents
either a circular or a spiral trajectory in the complex plane, depending whether o 1s
. .y @y, f+8) . . .
zero, negative, or positive. The term €’ describes a unit circle centered at the
origin counterclockwise in the complex plane as time varies from f=-e0 to
t =+eo _as shown in Figure 1.23 for the case O = 0. The times 7, indicated in the
figure are the times when the complex point ¢’* has a phase of n/4 .

Im{e’"}

Chk=....-2.-1.0,1.2....

Refe’™)

FIGURE 1.23 Trajectory described by the complex exponential.




Using Euler’s relation, we obtain the signal in rectangular form:

x(1) = Ae” cos(m t +6) + jde™ sin(w t +0), (1.14)

where Re{x(r)}= Ae” cos(w,t+0) and Im{x(¢)}= Ae™ sin(@,t +0) are the real
part and imaginary part of the signal, respectively. Both are sinusoidal, with time-
varying amplitude (or envelope) Ae™. We can see that the exponent o = Re{a}
defines the type of real and imaginary parts we get for the signal.

For the case oo = 0, we obtain a complex periodic signal of period T = i—r

(as shown in Figure 1.23 but with radius 4) whose real and imaginary parts are
sinusoidal; + Relx(6)} = Acos(ew,r+0)

.

o "

x(t)= Acos(@t +6)+ jAsin(w +6). (1.15)

The real part of this signal is shown in Figure 1.24.

o

-5
* hl‘ri'-

€M,

FIGURE 1.24 Real part of periodic complex
exponential for o0 = 0.



For the case o <0, we get a complex periodic signal multiplied by a decaying ex-
ponential. The real and imaginary parts are damped sinusoids that are signals that can
describe, for example, the response of an RLC (resistance-inductance-capacitance)

circuit or the response of a mass-spring-damper system such as a car suspension. The

real part of x(¢) 1s shown 1n Figure 1.25.

For the case o > 0, we get a complex periodic signal multiplied by a growing
exponential. The real and imaginary parts are growing sinusoids that are signals
that can describe the response of an unstable feedback control system. The real part

of x(r) 1s shown 1n Figure 1.26.

s Re{x(1)} = Ae” cos(wyt + 0)

/\/\/J\/\
\

AN
VAo

FIGURE 1.25 Real part of damped complex exponential
for o < 0.

F

N\ /

Refx(1)} = Ae” cos(ew,l + )

\A/\/

ARV,

\/v\/

FIGURE 1.26 Real part of growing complex exponential

for o > ().



Discrete Time

The discrete-time complex exponential signal can be defined as follows:
x[n]=Ca", (1.16)

where C,acC, C=A4e” AR, A>0 a=re'™, rw, €R,r>0.
Substituting the polar forms of C'and @ in Equation 1.16, we obtain a useful ex-
pression for x[n] with time-varying amplitude:

x[n]= Ae”’r"e"™"
= Ar"e 0 (1.17)
and using Euler’s relation, we get the rectangular form of the discrete-time com-
plex exponential:

x[n]= Ar" cos(w,n+8)+ jAr" sin(w,n+0). (1.18)

Clearly, the magnitude » of a determines whether the envelope of x[n] grows,
decreases, or remains constant with time.

For the case » = 1, we obtain a complex signal whose real and imaginary parts

have a sinusoidal envelope (they are sampled cosine and sine waves), but the sig-
nal is not necessarily periodic! We will discuss this issue in the next section.

x[n]= Acos(w n+0)+ jAsin(wn+6) (1.19)




Figure 1.27 shows the real part of a complex exponential signal with » = 1.

For the case r < 1, we get a complex signal whose real and imaginary parts are
damped sinusoidal signals (see Figure 1.28).

Re {x[ﬁ]} = Acos(w,n+ &) A RE{.I‘[H” = Ar" cos(wyn +0)
A
» 1] » ¢

AR
l L L l ) TL LTT?‘l"?!+H

FIGURE 1.27 Real part of discrete-

] . FIGURE 1.28 Real part of discrete-time
time complex exponential for r=1.

damped complex exponential for r < 1.



For the case r > 1, we obtain a complex signal whose real and imaginary parts
are growing sinusoidal sequences, as shown in Figure 1.29.

a Refx(nl} = Ar" cos(aw,n + 0)

®

go ol ! ,
0l

FIGURE 1.29 Real part of growing complex exponential
forr>1.



L
Causal exponential function

In practical signal processing applications, input signals start at ime f = (.
Signals that startat ¢ = 0 are referred to as causal signals. The causal exponential
function 15 given by

1.41
() r =< (), ( )

x(t)=e"u(t) = {
where we have used the umt step function to incorporate causality in the com-

plex exponential functions. Similarly, the causal implementation of the DT
exponential function 1s defined as follows:

et k=10

1.42
0 k<=0 { )

x[k] = e ulk] = l

The same concept can be extended to derive causal implementations of sinu-
soidal and other non-causal signals.



Sinc function

The CT sinc function 1s defined as follows:

51 I
sinc(wpt) = SnUT@) (1.36)
T ol

which is plotted in Fig. 1.12(k). In some text books, the sinc function 1s alter-

natively defined as follows: 1 for x = 0
1 I ; -
sinc(apl ) = smn(eo }. sinc (x) =

ol

sin x .
—  otherwise,
X

In this text, we will use the definition in Eq. (1.36) for the sinc function. The
DT sinc function 1s defined as follows:

sin(m f2pk
sinc({2,k) = ““(E_; ) (1.37)
iU LK
1 x(f) = sinci diy) |4 x[k] = sinc({£2gk)
e i f a1 = T ‘ l T * > i
~— ] S—— > sl 0 1l



STEP FUNCTION
The discrete-time version of the unit-step function is defined by

@115 o

which is illustrated in Fig. 1.37.

x[n]

L

-4 3 -2 -1 0 ‘i é :“l 4
FiGURE 1.37 Discrete-time version of step function of unit amplitude.
u(t)
1

t
0

FiGure 1.38 Continuous-time version of the unit-step function of unit amplitude.

The continuous-time version of the unit-step function is defined by

1, t>0




Note that since u(t) is discontinuous at the origin, it cannot be formally differ-
entiated. We will nonetheless define the derivative of the step signal later and give
its interpretation.

One of the uses of the step signal is to apply it at the input of a system in order
to characterize its behavior. The resulting output signal is called the step response
of the system. Another use 1s to truncate some parts of a signal by multiplication
with time-shifted unit step signals.

EXAMPLE 1.8 RECTANGULAR PuLSE Consider the rectangular pulse x(t) shown in
Fig. 1.39(a). This pulse has an amplitude A and duration of 1 second. Express x(¢) as a

weighted sum of two step functions.
x(t)
LA
I
|
$ [ 4
-1 -0.5 0 0.5 1
(a)
x,() x5(¢)
| t A
i
A i,— ***** ]
| i
: : E ¢ } E + il 3
=1 -0.5 0 0.5 1 -1 -0.5 0 0.5 1
®) ©

x(t) = x,(1) — xy(1).



