CHE 211 BASIC PRINCIPLES IN CHEMICAL ENGINEERING 2021 - 2022 Fall Semester

17.11.2021

Problem Set III

1. Hydrogen is produced from steam by water gas shift reaction

$$CO + H_2O \longrightarrow CO_2 + H_2$$

If the feed to the reactor contains 30 moles of CO, 12 moles of CO₂ and 35 moles of steam per hour and 18 moles of hydrogen are produced per hour, Calculate

- a) The limiting reactant
- b) The excess reactant
- c) The fractional conversion of steam to H₂
- d) The degree of completion oft he reaction
- e) The kg of hydrogen to be yield per kg of steam fed
- f) The composition of the product
- 2. The reaction between ethylene (C₂H₄) and HBr to form ethyl bromide (C₂H₅Br) is carried out in a continous reactor. The product stream is analyzed and is found to contain 50% C₂H₅Br an 33.3% HBr by mole. The feed to the reactor contains only ethylene and hydrogen bromide. Calculate:
 - a) The fractional conversion of the limiting reactant
 - b) The percentage of the excess reactant
- 3. Methan (CH₄) and oxygen react to form formaldehyde (CH₂O). In a side reaction, some of methane is oxidized to carbon dioxide and water

$$CH_4 + O_2 \longrightarrow CH_2O + H_2O$$

 $CH_4 + 2O_2 \longrightarrow CO_2 + 2H_2O$

The feed to the reactor contains 50% methane and 50% oxygen in moles. The fractional conversion of methane is 0.95 and the fractional yield of formaldehyde is 0.90.

- a) Calculate the molar composition of the reactor output stream and the selectivity of formaldehyde production relative to carbon dioxide production.
- b) Calculate conversion of O₂
- 4. Five kilograms of bismuth (MW= 209) is reacted with one kilogram of sulfur (MW= 32) to form Bi_2S_3 (MW= 514). At the end of the reaction, output is taken out of the reactor and is found to contain 5 wt % free sulfur. Reaction is,

$$2 \text{ Bi} + 3 \text{S} \longrightarrow \text{Bi}_2 \text{S}_3$$

Determine:

- a) the limiting reactant,
- b) the percent excess reactant,
- c) the percent conversion of sulfur to Bi₂S₃,
- d) percent conversion of Bi to Bi₂S₃.

5. When propylene(C₃H₆) is mixed with chlorine(Cl₂), the following reactions take place.

$$C_3H_6(g) + Cl_2(g) \rightarrow C_3H_5Cl(g) + HCl(g)$$
 (a)

$$C_3H_6(g) + Cl_2(g) \rightarrow C_3H_6Cl_2(g)$$
 (b)

Molecular weights of C_3H_6 , C_3H_5Cl , and $C_3H_6Cl_2$ are 42.0, 76.5, and 113.0 respectively. The species in the product are listed in the following table.

Species	gmol
$\overline{\operatorname{Cl}_2}$	141.0
C_3H_6	651.0
C_3H_5Cl	4.6
$C_3H_4Cl_2$	24.5
HC1	4.6

assuming that there are only propylene and chlorine in feed, calculate the following:

- (a) How much propylene and chlorine are fed to the reactor in gmol?
- (b) What was the limiting reactant?
- (c) What was the excess reactant and excess percentage of the excess reactant on the basis of reaction (a)?
- (d) What was the fractional conversion of C₃H₆ to C₃H₅Cl?
- (e) What was the selectivity of C_3H_5Cl relative to $C_3H_6Cl_2$?
- (f) What was the yield of C₃H₅Cl expressed in gmol C₃H₅Cl to the gmol of C₃H₆ fed to the reactor?
- (g) What was the extent of reaction of the first and second reactions?
- 6. In a process for the manufacture of chlorine by direct oxidation of HCl with air over a catalyst to form Cl_2 and H_2O (only), the exit product is composed of HCl (4.4%), Cl_2 (19.8%), O_2 (4.0%), and O_2 (52.0%). What was
 - (a) The limiting reactant?
 - (b) The percent excess air?
 - (c) The degree of completion of the reaction?
- 7. Consider a continous, steady –state process in which the following reactions take place:

$$C_6H_{12} +6 H_2O \rightarrow 6CO +12 H_2$$

$$C_6H_{12} + H_2 \rightarrow C_6H_{14}$$

In the process 250 moles/h of C_6H_{12} and 800 moles/h of H_2O are fed into reactor . The yield of H_2 is 40% . Yield is defined as the mole of H_2 obtained divided by the theoretical maximum H_2 that would be obtained based on the limiting reactant being comletely consumed). The selectivity of H_2 relative to C_6H_{14} is 12.

- (a) What is limiting reactant?
- (b) Calculate the molar flow rates of all five components in output stream.

Note: Use extent of reaction method.

- (c) Calculate the fractional conversion of H₂O.
- (d) What was the conversion of C_6H_{12} to C_6H_{14} ?