Solution: The rectangular pulse x(¢) may be written in mathematical terms as

_JA, O0=lf<o0s
"‘(”_{u, >05

where [t| denotes the magnitude of time z. The rectangular pulse x(t) is represented as the
difference of two time-shifted step functions, x,(t) and x,(¢), which are defined in
Figs. 1.39(b) and 1.39(c), respectively. On the basis of this figure, we may express x(t) as

x(t) = ﬁu(r + %) — Au(t - %), (1.56)

whereu(¢) is the unit-step function. B
-

» Problem 1.22 A discrete-time signal

ER 1, 0=n=9
0, otherwise

Using u[n], describe x[#n] as the superposition of two step functions.

Answer: x[n] = u[n] — u[n — 10].



1.54 Sketch the waveforms of the following signals:
(a) x(t) = sn(t) — u(t — 2)
(b) x(t) = s(t + 1) — 2u(t) + u(t — 1)
() x(t) = —u(t+3) + 2u(t + 1)
— 2u(t — 1) + u(t — 3)

(a) ()

x(f)=ult) - u(r-2)

(b)

x(t)y=u(t+1)-2u(t) +ult-1)

-2 o 1 2
1 | | I'
-1 3

x()=-u(t+3)+2u(r +1) -2u(r- 1)+ ult - 3)




IMPULSE FUNCTION

The continuous-time version of the unit impulse is defined by the following pair

of relations:

5(t) =0 for t#0

and

/:E{r) dt = 1.

(1.59)

(1.60)

Equation (1.59) says that the impulse 8(t) is zero everywhere except at the origin. Equa-
tion (1.60) says that the total area under the unit impulse is unity. The impulse 5(z) is also

referred to as the Dirac delta function.

The discrete-time version of the unit impulse is defined by

8[n]

n=1_0
n#+0

d[n]
1.0
-4 -3 -2 -1 0 1 2 3 4



:.a:{ﬂ a(r)

The impulse §(¢) and the unit-step function «(t) are related to each other in that if
we are given either one, we can uniquely determine the other. Specifically, 8(¢) is the de-
rivative of u(t) with respect to time ¢, or

d
5(t) = Iu(t). (1.62)
Conversely, the step function u(2) is the integral of the impulse () with respect to time #:
u(t) = / &(7)dr (1.63)

—00




Properties of impulse function
(1) The impulse function is an even function, 1.e. (r) = d(—1).
(11) Integrating a unit impulse function results in one, provided that the limits
of integration enclose the origin of the impulse. Mathematically,

r

A for =T <1 T
AS(t — t)dt = o —F<h= (1.44)
(0 elsewhere.
=T
(111) The scaled and nme-shifted version d(atr + b) of the unit impulse function

1 given by

1 b
dlat + b) = —b (1‘ + —) . (1.45)
a a

(1v) When an arbitrary function ¢(7) i1s multiphied by a shifted impulse function,
the product 1s given by

d(1)d(r — to) = P(to)d(t — tp). (1.46)

In other words, multiphication of a CT function and an impulse function
produces an impulse function, which has an area equal to the value of the
CT function at the location of the impulse. Combining properties (ii) and
(1v), 1t 15 straightforward to show that

f d(1)d(r — to)dr = @(1p). (1.47)



Solution

Example 1.12 o 5 5 —jt 5
Simplify the following expressions: (1) Using Eq. (1.46) yields ——=54(1) = [-; T Izlzﬂ 3(r) = Z3(1).
5—jr (11) Using Eq. (1.46) yields
1 () o0 oo 00
(1) T (t)
~c f (t + 5)8(t — 2)dr = f [t + 5)]ie2d(t — 2)dr =7 f 5(t — 2)dr.
(11) f (r + 3)8(r — 2)dr; -0 -0 -t
—r

Since the integral computes the area enclosed by the unit step function, which

= _ 1s one, we obtain
(iii) f el03Teo+lg ) — 5)dw.
-0

f (r+35)d(t —2)dt =7 f ar —2)dr =17.
(111) Using Eq. (1.46) yields
o0 20
f T 5 — S)dw = f [T 2] 8w — S)dw
-5 -0
0
= T H2 f 8(w — 5)dw.
—r

Since exp()2.5r + 2) = jexp(2) and the integral equals one, we obtain

= )

f Ejllﬁ:m.r-i-lﬁlrm _ 5}[1&.? =jEI.

=30



RamMP FUNCTION

The impulse function 8(t) is the derivative of the step function u(t) with respect to time.
By the same token, the integral of the step function %(¢) is a ramp function of unit slope.
This latter test signal is formally defined as

\ 0
(8) = {;; =0 (1.74
Equivalently, we may write
r(t) = tu(t). (1.75)

The discrete-time version of the ramp function is defined by

n, n=0
rin] = {u, n<0

r(t)
Unit slope




Signum function

The signum (or sign) function, denoted by sgn(r), 1s defined as follows:

1 =0
sgn(t) = 0 r=0
-1 <

function, denoted by sgn(k), 1s defined as follows:

(1.30)

x[k] = sgn(k)

1 k=10
senlk] = 0 k=0
-1 k=0
x(f) = sgn(f)
|
>
0
—1 '..l




SUREKLI ZAMANLI VE AYRIK ZAMANLI SISTEMLER

In mathematical terms, a system may be viewed as an interconnection of operations that
transforms an input signal into an output signal with properties different from those of
the input signal. The signals may be of the continuous-time or discrete-time variety or a mix-
ture of both. Let the overall operator H denote the action of a system. Then the applica-
tion of a continuous-time signal x(¢) to the input of the system yields the output signal

¥(t) = H{x(2)}. (1.78)

Figure 1.49(a) shows a block diagram representation of Eq. (1.78). Correspondingly, for
the discrete-time case, we may write

y[n] = H{x[n]}, (1.79)
x(t) y¢) x{n] yin)
—>- —_— H —
(a) (b)

FiGURE 1,49 Block diagram representation of operator H for (a) continuous time and (b) discrete time.



Ornek 1.8 | R

Sekil 1.1'de gisterilen RC devresini ele alalim. Efer v,(r)"yi giris sinyali ve v (r)'yi ¢ikas sinyali |
olarak alirsak, biylece basit devre analizini girig ve gikig arasindaki iligkiyi anlatan bir denklem ﬂ _ .
elde etmek igin kullanabiliriz. Ozellikle Ohm vasasindan, direng boyunca i(f) akimi direng boyun- Vg Cj o
ca gerilim dismesi ile crantilidir (oranulilik sabiti 1/R ile); Smegin, . )
wlf)— f
i) = (6} —wlt) it} = I:d‘:: ) d"l-’c(f) (f] = m—— u,(f} Sekil 1.1 Kaynak geriimi vs ve kondansatdr gerilimi ve fle basit
R ¢ dat bir RC devresi.

EXAMPLE 1.12 MoOVING-AVERAGE SYSTEM Consider a discrete-time system whose out-
put signal y[n] is the average of the three most recent values of the input signal x[#]; that is,

] = %[x[n] + x[n — 1] + xfn — 2]).

Such a system is referred to as a moving-average system, for two reasons. First, y[n] is the
average of the sample values x[n], x[n — 1], and x[n — 2]. Second, the value of y[n]
changes as n moves along the discrete-time axis. Formulate the operator H for this system;

hence, develop a block diagram representation for it.



Sistemlerin Ara Baglantilan

Girdi sy

Sistem 1 ‘———»\- Sistem 2 J—* Gkt Girdi

Girdi

Sistem 1

e

Sistem 2

Sistem 1

Cikti

Sistem 2

Sistem 3

Sistem 4

e Gkl




TEMEL SISTEM OZELLIKLERI

Bellekli ve Belleksiz Sistemler

Bir sistem eger belirli bir zamanda bagimsiz degiskenin her degeri i¢in aym zaman-
daki c1kisa bagli ise belleksiz denir. Ornegin,

y[n) = (2x[n] - 2[n))’

¥(1) = Rx(f).
Bellekli bir ayrik zamanh sistem omegi bir akiimiilator veya toplayicidir; ikinci bir 6rnek ise bir gecikme ‘dir:
yin]= Z k] y[n}=x[n-1].
k=—at

Bir kapasitor bellekli bir siirekli zamanli sisteme bir drnektir; ¢linkii eger girig akim
olarak alimir ve cikis gerilim olarak alinirsa C’nin kapasitans oldugu ;

ﬂr}:%Lx(r)dL (1.94)



Geri Donustirilebilirlik ve Ters Sistemler

Bir sistem eger farkl: girigler farkh gikislara neden oluyor ise geri doniistiiriilebilir de-
nir. $ekil 1.45(a)’da aynk zamanh durum igin gosterildigi gibi, eger sistem geri dé-
nugtiriilebilir ise, orijinal bir sistem ile basamaklandiginda ilk sistemin girisi x[n]’e
esit bir w[n] ¢ikist ireten bir ters sistem mevcuttur. Béylece, Sekil 1.45(a)’da seri
baglanti, birim sistem igin olan ile ayns tiim girig-gik1s iliskisine sahiptir.
Geri doniigtiiriilebilir bir siirekli zamanh sistem 6rnegi soyledir:
1) = 2x(1), (1.97).

ters sistem i¢in ise soyledir;

w(t) =%y(x). (1.98)

¥
x(t) 1) = 2x(t) ] wit) = Lyt Wit =x{t)

Geri doniistiiriilemez sistemlerin drekleri g5yledir;

y[n] =0, (1.100)
yani, herhangi bir giris dizisi igin sifir gikigim iireten sistemdir ve gikis bilgisinden gi-
rigin igaretini belirleyemedigimiz bir durumdur:

D) = 2. (1.101)



Nedensellik

Bir sistem, eger herhangi bir andaki g:ikls sadece 0 qndgki ve onceki zamanlardaki ¢1-
kislarin degerine bagh ise nedenseldir. Bunun gibi bir sistem cogunlukla nedensel

olarak adlandinbir; ¢iinki sistem ¢ikisi girislerin gelecek degerlerini tahmin etmez.
Ornek 1.12

L"-'E.-;:"-.'.E; edecegiz.
R i llk sistem soyle tamimlanmagtir:
A _

.}if-_.-“-._ .]"?[ﬂ] = I[—ﬂ'}- {llﬂj)
%‘5 ¥{no} gikigmin ny pozitif zamaninda sadece, negatif olan ve bu nedenle n,"in gegmisinde olan (—ny)

kL i

LS zamanminda x[-ng] giris sinyalinin degerine bagli olduguna dikkat edelim. Bu noktada verilen
#9r8% sistemin nedensel oldugu sonucuna varmay diistinebiliriz. Ancak, her zaman igin giris-gikis iliski-

;i oldugunu gériiriiz; bylece bu andaki ¢ikis girisin bir gelecek degerine baglhidir. Bu nedenle sistem
#ty nedensel degildir.
Aynica sistemin taniminda kullanilan herhangi diger fonksiyonun giriginin etkilerini dik-

::' katlice ayirt etmek 6nemlidir. Omegin; asagidaki sistemi ele alalim;
e w6 = x()cos(e + 1). (1.106)

Bu nedenle, sadece x(f) girisinin o andaki degeri y(r)':;:h;l}un o andaki degerini etkiler ve bu
sistemin nedensel oldugu sonucuna vannz (ve aslinda belleksiz).




Kararhhk

A system is said to be bounded-input, bounded-output (BIBO) stable if and only if every
bounded input results in a bounded output. The output of such a system does not diverge
if the input does not diverge.

To put the condition for BIBO stability on a formal basis, consider a continuous-time
system whose input—output relation is as described in Eq. (1.78). The operator H is BIBO
stable if the output signal y(t) satisfies the condition

ly(¢)] = M, < oo forallt (1.80)

whenever the input signals x(t) satisfy the condition
Ix(¢)| = M, < oo forallt. (1.81)

Both M, and M, represent some finite positive numbers. We may describe the condition for
the BIBO stability of a discrete-time system in a similar manner.




ExaMPLE 1.13 MOVING-AVERAGE SYSTEM (CONTINUED)

Using the given input—output relation
yln) = 3(x{n] + xlm = 1] + x{n - 2)

Solution: Assume that
|x[n]] < M, < 00 foralln.

Using the given input-output relation
y[n) = 3(xln] + a[n = 1] + x{n - 2])
we may write
]l = 3heln] + xln = 1] + x{n - 2]

< S (lnll + xln = 1]| + |x[n - 21)

<S4+ M, + M)
= M..

Hence, the absolute value of the output signal y[n] is always less than the maximum ab-
solute value of the input signal x[n] for all #, which shows that the moving-average sys-

tem is stable. .




EXaMPLE 1.14 UNSTABLE SYSTEM Consider a discrete-time system whose input—
output relation is defined by

y[n] = "x[n],
where r > 1. Show that this system is unstable.
Solution: Assume that the input signal x[n] satisfies the condition
|x[n]] = M, < co foralln.
We then find that
lr)l = [~*x{=]|
= ||+ |x[n]].

With r > 1, the multiplying factor 7" diverges for increasing n. Accordingly, the condition
that the input signal is bounded is not sufficient to guarantee a bounded output signal, so
the system is unstable. To prove stability, we need to establish that all bounded inputs pro-

duce a bounded output. [

» Problem 1.26 The input-output relation of a discrete-time system is described by

y[n] = > p*x[n — k.

k=0
Show that the system is BIBO unstable if |p| = 1. <




TIME INVARIANCE

A system is said to be time invariant if a time delay or time advance of the input signal leads
to an identical time shift in the output signal. This implies that a time-invariant system re-
sponds identically no matter when the input signal is applied. Put another way, the char-
acteristics of a time-invariant system do not change with time. Otherwise, the system is
said to be time variant.

x(t —ty) — v(t —tp) x|k = kol = ylk — ko]

Example 2.4
Consider two CT systems represented mathematically by the following input—

output relationship:

(1) system I y(t) = sin(x(t)); (2.42)
(11) system II y(t) = t sin(x(r)). (2.43)

Determine if systems (1) and (i1) are time-invariant.



Solution
(1) From Eq. (2.42), it follows that:

x(t) — sin(x(r)) = y(1)
and
x(t — tg) — sin(x(t —1y)) = y(t — 1p).

Since sin[x(r — )] = v(t — 1), system I is time-invariant. We demonstrate
the time-invariance property of system I graphically in Fig. 2.13, where a time-
shifted version x(¢ — 1) of input x(¢) produces an equal shift of one time unit
in the original output y(r) obtained from x(7).

x(f) yit)
2 2
1
L e
-4 =3 =2 -1 0 1 2 3 4 -4 -3 =2 - 0 1 2 3 4
(@) (b)
x(t=1) wol1)
2 2
| /\ 1./ 7\
P !
-4 =3 =2 -l 0 1 2 3 4 -4 =3 =2 - 0 1 2 3 4

(©) (d)




(i1) From Eq. (2.43), it follows that:
x(f) — tsin(x(1)) = vir).

If the time-shifted signal x(r — fy) 1s applied at the input of Eq. (2.43), the new
output is given by

x(t — 1) — tsin(x(r — ty)).
The shifted output y(r — fp) 1s given by
yit — tp) = (1 — o) sin(x(r — fo)).

Since fsinx(r = 1y)] #F vt = fp), system II 1s not time-invanant. The time-

x(1) W)
2
-1 !
-4 -3 =2 -1 0 1 2 3 4 -4 -3 =2 -1 0 1 2 3 4
(a) (b)
x(r=1) wilr)
2 2
| /\ |
>
-4 =3 =2 =1 0 1 2 3 4 -4 =3 =2 -1 0 1 2 3 4




LINEARITY

A system is said to be linear in terms of the system input (excitation) x(¢) and the system
output (response) y(t) if it satisfies the following two properties of superposition and
homogeneity:

1. Superposition. Consider a system that is initially at rest. Let the system be subjected to
an input x(¢) = x,(t), producing an output y(¢) = y,(¢). Suppose next that the same
system is subjected to a different input x(t) = x,(t), producing a corresponding out-
put ¥(t) = y,(z). Then for the system to be linear, it is necessary that the composite input
x(t) = x,(t) + x,(¢) produce the corresponding output y(z) = y,(¢) + y,(¢). What
we have described here is a statement of the principle of superposition in its simplest
form.

2. Homogeneity. Consider again a system that is initially at rest, and suppose an input
x(t) results in an output y(t). Then the system is said to exhibit the property of ho-
mogeneity if, whenever the input x(¢) is scaled by a constant factor a, the output y(t)
is scaled by exactly the same constant factor a.

Siirekli zamanlt; axi(t) + bx2(t) = awi(t) + by(t) ,

Aynk zamanli: axi[n]+ Ex:{n} — ay{n]+by2n].




Ornek 1.17
I(ﬂ Elﬁﬁi \’E,}'{t} gkl

y(0) = &x(t)

ile iliskili bir S sistemini ele alahm. $’nin dogrusal olup olmadigim belirlemek igin, iki rasgele
girig x,(2) ve x5(£)’yi ele alahm.

x(t) = yi(t) = talt)

x2(t) = ya(t) = txalt)
x3(1), x,() ve x2(f) nin dogrusal bir kombinasyonu olsun. Yani, a ve b'nin rasgele nicelikler ol-

dugu,
x3(8) = ani() + bxa(t) .
Eger x;(f) §’ye giris ise, bu durumda karsiik gelen gikis soyle ifade edilebilir:

ya(t)=mx(t)

= t{ax(t) + bx2(r))
= atxt) + bixa{t)
= ay(f) + bya(r)

Sistemin dogrusal oldugu sonucuna varirz.




Ornek 1.18
%5  Yukandaki drnegin dogrusallik kontrol yontemini, x(1) girigi ve y(1) ¢ikist
Wiy =x(0)

ile iliskilendirilmis bagka bir sistem S”e uygulayalim. Onceki drnekte oldugu gibi x,(f), x2() ve
x3(#)"yi tamimlarsak:

xi(2) = w(t) = x(t)

x2(t) = ya(t) = x2°(¢)
ve

13ty = ya(t) = x°(¢)
= (ana(f) + bx2(t))
= @*x (0) + b2xa* (£) + 2abxi(£)x2(1)
=a*yi(t) + b ya(l) + 2abxi(t)xa(¢)

Agikea, x,(7), x:(f), a ve b'yi, y3(f) ayi(e) +byaAz) ile aym olmayacak sekilde belirleyebiliriz.
Ornegin, eger x,() = 1, x(t) = 0,a = 2 ve b = 0 ise bu durumda ys(t)= (2x(1))? "dir ancak
2y(f) = {le{r}}"' = 2 *dir, s sisteminin dogrusal olmadif1 sonucuna vannz.




Ornek 1.20

n]=2x{n]+3 | (1.132)

denklemini ele alalim. Birgok sekilde dogrulanabilecegi gibi, bu sistem dogrusal degildir. Orne-
gin, sistem toplamirhik Szelligine uymaz: efer x\[n] = 2 ve x,[n] = 3 ise bu durumda :

x[n] = y[n]=2x[n]+3=17, (1.133)
xafn] = yanl=2x:n]+3=9. {1.134)

Ancak, xin]=x[n]+ xn] e tepki styledir:
wi{n]=2x[n)+xfrn]]+3=13 (1.135)

- ve pnl+ yin]=16"e esit degildir. Alternatif olarak, x[n] = 0 ise y]{n]=3 oldugundan, sistemin
(1.125) denkleminde verilen dogrusal sistemierin “sifir girig-sifir gikis” ozellifine uymadigini

goruriz.



Example 2.1

Consider the CT systems with the following input—output relationships:

dx
(a) differentiator y(r) = d?);
(b) exponential amplifier x(t) — e"';
(¢) amplifier y(t) = 3x(1);

(d) amplifier with additive bias y(t) = 3x(r)+ 5.

Determine whether the CT svstems are linear.

Solution
(a) From Eq. (2.33), it follows that
dx (1)

xi(t) — PR ni(t)
and

xa(1) — dldz—:” = ya2(1),
which yields

d dx;(1)
axi(t) + pixa(t) — E{ﬂfl’l(f} + i)} =« 4
Since
o200 | g0 _ )+ Byt

dt dr

dxa(r)
dr

(2.33)

(2.34)
(2.35)
(2.36)

(b) From Eqg. (2.34), it follows that

x1(t) = e = yi(r)

and
x(1) = e = (1),
giving
axi(f) + pra(r) — exnHhn0,

Since
L emm@HAR0 — ean()  eBn0) — [y ()] + [ya(0)]F # ayi(t) + Bya(t)

the exponential amplifier represented by Eq. (2.34) is not a linear system.



(c) From (2.35), it follows that (d) From Eq. (2.36), we can write

x1(t) = 3x1(t) = yi(t) x1(1) = 3x1(1) + 5 = yi1(1)
and and
x2(1) = 3x2(1) = a(1), x2(1) = 3x2(1) + 5 = ya(t),
giving giving
axi(t) + Bxa(r) = 3{axi(t) + Bxa(t)} = 3exi(r) + 3Bxa(r) axy(t) + x2(t) = 3laxi(1) + fx2(D] + 5.
= ay (1) + Bya(1). Since
Therefore, the amplifier of Eq. (2.35) is a linear system. 3laxi(t) + Bx2(t)] + 5 = ayi(t) + Bya(r) — 5,

An alternative approach to check if a system is non-linear is to apply the
zero-input, zero-output property. For system (b), if x(t) = 0, then y(r) = 1.
System (b) does not satisfy the zero-input, zero-output property, hence system
(b) is non-linear. Likewise, for system (d), if x(#) = 0 then y(¢) = 5. Therefore,
system (d) is not a linear system.

If a system does not satisfy the zero-input, zero-output property, we can safely
classify the system as a non-linear system. On the other hand, if it satisfies
the zero-input, zero-output property, it can be linear or non-linear. Satisfying

the zero-input, zero-output property is not a sufficient condition to prove the
linearity of a system. A CT system y(f) = x2(¢) is clearly a non-linear system,

yet it satisfies the zero-input, zero-output property.



Time-Domain Representations
of Linear Time-Invariant Systems

Ayrik Zamanh Sinyallerin Dirtiler Bakimindan Hadesi

Ayrik zamanli birim dirtiiniin herhangi bir aynk zamanl sinyalin olusturulmasinda
nasil kullanilacagim gézde canlandirirken anahtar fikir, aynk zamanh sinyali dirttle-
rin tek basina bir sonucu olarak digiinmektir. Bu sezgisel portrenin nasil matematik-
sel bir ifadeye doniisebilecegini gérmek icin, Sekil 2.1(a)’da gosterilen x[n] smyalm]
ele alahim. Bu $Ek11n kalan kistmlarinda, her dirtiide 6lgeklemenin birim 6rnegin olus-
tugu anda belirli x[n] degerine esit oldufu bes zamanda kaydirilmis dlgeklenmis birim
diirtii dizileri gosterilmistir. Omegin;

X1, n=-1
{=11oln+1] =+ .
=03+ 1= g0 " T
r}l.,'fﬂ-, 11 =1}
016[n]=4 ,
o= T
I[l], n=l
x116[n—1]=
b ]{01 -




x[-2] 8in + 2] x[-138{0 + 1]

XN '1

4321 0123 4 n ses -4 -3 -2 0 1 2 34 =++ n
(b)
(c)
x[1} 8[n-1]
x[0] &[n] ,
- —
. 4324 011 3 4 n
4 32101234 n 4-3-2 10123 4 n
(d) ' (e) )

Bu nedenle, sekildeki bes dizinin toplami ~2 < » < 2 i¢in x[n]’dir. Daha genel olarak,
ekstra kaydirma, dlgeklenmis dirtiiler dahil edilerek, sunu yazabiliriz:

xn]=... - x[-3]8[n + 3]+ x[-216[n + 2]+ x{-1]6n + 1]+ x[0])d[n) @.1)
+ x[116[n = 1]+ x{2]6[n - 2] + x[3]6[n - 3] +... | x[n]= i x[k)6[n — k]

Bu, rasgele bir dizinin, lineer kombinasyonda agirhiklarin x{k] oldugu 6[n— £] kaydiriimig bi- fi=—ac
run diirtillerin lineer bir kombinasyonu olarak ifadesine karsilik gelir. Ornek olarak,
x[n] = ufn] birim basamagini ele alalim. Bu durumda, k <0 i¢in u[k] = 0 oldugundan ve £ = 0
icin u[k] = 1 oldugundan, (2.2) denklemi béliim 1.4°de elde edilen [ bkz. (1.67) denklemi] ifa-
deye esit olan su hale gelir:

uln] = ic’i{n - k]

k =t}



Ayrik Zamanl Birim Dirto Tepkisi ve LTI Sistemlerin Evrisim Toplami
Gosterimi

Let the operator H denote the system to which the input x[#] is applied. Then, using
Eq. (2.1) to represent the input x[#n] to the system results in the ocutput

y[n] = H{x[n]} x[n] =---+ x[-2)8[n + 2] + x[—1]6[n + 1] + x[0]5[~]
i + x[1)8[n — 1] + x[2]8[n — 2] +---.
= H{ > x[k]8[n — k]}

k=-00

Now we use the linearity preperty to interchange the system operator H with the summa-
tion and obtain

oo

yln] = 3 H{x[k]s[n - k]}.

k=—00
Since # is the time index, the quantity x[k] is a constant with respect to the system opera-
tor H. Using linearity again, we interchange H with x[k] to obtain

o0

y[n] = EE x[k]H{d[n — k]}. (2.2)

-}



If we further assume that the system is time invariant, then a time shift in the input
results in a time shift in the output. This relationship implies that the output due to a time-
shifted impulse is a time-shifted version of the output due to an impulse; that is,

H{8[n — k]} = h[n — k], (2.3)

yin] = 3 alkln - ]

Thus, the output of an LTI system is given by a weighted sum of time-shifted impulse
responses. This is a direct consequence of expressing the input as a weighted sum of time-

shifted impulse basis functions. The sum in Eq. (2.4) is termed the comvolution sum and is
denoted by the symbol *; that is,




yln)

(a)

FiGURE 2.2 lllustration of the convolution sum. (a) LTI system with impulse response h{7] and
input x[7], producing the output y[7] to be determined.

k=-1 x[-1]18[n+1) C x[-1]1b[n+1] ° k=-1

21 g
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n
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[n] diirtii tepkili bir LTI sisternini ele alahm. Bu
u ifadeye sadelesir:

2.1
Ormek Sekil 2.3(a)"da gosterildizi gibi x{n] girisli ve &
durum igin sadece x[0] ve x[1] sifirdan farkh oldugu igin, (2.6) denklemi §
y[n] = x[0Vh[n - 0] + x[11h{n - 17=0.5k[n] + 2h[n - 1],
ile ilgili bindirme igin gerekli diirtil yankisidir. Bu
geri igin iki yankiy: toplayarak, Sekil 2.3(c)'de

0.5h[n] ve 2h[n ~ 1] dizileri, y[n]'in firetimi
yankilar gekil 2.3(b)’de gosterilmistir, n'mn her de
gésterilen y[n] elde edilir.

h 0.5 0.5h[n]
. .
1 " R I I T

I ] ] 0o 1 2 n
——— >

0 1 2 n 2 l 12111:1-11

2 —————— -
x{n] 0o 1 2 3 n
0.5 (b)
J ¢ —
] 2.5




Example

y(n] = x[n] + —x[n - 1].
a) h[n]="? 1, n=10
o l e
Letting x[n] = &[n], we find that the impulse response is h[n]=432, n=1
0, otherwise
b) Determine the output of this system in response to the input
2, n=10
4, n=
An1=12, n=2
0, otherwise
Solution: First, write x[n] as the weighted sum of time-shifted impulses: 2’
x[n] = 28[n] + 48[n — 1] — 28[n — 2]. 5’
i
ﬂ =]
y{n] = 2b[n] + 4h[n — 1] — 2b[n — 2] ) 7=y
_1,

n<I(
n=
nH =
n=2
"=
n=4



The Convolution Integral

LTIC system
xif) = M) = xlrphin)=
= > i) » T
I T = Tidr j xi{Thhir = T)dr

convolution of two functions x(f) and h(r) 1s defined as follows:
x(t)yxhit)= f x(t)h(r = t)dr.

— ]




Example 3.6
Determine the output response of an LTIC system when the input signal 1s given
by x(t) = exp(—t)u(t) and the impulse response 1s h(t) = exp(—21)u(r).

Solution
Using Eq. (3.36), the output y(r) of the LTIC system 1s given by
oo
y(r) = f e~ u(t)e” " u(r — r)dr,

which can be expressed as

= )

y(t) = e~ f e"u(t — t)dr.
0

Expressed as a function of the independent variable t, the unit step function is
given by

1 =<1t

”“_ﬂ:{u > 1.




I Based on the value of Llw& have the following two cases for the output y(r).

Case I Fort < 0, the shifted unit step function u(r — tv) = 0 within the hmits

of integration [0, oc]. Therefore, v(t) = 0 for ¢ < 0.

Case II For r = 0, the shifted unit step function u(r — t) has two different
values within the limaits of integration [0, o¢]. For the range [0, ], the unit step
function u(r — tv) = 1. Otherwise, for the range [r, oc¢], the unit step function
15 zero. The output y(r) 18 therefore given by

f
y(t) = e~ ™ f e"dr =e™ [ﬁ* — l] —ef—e™ ¥, fort = 0.

0
Combining cases I and II, the overall output y(r) 1s given by

y(t) = (e~ — e u(r).

0.4

0.3

AN

' / S| |




Graphical method for evaluating the convolution integral

Box 3.1 Steps for graphical convolution

(1) Sketch the waveform for input x(t) by changing the independent vari-
able from 1 to r and keep the waveform for x(t) fixed during convolution.
(2) Sketch the waveform for the impulse response fi(t) by changing the

independent variable from r to .
(3) Reflect i(r) about the vertical axis to obtain the ime-inverted impulse

response fi(—1).

(4) Shaft the nme-inverted impulse function i(—1) by a selected value of
“t.” The resulting function represents h(t — ).

(5) Muluply function x(tr) by h(r — r) and plot the product function
x(t)h(t — 1).

(6) Calculate the total area under the product function x(r )A(r — ) by inte-
grating it over T = [—00, o¢].

(7) Repeat steps 4—6 for different values of ¢ to obtain v(r) for all tme,
—00 < I < 00,




Example 3.7

Repeat Example 3.6 and determine the zero-state response of the system using
the graphical convolution method.

Solution

Functions x(t) = exp(—tiu(r), hit) = exp(—2riu(r), and hi—1) =
exp(—=2t)u(—r) are plotted, respectively, in Figs. 3.7(a)—(c). The function
hit — t) = h(—=(t = t)) 1s obtained by shifting i(—1) by time . We consider
the following two cases of ¢.

x(T) hit)
| 1
T =P T
0 0
(a) (b)
h(—T) h(t—T)
1 4 1T
| T
0 i 0

(© (d)



] hit— - hit—
case 1: t <0 (7). h(1-1) case 2: >0 v(T), h{r—T)

N R o

|
t 0 0 t

() (f)
Case 1 Fort < 0, the waveform h(t — 1) 18 on the left-hand side of the vertical
axis. As i1s apparent in Fig. 3.7(e), waveforms for h(r — ) and x(1) do not
overlap. In other words, x(t)h(t — t) = 0 for all r, hence y(r) = 0.
Case 2 Forr = 0, we see from Fig. 3.7(f) that the non-zero parts of h(t — 1)
and x(7) overlap over the duration ¢ = [0, t]. Therefore,

t I

y(1) = fe'z””dr — e~ ferdr —e e —1]=e"" —e~ ™.

0 0
W)
Combining the two cases, we obtain

0 ! 0 ‘ 025 +
}-‘[f} — l ot <

—e™ 1 =0, -

0 0.693



EXAMPLE 2.6 REFLECT-AND-SHIFT CONVOLUTION EvALUATION Evaluate the convolu-
tion integral for a system with imput x(¢) and impulse response b(t), respectively, given by

x(t) = u(t — 1) — u(t — 3)

and
b(t) = u(t) — u(t — 2),
x(f) Lt
1 i
L] 1 2 3 i 0 i 2 y
Solution:
x(T)

] Combining the solutions for each interval of time shifts gives the ourpur

1 0.
1 -=T

$ <]
. |
"N NET t-2 f S EE
!

A

-

n Qo
»

+
by

(a) 0,

v IA A

f
[ <
Y



Interconnections of LTI Systems

PARALLEL CONNECTION OF LT1 SYSTEMS

==

ol o - — . Wi x(F) ——

L |

y(t) = »(e) + »()
= x(2) = by(1) + x(2) * by(1).

y(t) = ‘Cr{f}bl{l - r)dr + fmx{-r].&z{: = 1) dr.

vy =[xyt = 1) + hote = 7)) dr

= /wx(f)b(t - 7)dr
= x(t) * h(2),

bl + bt —

x(t) * by(2) + x(2) * ha(2) = x(2) * {h1(2) + by(2)}.

x[n] = b [n] + x[n] » by[n] = x[n] * {by[n] + by[n]}.




CAsSCADE CONNECTION OF SYSTEMS

z(1) y(t) = 2(¢) * hl(t):

xity —= hi(t) — by(t) —= (1)
y0) = [ a(rhate = 7y d.
x(1) ——p m -—--.hm — (1) z(1) = x(7) = by(7)

4 f::[u}h(" - v) dv,

x(t) ——a ﬁI{ﬂtﬁ':(ﬂ — (1) T(t) = f fm:{p)bl(f - p]f)l(t - 1'“] dvdr.

{x(2) * b, (2)} * by(2) = x(2) * {b,(2) * bx(2)}. {x[n] * by[n]} * by[n] = x[n] * {hi[n] * by[n]},

bi(t) = by(t) = by(t) * by(2). bi(n] * by[n] = hy[n] * h[n].




I
I TABLE 2.1 Interconnection Properties for LTI Systems.

Property Continuous-time system Discrete-time system
Distributive x(t) = by(t) + x(t) = by(t) = x[n] = by(n] + x[n] = by[n] =
x(t) = {by(2) + by(2)} x[n] * {by[n] + by[n]}
Associative {x(2) = by(2)} = ba(2) = x(2) * {by(2) * by(2)} {x[n] * by[n]} * by[n] = x[n] » {b\[n] * by[n]}
Commutative by(t) = by(t) = by(2) * by(t) b\[n] * by[n] = by[n] + by[n]

Shift property If x(7) * x2(r) = g(r) then

xi(t =T)*x2(t = T2) = g(t = Ty — 1),

Convolution with impulse function

x(t)xd(t —1g) = x(t — ).
Convolution with unit step function

o f

() =ult) = f.r{r}m;r — 1)dr = f x(r)dr.

= —



Relations between LTI System Properties and the Impulse Response
Memoryless LTIC systems

a memoryless LTIC system typically has an input—output relationship of the form

vi(t) = kx(r),

where £ 15 a constant. Substituting x(r) = &(r), the impulse response fi(t) of a
memoryless system can be obtained as follows:

hit) = ko(r). (3.43)

An LTIC system will be memoryless if and only if its impulse response
h(r) =0 for t # 0.

y[n] = b[n] * x[n] - yn] =---+ b[—2]x[n + 2] + b[—1]x[n + 1] + b[0]x[n]
_ niy + b[1)x[n — 1] + b[2]x[n — 2] + ---
;..z_mh[k] [ k].-

For this system to be memoryless, y[#] must depend only on x[7] and therefore cannot de-
pend on x[n — k] for k& # 0. Hence, every term in Eq. (2.27) must be zero, except h[0]x[n].
This condition implies that h[k] = 0 for & # 0; thus, a discrete-time LTI system is memo-
ryless if and only if

h(k] = cd[k],




CAusaL LT1 SYSTEMS

The output of a causal LTI system depends only on past or present values of the input.
Again, we write the convolution sum as

yn] =+ b[-2)x[n + 2] + b[—1]x[n + 1] + b[0]x[n]
+ b[1]x[n— 1] + b[2]x[n — 2] +---.

We see that past and present values of the input, x[n], x[n — 1], x[n — 2],..., are as-
sociated with indices & = 0 in the impulse response 5[k ], while future values of the input,
x[n + 1], x[n + 2],..., are associated with indices k£ < 0. In order, then, for y[#] to de-
pend only on past or present values of the input, we require that b[k] = 0 for & < 0.
Hence, for a discrete-time causal LTI system,

bk] =0 for k<0,

and the convolution sum takes the new form
n] = > b[k]x[n — k].
y[n] g% [k]x( ]
A causal continuous-time LTI system has an impulse response that satisfies the condition

‘ h(r) =0 for 7 <0. —) y(t) = .L h(7)x(t — ) dr.




STABLE LTI SYSTEMS

A CT system 1s BIBO stable if an arbitrary bounded input signal produces a
bounded output signal. Consider a bounded signal x(r) with |x(¢)| < B, for all
t, applied as input to an LTIC system with impulse response /(f). The magnitude

of output y(r) 1s given by
-

()| = f h(t)x(t — r)dr|.

—&0

Using the Schwartz inequality, we can say that the output is bounded within the
range

ly(2)] = f |h(T)||x(t — 7)|dT. a
o f |h(r)|dt < oo,
—00

Since x(t) is bounded, |x(r)] < B,, therefore the above inequality reduces to

e — = =]
Iy{rJIEB_r_i lh(7)\dr. E |I:r[k]| < 00,

k=—0o




Example 3.10
Determine if systems with the following impulse responses:

(1) h(r) =6(r) —45(r - 2),
(i) h(r) = 2rect(t/2),

Solution
System (1)

(111) A(t) = 2exp(—41)u(r),
(iv) h(r) = [1 — exp(—41)]u(1),

Memorvyless property. Since h(t) £ 0fort #£ 0, system (1) is not memoryless.
Causality property. Since h(t) = 0 fort < 0, system (1) is causal.

Stability property. To verify if system (1) is stable, we compute the following
integral:

3 o

flﬁ(r)ldrz fw(r)—a{r—z)mr
= flﬂif}ldr+ flﬁir—z)mr:z < 00

which shows that system (1) is stable.




System (ii)

Memoryless property. Since h(t) # 0 for ¢ # 0, system (ii) is not memory-

less.
Causality property. Since h(t) # 0 for t < (, system (i1) is not causal.

Stability property. To verify if system (ii) is stable, we compute the following

integral:

o 1
f |h{r)|dr:f2dr =4 < o0,

~1
which shows that system (ii) is stable.
System (iii)

Memoryless property. Since h(t) # 0 for t # 0, system (iii) is not memo-
ryless. The memory of system (iii) is infinite, as the output at any time
instant depends on the values of the input taken over the entire past.

Causality property. Since h(t) = 0 fort < 0, system (iii) is causal.

Stability property. To verify that system (iii) is stable, we solve the following
integral:

o0

oo
f |h(e)|dt = ] 2¢ Mdt = —0.5 x [e™]° = 0.5 < o0,
—00 0

which shows that system (iii) is stable.

System (1v)

Memorvless property. Since h(t) # 0 for t #£ 0, system (iv) is not memory-
less.
Causality property. Since h(t) = 0 for t < 0, system (iv) is causal.

Stability property. To verify that system (iv) is stable, we solve the following
integral:

o0 o0
f \h(t)|dr = f(l —e ydr = [t —0.25¢ ] = ¢,
—od 0

which shows that system (iv) is not stable.



Invertible LTIC systems

Consider an LTIC system with impulse response h(f). The output y;(¢) of
the system for an input signal x(¢) is given by y;(t) = x (¢) % h(tr). For the
system to be invertible, we cascade a second system with impulse response
h;(t) in series with the original system. The output of the second system 1is

given by
ya(t) = yi(2) * hi(z).

For the second system to be an inverse of the original system, output y»(#) should
be the same as x(r). Substituting y,(z) = x(¢) * h(r) in the above expression
results in the following condition for invertibility:

x(t) = [x(2) % h(2)] * hi(t) = x(2) * [h(2) * h;(1)].
The above equation is true if and only if

h(t) = hi(t) = 8(1). (3.45)



TABLE 2.2 Properties of the Impulse Response Representation |

Property Camﬂus-nﬂm system - Ducrm!-muﬂ sjrsrem
Memoryless b(t) = c5(t) b{n] = c5{n]
Causal h(t) =0 for t<0 hn] =0 for mn<0
Stability 2 |b(8)| dt < o0 S em—colbn]| < oc

Invertbility b(t) « F™(t) = &(t)




2.9 Differential and Difference
Equation Representations of LTI Systems

The general form of a linear constant-coefficient differential equation is

'Eak = L Ebk x(t),

where the g, and the b, are constant coefficients of the system, x(¢) is the input applied to
the system, and y(¢) is the resulting output. A linear constant-coefficient difference equa-
tion has a similar form, with the derivatives replaced by delayed values of the input x[#]

and output y[#n]:

2 ﬂ = k gobkx[rz = k].

The order of the differential or difference equation is (N, M), representing the number of en-
ergy storage devices in the system. Often, N = M, and the order is described using only N.




x(t)

d 1 [
Ry(t) + Ld y(t) + 6[1}'[T]d7 = x(t).

Differentiating both sides of this equation with respect to ¢ results in

1 d

C)'(f) + Rd—y(t)

Tov(e) = Sx(0).

This differential equation describes the relationship between the current y(#) and the volt-
age x(t) in the circuit. In this example, the order is N = 2, and we note that the circuit con-
tains two energy storage devices: a capacitor and an inductor.



An example of a second-order difference equation is

yin] + y[n — 1] + %y[ﬂ — 2] = x[n] + 2x[n — 1], (2.37)

which may represent the relationship between the input and output signals of a system
that processes data in a computer. Here, the order is N = 2, because the difference equa-
tion involves y[n — 2], implying a maximum memory of 2 in the system output. Memory
in a discrete-time system is analogous to energy storage in a continuous-time system.

Difference equations are easily rearranged to obtain recursive formulas for comput-

ing the current output of the system from the input signal and past outputs. We rewrite
Eq. (2.36) so that y[n] is alone on the left-hand side:

yln] = o 3, busln = K] - o S ann - k]
0 k=0 0 k=1

This equation indicates how to obtain y[#] from the present and past values of the input
and the past values of the output. Such equations are often used to implement discrete-time
systems in a computer. Consider computing y[7] for n = 0 from x[#] for the second-order
difference equation (2.37) , rewritten in the form

y[n] = x[n] + 2x[n — 1] — y[n — 1] - %}'[n - 2]. (2.38)



Beginning with n = 0, we may determine the output by evaluating the sequence of equations

y[0] = 2[0] + 25{~1] = 5[~1] - 55[-2} (2.39)
1] = x[1] + 22[0] - y{0] - 3»(-1], (2:40)
2] = (2] + 2¢{1] - y{1] - 35[0},

3] = x[3] + 2x(2] - 5(2] - 751}

In each equation, the current output is computed from the input and past values of the out-
put. In order to begin this process at time # = 0, we must know the two most recent past
values of the output, namely, y[ —1] and y[ —2]. These values are known as initial conditions.

the initial conditions are y[—l] = 1and y[-2] = -2.

y[0]=1+2x0—1—%x(-2)=

1
y[n] = x[n] + 2x[n — 1] — y[n — 1] -I}'[n — 2], —) ; 11
y[1]=5+2x1—5-1x(1)=1

B =



> Problem 2.14 Write a differential equation describing the relationship berween the .ﬂﬁ%
input voltage x(t) and current y(¢) through the inductor in Fig. 2.29.
Ry(t) + Liy(t) = x(1) |
7 dt ' FIGURE 2.29 RL circuit.

» Problem 2.15 Calculate y[n],7 = 0, 1, 2, 3 for the first-order recursive system
y[n] = (1/2)y[n — 1] = x[n]
if the input is x[#] = u[n] and the initial condition is y[—1] = —2.

Answer:

y[0]=0, 5{11=1, »2]=3/2, 3] =74 a



Solving Differential and Difference Equations

THE HOMOGENEOUS SOLUTION

The homogeneous form of a differential or difference equation is obtained by setting all
terms involving the input to zero. Hence, for a continuous-time system, y¥)(¢) is the solu-
tion of the homogeneous equation

N dl-
dk

The homogeneous solution for a continuous-time system is of the form

—y*)(1) = 0.

y")(t) = Ec.e- (2.41)

where the 7, are the N roots of the system’s characteristic equation

N

;}a,,r* = 0. (2.42)
=0

Substitution of Eq. (2.41) into the homogeneous equation establishes the fact that y(")(¢)
is a solution for any set of constants c;.



In discrete time, the solution of the homogeneous equation
N

ga,y“”[n - k]=0

N
y®[n] = X e, (2.43)

=1

where the 7; are the N roots of the discrete-time system’s characteristic equation

N
Ea*r‘"'"* = (. (2.44)




ExampLE 2.17 RC Circurr: HoMOGENEOUS SOLUTION The RC circuit depicted in
Fig. 2.30 is described by the differential equation

R

y(t) + RCET“) = x(t). ‘\AA,—_I
+
Determine the homogeneous solution of this equation. x(f) . @ CT (1)

d
y(t) + RCE}'(H = 0. FiGURE 2.30 RC circuit.

Solution: The homogeneous equation is

The solution is given by Eq. (2.41), using N = 1 to obtain
y®)(2) = ;""" V,
where r, is the root of the characteristic equation
1+ RCr,=0.
Hence, r; = — 2, and the homogeneous solution for this system is
y¥)(1) = ¢ E-ﬁ V. a



P Problem 2.16 Determine the homogeneous solution for the systems described by
the following differential or difference equations:

(a)
LA + 55500 + 6506) = 220) + Sx(0
(b) N
Lo3(0) + 35y(0) + 29(0) = x(t) + (1)
(c)
y[n] — (9/16)y[n — 2] = x[n — 1]
(d)
y[n] + (1/4)y[n — 2] = x[n] + 2x[n — 2]
Answers:
(a)
yO)(2) = c,e™ + ™
(b)
YO (t) = cie™ + e
(c)
y®[n] = c1(3/4)" + c(—3/4)"
(d)

yW[n] = ¢(1/26"2)" + ¢)(1/2e77)"



TABLE 2.3 Form of Particular Solutions Corresponding to Commonly
Used Inputs.

Continuous Time Discrete Time
Particular Particular
Input Solution Input Solution
1 € 1 c
t cit + & n cin + &
e ce ™ a” ca”
cos(wt + ¢) ¢, cos(wt) + ¢, sinf{wt) cos({ln + ¢) ¢y cos({1ln) + ¢;sin({1n)

EXaMPLE 2.20 RC Cmcurt (CONTINUED): PARTICULAR SOLUTION Consider the RC
circuit of Example 2.17 and depicted in Fig. 2.30. Find a particular solution for this sys-
tem with an input x(t) = cos(wgt).



Solution: From Example 2.17, the differential equation describing the system is

d
y() + RC-y(t) = x(1)
We assume a particular solution of the form y®)(¢) = ¢, cos(wyt) + ¢, sin(wyt). Replacing
y(t) in the differential equation by y'?)() and x(t) by cos(w,t) gives
¢, cos(wgt) + ¢; sin(wgt) — RCayc, sin(wyt) + RCwyc; cos(wgt) = cos(wgt).

The coefficients ¢, and ¢, are obtained by separately equating the coefficients of cos(wyt)
and sin(wyt). This gives the following system of two equations in two unknowns:

¢; + RCayc; = 1;
—RCwgyc; + ¢ = 0.
Solving these equations for ¢, and c; gives

1

7 1% (RCap)?

and
_ __RCu,

? 71+ (RCwp)*

Hence, the particular solution is
1 RCw,
)y =
y ( ) 1 + (Rcmu)z ":u’s{mﬂt) 1 + (R[:fﬂu]z Em(mﬂﬂv




THE COMPLETE SOLUTION

Procedure 2.3: Solving a Differential or Difference Equation

1. Find the form of the homogeneous solution y'*) from the roots of the characteris-
tic equation.

2. Find a particular solution y'?) by assuming that it is of the same form as the input,
yet is independent of all terms in the homogeneous solution.

3. Determine the coefficients in the homogeneous solution so that the complete so-
lution y = y®' + y®) satisfies the initial conditions.

» Problem Asagida verilen sistemin homojen ¢éziiminii ve x(t)=e™ girdisi i¢cin 6zel ¢6zimiinii
hesaplayiniz

%J’(ﬂ o 5%}-(1) + 6y(t) = 2x(t) + "%I(ﬂ



